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Supplementary Material

Proofs

Proof of Lemma 1

The norm in question is just

g 7! max
� 2P m

mX

j =1

jgi j
F (� (j ))

:

Each term inside the max is a weighted `1-norm.
Pointwise maximum of any number of norms is also
a norm.

Proof of Lemma 2

We note that the lemma would be easy to show if all
entries of r were distinct. It was more delicate however
to handle the general case where this need not hold.

The reverse implication is straightforward so we only
prove the forward direction. Assume s ; r . This
means there is a permutation� such that

s� (1) � s� (2) � : : : � s� (m ) ;

r � (1) � r � (2) � : : : � r � (m ) :

Now, de�ne the map g as follows. Givenx, let � be
any permutation that sorts x in decreasing order, i.e.

x � (1) � x � (2) � : : : � x � (m ) :

De�ne g(x) to be the vector y de�ned as:

y� (1) = s� (1) + tan  1  
x � (1)  r � (1)

�
; and

y� (k+1) = y� (k )  
�
s� (k )  s� (k+1)

+ tan  1  
x � (k+1)  r � (k+1)

��
;

for k � 1. Here, tan 1(z), for z 2 R is a non-negative
function de�ned as the unique � 2 [0; � ) such that
tan( � ) = z. It is easy to check that g is order preserv-
ing and invertible, and that g(r ) = s.

Proof of Lemma 3

There are two directions to prove: NDCG consistency
$ condition in Lemma 3. The forward direction is
trivial: just take a marginal distribution � that puts
all mass on a singlex. For the other direction, assume
condition in Lemma 3. Suppose we have a sequencefn

such that
�( fn ) ! � ? :

Then, it must be the case that, for � -almost all x ,

�� (fn (x); � x ) ! �� ?(� x ) :

This implies that

�̀
NDCG (fn (x); � x ) ! �̀?

NDCG (� x )

for � -almost all x . Thus we have

L NDCG (fn ) ! L ?
NDCG :

which shows that � is NDCG consistent.

Proof of Lemma 4

Assume that is not the case that

s ; E [u]

where

u = Er � �

�
G(r )

kG(r )kD

�
:

Then, there exist i; j such that ui > u j but si � sj .
Thus, there exists a permutation � s that respects the
sorted order of s and which ranks j higher than i , i.e.
� s(j ) < � s(i ). This means that

1
F (� s(j ))

 
1

F (� s(i ))
> 0 :

Multiplying by ui  uj > 0 gives

 
�

ui

F (� s(i ))
+

uj

F (� s(j ))

�
>  

�
uj

F (� s(i ))
+

ui

F (� s(j ))

�
:

That is, we can decrease the NDCG loss by swapping
i with j . Thus �̀

NDCG (s; � ) < �̀?
NDCG (� ).

Now assume that s ; E [u] with u as de�ned above.
Using the same argument we can show that the NDCG
loss does not decrease no matter whichi; j we swap.
Hence �̀

NDCG (s; � ) = �̀?
NDCG (� ).

Proof of Theorem 6

Again there are two directions to prove: condition of
Lemma 3$ condition of Theorem 6. Let us prove the
forward direction �rst. By de�nition of s?

� (� ), we have

�� (s?
� (� ); � ) = �� ?(� )

and hence, under the condition of Lemma 3,

�̀
NDCG (s?

� (� ); � ) = �̀?
NDCG (� ) ;

which implies

s?
� (� ) ; Er � �

�
G(r )

kG(r )kD

�
:

Now, by Lemma 2, there is an invertible order preserv-
ing g such that

s?
� (� ) = g

�
Er � �

�
G(r )

kG(r )kD

��
:
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For the reverse direction, assume condition of Theo-
rem 6 and that

�� (sn ; � ) ! �� ?(� ) (9)

for some sequencesn . We want to show that

�̀
NDCG (sn ; � ) = �̀?

NDCG (� ) (10)

for n large enough. By our regularity assumption on
� , (9) implies that sn ! s?

