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A Additional Proofs for
Subsection 3.1

A.1 Proof of Lemma 6

Denote 0 = λ1 ≤ λ2 ≤ · · · ≤ λn and v1,v2, . . . ,vn to be
the eigenvalues and eigenvectors of L, and let 0 = λ̃1 ≤
λ̃2 ≤ · · · ≤ λ̃n and ṽ1, ṽ2, . . . , ṽn to be the eigenvalues
and eigenvectors of L̃ (we note that a Laplacian is always
positive semidefinite and has a 0 eigenvalue, see [25]).

By applying a classical eigenvector perturbation theorem
due to Davis and Kahan (see section V in [24]), we have
that if [v1,v2] is the subspace spanned by the first two

eigenvectors of L, and Ṽ is the subspace spanned by the
eigenvectors of L̃ whose eigenvalue is at most λ2, then

∥∥∥sin
(

Θ
(

[v1,v2] , Ṽ
))∥∥∥ ≤ ‖L̃− L‖

λ3 − λ2
,

where sin
(

Θ
(

[v1,v2] , Ṽ
))

is the diagonal matrix with

the sines of the canonical angles between the subspaces
[v1,v2], Ṽ along the main diagonal. Moreover, by Weyl’s
inequality (see Corollary 4.9 in [24]), we have that |λ3 −
λ̃3| ≤ ‖L̃−L‖. Therefore, if λ3−λ2 > ‖L̃−L‖, it guarantees

us that λ̃3 > λ2, so the subspace Ṽ is simply the one
spanned by ṽ1, ṽ2. If λ3 − λ2 ≤ ‖L̃− L‖, we still trivially
have ‖sin (Θ ([v1,v2] , [ṽ1, ṽ2]))‖ ≤ 1. So in any case, we
get

‖sin (Θ ([v1,v2] , [ṽ1, ṽ2]))‖ ≤ min

{
‖L̃− L‖
λ3 − λ2

, 1

}
.

For any Laplacian, the vector 1√
n
1 is an eigenvector corre-

sponding to the 0 eigenvalue (see [25]). So we may assume
that ṽ1 = v1 = 1√

n
1, and by definition of canonical angles,

it follows from the inequality above that

sin(arccos(〈v2, ṽ2〉)) ≤ min

{
‖L̃− L‖
λ3 − λ2

, 1

}
.

Denoting ‖L̃ − L‖/(λ3 − λ2) as ε, it is straightforward to
show from this that

〈v2, ṽ2〉 ≥
√

1−min{ε2, 1},

where we choose the sign of ṽ2 so as to make the l.h.s.
nonnegative. Therefore, ‖ṽ2 − v2‖2 equals

2(1− 〈ṽ2,v2〉) ≤ 2(1−
√

1−min{ε2, 1}) ≤ 2 min{ε2, 1},

from which the result follows.

A.2 Proof of Thm. 1

Let c = n(n−1)
2b

, and let L be the Laplacian of the matrix
A. By the triangle inequality,

‖cL̃− L‖ ≤ ‖cD̃ −D‖+ ‖cÃ−A‖. (5)

We will treat each term separately. By Lemma 3, we know
that Ã consists of negatively dependent entries, and thus

cÃ − A is also a matrix with negatively dependent en-
tries (this follows from Lemma 1). We now wish to apply
Lemma 4 on this matrix, so we need to check that all of
its conditions are fulfilled. First, note that each entry Ãi,j
equals Ai,j with probability 1/c, and 0 otherwise. Thus,

it is easy to verify that the E[cÃi,j − Ai,j ] = 0. Moreover,
since Ai,j is assumed to be bounded in [0, 1], it follows that

|cÃi,j − Ai,j | ≤ c. In addition, the variance of each entry

E[(cÃi,j−Ai,j)2] is at most (1/c)(c−1)2 +(1−1/c)12 ≤ c.
Finally, cÃi,j − Ai,j takes only two values, in the manner
assumed in Lemma 4. So applying Lemma 4 on the matrix
cÃ−A, we have that with probability at least 1− δ,

‖cÃ−A‖ ≤ 2
√
cn+ 3

3
√
c2n log(2n/δ). (6)

Turning to analyze ‖cD̃ − D‖, we note that cD̃ − D is a
diagonal matrix, hence the norm is equal to the absolute
value of the largest entry on the diagonal:

‖cD̃ −D‖ = max
i

∣∣∣∣∣
n∑
j=1

(cãi,j − ai,j)

∣∣∣∣∣ ,
For any fixed i, the term in the absolute values is the sum
of n zero mean, negatively dependent random variables,
with absolute values and variances at most c. Applying
Lemma 5, we have for any ε ∈ (0, 1) that

Pr

(∣∣∣∣∣
n∑
j=1

(cãi,j − ai,j)

∣∣∣∣∣ > nε

)

= Pr

(∣∣∣∣∣ 1n
n∑
j=1

(ãi,j −
1

c
ai,j)

∣∣∣∣∣ > ε

c

)

≤ 2 exp

(
− nε2/c2

2(1/c+ ε/3c)

)
≤ 2 exp

(
−nε

2

3c

)
.