� (� ). By the condition of
Theorem 6, we have

s?
� (� ) ; Er � �

�
G(r )

kG(r )kD

�
:

Again abbreviate the vector on the right to u. We
want to claim that for each �xed pair i; j such that
ui > u j , we havesn;i > s n;j for n large enough. But
this follows from

[s?
� (� )] i > [s?

� (� )] j

and the fact that sn ! s?
� (� ). Since there are only

�nitely many pairs i; j , we can now claim that

sn ; u = Er � �

�
G(r )

kG(r )kD

�

for n large enough. Thus, by Lemma 4, we know
that (10) is true for n large enough. This proves the
reverse direction and �nishes the proof.

Proof of Proposition 7

To show NDCG inconsistency of a surrogate� , it is
enough to exhibit one distribution � , where the sorted
order of the minimizer of �� (s; � ) is di�erent from the
sorted order of E [G(r )=kG(r )kD ].

We have already done that for� = � sq in Section 3.2.1.
For both � cos and � list , the distribution exhibiting in-
consistency will be supported on two vectors

�
1
x

� �
y
1

�

with probabilities p and 1  p respectively. One can
simply verify that we get NDCG inconsistency if we
choosep = 0 :38; x = 5 ; y = 2 (for Cosine) or p =
0:35; x = 5 ; y = 2 (for Cross Entropy). The geometric
picture behind what is causing inconsistency for these
distributions is given in Figures 3 and 4.

Proof of Theorem 10

We will show that for any s and any distribution �
over R, we have

�̀
NDCG (s; � )  �̀?

NDCG (� ) �
CFp

C�
�
q

�� (s; � )  �� ?(� )

Figure 3: Inconsistency of Cosine The distribu-
tion is supported on u = (1 ; x) and v = ( y; 1) with
probability p and 1  p respectively. The 3 green
points are G(u)=kG(u)kD , G(v)=kG(v)kD and their
weighted mean. The 3 blue points areG(u)=kG(u)k2,
G(v)=kG(v)k2 and their weighted mean. Note that
the weighted means lie on di�erent sides of the black
diagonal line.

Figure 4: Inconsistency of Cross Entropy The dis-
tribution is supported on u = (1 ; x) and v = ( y; 1) with
probability p and 1 p respectively. The 3 green points
areG(u)=kG(u)kD , G(v)=kG(v)kD and their weighted
mean. The 3 blue points are exp(u)=1> exp(u),
exp(v)=1> exp(v) and their weighted mean. Note that
the weighted means lie on di�erent sides of the black
diagonal line.
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from which the result follows after taking expectations
and using Jensen's inequality.

To keep notation simple, we will omit subscripts under
expectations. All expectations are w.r.t. r drawn from
� . Let � be an arbitrary permutation. We have,

�̀
NDCG (s; � ) = E

2

4 
1

kG(r )kD

mX

j =1

G(r j )
F (� s(j ))

3

5

= E

2

4 
1

kG(r )kD

mX

j =1

G(r �  1
s ( j ) )

F (j )

3

5 (11)

= E

2

4 
mX

j =1

(g(s)) �  1
s ( j )

F (j )

3

5 + T1

� E

2

4 
mX

j =1

(g(s)) �  1 ( j )

F (j )

3

5 + T1

= E

2

4 
1

kG(r )kD

mX

j =1

G(r �  1 ( j ) )
F (j )

3

5 + T2 + T1

= E

2

4 
1

kG(r )kD

mX

j =1

G(r j )
F (� (j ))

3

5 + T2 + T1

= �̀
NDCG (� ; � ) + T2 + T1 : (12)

where

T1 := E

2

4
mX

j =1

1
F (j )

�

!