This implies that with probability at least 1 − δ, for any
δ ≥ 2 exp(−n/3c),∣∣∣∣∣

n∑
j=1

(cãi,j − ai,j)

∣∣∣∣∣ ≤√3cn log(2/δ).

By a union bound, this implies that with probability at
least 1− δ, for any δ ≥ 2 exp(−n/3c),

‖cD̃ −D‖ = max
i

∣∣∣∣∣
n∑
j=1

(cãi,j − ai,j)

∣∣∣∣∣ ≤√3cn log(2n/δ).

(7)
Plugging Eq. (6) and Eq. (7) into Eq. (5), and using again
a union bound, we have with probability at least 1− δ, for
any δ ≥ 2 exp(−n/3c) that

‖cL̃− L‖ ≤ 2
√
cn+ 3

3
√
c2n log(4n/δ) +

√
3cn log(4n/δ).

(8)
Finally, applying Lemma 6, this event implies that
‖ṽ2 − v2‖ is at most

√
2 min

{
2
√
cn+ 3

3
√
c2n log(4n/δ) +

√
3cn log(4n/δ)

λ3 − λ2
, 1

}
.

(9)
In fact, this occurs with probability at least 1−δ even when
δ < 2 exp(−n/3c), because the bound can be shown to be
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vacuously true in this case (the expression inside the min
will always be at least 1). Simplifying the bound a bit for
readability, and using the fact that c ≤ n2/2b, we get the
result stated in the theorem.

Finally, note that if one desires a fully empirical bound,
which depends only on Ã and not on the unknown matrix
L, then it is possible to estimate λ3 − λ2. Indeed, if we
let λ̃2, λ̃3 denote the 2nd and 3rd smallest eigenvalues of
cL̃, then by Weyl’s inequality (see corollary 4.9 in [24]) we

have |λ̃3 − λ3|, |λ̃2 − λ2| ≤ ‖cL̃ − L‖. Thus, by using the

bound on ‖cL̃−L‖ obtained above, one can bound λ3−λ2

using the empirically obtainable quantity λ̃3 − λ̃2.

B Proof of Thm. 2

Before we begin, we will need the following lemma:

Lemma 7. Let Â be a matrix during some point in the run

of algorithm 2, and let Â′ be the matrix obtained by setting
some entry pairs âi,j , âj,i to 0 in an arbitrary manner. Let

L̂, L̂′ be the Laplacians of Â, Â′ respectively. Then it holds
that

‖L̂− L‖ ≤ ‖L̂′ − L‖.

Proof. Clearly, it is enough to prove the assertion for Â′

which is obtained from Â by setting a particular entry pair
âi,j , âj,i to 0, and then repeating the argument. In this
case, it is easy to verify that for any vector v,

v>(L̂− L)v − v>(L̂′ − L)v = âi,j(vi − vj)2.

In particular, if we pick v to be the maximal eigenvector

of (L̂−L) (e.g., such that v>(L̂−L)v = ‖L̂−L‖), and v′

to be the maximal eigenvector of (L̂′ − L), then

‖L̂′ − L‖ − ‖L̂− L‖ = v′>(L̂− L)v′ − v>(L̂′ − L)v

≥ v>(L̂− L)v − v>(L̂′ − L)v = âi,j(v̂i − v̂j)2 ≥ 0.

We now turn to prove Thm. 1. The basic idea is that after

running Algorithm 2 with a budget size 2b, the matrix Â
always includes b revealed entries which “look” as if they
were sampled uniformly without replacement. Notice that
these entries might not be the entries queried in the even
iterations of Algorithm 2, since these were performed on a
matrix with some entries already revealed in a non-random
manner. The theorem then follows from an application of
Lemma 7.