(g(s)) �  1
s ( j )  

G(r �  1
s ( j ) )

kG(r )kD

" 3

5 ;

T2 := E

2

4
mX

j =1

1
F (j )

�
�

G(r �  1 ( j ) )
kG(r )kD

 (g(s)) �  1 ( j )

�
3

5 :

The inequality above holds because the sorted order
of s and g(s) match (i.e. s ; g(s)) since g is an
order-preserving map. Note that both T1 and T2 are
bounded by

CF

2
�




 g(s)  E

�
G(r )

kG(r )kD

� 




using the inequality hu; v i � k uk � kvk? and de�nition
of CF . Plugging this into (12), we get

�̀
NDCG (s; � )  �̀

NDCG (� ; � ) � CF




 g(s)  E

� G(r )
kG(r )kD

�





�
CFp

C�
�
q

�� (s; � )  �� ?(� ) :

The last inequality above follows because byC� -strong

convexity of  w.r.t. k � k, we have

�� (s; � ) = E
�
D  

�
G(r )

kG(r )kD
; g(s)

��

= min
s0

E
�
D  

�
G(r )

kG(r )kD
; g(s0)

��

+ D  

�
E

�
G(r )

kG(r )kD

�
; g(s)

�

� �� ?(� ) + C�




 g(s)  E

�
G(r )

kG(r )kD

� 




2

:

Taking maximum over � yields,

�̀
NDCG (s; � )  �̀?

NDCG (� ) �
CFp

C�
�
q

�� (s; � )  �� ?(� ) :

and this completes the proof.

Plots

In Figure 6, we present the rest of the plots comparing
the NDCG consistent and unmodi�ed versions of ex-
isting surrogates, and where the di�erences were not
that pronounced. We also ran signi�cance tests for
these comparisons; presented in Figure 1. We modi�ed
the Lemur toolkit to compute NDCG@10 and used the
random permutation test with 5% signi�cance level for
each test. We were able to test 9 out of 10 datasets in
the paper; we were not able to run the Lemur toolkit
for the MS10K dataset due to memory limits. Out
of 81 evaluation points (9 datasets x 3 loss functions
x 3 metrics (NDCG@1,5,10) ), NDCG recovery per-
formed signi�cantly better in 11 and worse in 9 cases.
One interesting thing here was that 5 cases out of 9
\worse" cases came from only one dataset (MQ2008).
Further, the \large" changes were all one-sided: the
only changes larger than 3% were all improvements;
some of them as large as 30%.
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(a) Cross Entropy on the OHSUMED (b) Cross Entropy on the HP2004 (c) Cross Entropy on the MQ2007

(d) Cross Entropy on the MQ2008 (e) Cross Entropy on the MS10K (f) Cosine on the OHSUMED

(g) Cosine on the HP2003 (h) Cosine on the HP2004 (i) Cosine on the NP2003

(j) Cosine on the NP2004 (k) Cosine on the TD2004 (l) Cosine on the MQ2007

(m) Cosine on the MQ2008 (n) Square on the OHSUMED (o) Square on the HP2003

(p) Square on the HP2004 (q) Square on the NP2003 (r) Square on the NP2004
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(s) Square on the TD2003 (t) Square on the TD2004 (u) Square on the MQ2008

Figure 5: NDCG@1-10 for original surrogate vs. NDCG consistent surrogate

Figure 6: One example of normalized loss functions,q = log( mi ) + 2 vs. existing listwise loss functions w/
recovering NDCG consistency

Table 1: Comparison of the `NDCG-consistent' version (withZ (r )10) to the baseline across 81 evaluation points:
9 datasets, 3 loss functions ( cross-entropy, cosine and squared), and 3 metrics (NDCG@f 1,5,10g). For each case,
we report whether our method performed better, same, or worse than the baseline (with statistical signi�cance).
We also report average change in relative accuracy across the 9 evaluation points for each dataset.

Dataset OHSUMED HP2003 HP2004 NP2003 NP2004 TD2003 TD2004 MQ2007 MQ2008 Total %

Better 2 5 0 3 0 0 0 1 0 11 13.6%
Same 7 4 9 6 8 8 9 6 4 61 75.3%

Worse 0 0 0 0 1 1 0 2 5 9 11.1%
Total 9 9 9 9 9 9 9 9 9 63 100%

Avg. change 0.81% 14.9% -0.78% 11.68% -2.77% 4.73% 1.82% -0.09% -2.02% 4.34%