More precisely, suppose that we implement the random
samples in the even iterations of Algorithm 2 as follows.
Before the algorithm begins, we sample 2b matrix indices
from {(i, j) ∈ {1, . . . , n}2 : i < j} uniformly at random
without replacement, and put them in an ordered list. At
each even iteration, we pick the first index (i, j) from the
list that wasn’t sampled yet (in either the even or odd
iterations). Clearly, this is a valid implementation of the
random samples in Algorithm 2.

Since we pick an element from the list every even iteration,
and all previous elements were necessarily already sampled,
we have that by the end of the algorithm’s run, all the first

b elements in the list are already picked. Thus, the matrix

Â always include these b entries. Let Â′ be the matrix

obtained from Â by zeroing all sampled entries except those

b entries. Notice that Â′ has the same distribution as if
we picked b entries uniformly without replacement from

{(i, j) ∈ {1, . . . , n}2 : i < j}. In other words, Â′ has the
same distribution as the matrix obtained during the run
of Algorithm 1. Therefore, the analysis performed in the
proof of Thm. 1 applies. In particular, Eq. (8) applies,
namely that with probability at least 1− δ,

‖cL̂′ − L‖ ≤ 2
√
cn+ 3

3
√
c2n log(4n/δ) +

√
3cn log(4n/δ),

where L̂′ is the Laplacian of Â′ and c = (n − 1)n/2b is a
constant scaling factor. But from Lemma 7, we also know
that

‖cL̂− L‖ ≤ ‖cL̂′ − L‖.

Combining the two inequalities, we get that

‖cL̂− L‖ ≤ 2
√
cn+ 3

3
√
c2n log(4n/δ) +

√
3cn log(4n/δ).

Repeating the end of the proof of Thm. 1 (following
Eq. (8)), we get the same guarantee for Algorithm 2 as
for Algorithm 1, only with a budget size of 2b rather than
b.

C Algorithm 2 - Proof of Correctness

In this appendix, we show that Algorithm 2 computes the
(squared) norm of the derivative of the 2nd eigenvector of
the Laplacian, with respect to a symmetric perturbation
of entries (i, j), (j, i) in the similarity matrix.

The relevant general theorem, stated below, is based on
techniques used in the proof of theorem 7 in section 8.8
of [19], and lemma 1 in [17]. In Corollary 1, we use it to
compute the squared norm of the derivative.

Theorem 3. Let (λ1 . . . , λn) and (v1, . . . ,vn) be the n
eigenvalues and eigenvectors of the Laplacian L of a given
n × n matrix A, and assume that λk for some k > 1 is a
simple eigenvalue (i.e. has multiplicity 1).

Fix some indices i, j ∈ {1, . . . , n}, i 6= j, and let Eij be

the n× n matrix with Eiji,j = Eijj,i = 1 and zeros otherwise.

Finally, define A(t) = A+ tEij, where t ∈ R.

Then it is possible to define functions µk(t) and uk(t) in
an open set T around 0, such that µk(t),uk(t) are the k-th
eigenvalue and eigenvector of A(t), and it holds that

duk(t)

dt

∣∣∣∣t=0 =

∑
l 6=k

vlv
>
l

λk − λl

P ijvk,

where P iji,j = P ijj,i = −1,P iji,i = P ijj,j = 1, and zeros other-
wise.

Intuitively, A(t) tracks a perturbation of A by adding a
small positive element at the symmetric indices (i, j), (j, i).
We note that the assumption of λk being simple is reason-
able for a general matrix (this can always be ensured with
probability 1 by adding an arbitrarily small random per-
turbation to the matrix, but we did not bother to do this
in our algorithm).
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Proof. Let M(t) be the Laplacian of A(t). Note that
M(0) = L, µk(0) = λk, and uk(0) = vk. For simplicity,
we will drop the indexing by t from now on, as it should
be clear from context.

We begin by proving that uk, µk are well-defined, differen-
tiable functions of t in some region around t = 0.

Consider the vector function f : Rn+2 7→ Rn+1 defined as

f(u, µ, t) =

(
(µI −M(t))u

u>u− 1

)
.

It is easy to see that the function is continuously differ-
entiable everywhere, and that f(vk, λk, 0) = 0. Moreover,
the Jacobian of f w.r.t. u, µ at that point equals

∂f

∂(u, µ)

∣∣∣∣u=vk,µ=λk,t=0 =

[
λkI − L vk

2v>k 0

]
. (10)

We claim that the Jacobian is non-singular. To see why,
notice that the matrix in Eq. (10) has n − 1 eigenvalues
of the form (λk − λl) for all l 6= k (which are all non-
zero by the assumption that λk is a simple eigenvalue of
L), with corresponding eigenvectors (v>l , 0), as well as the

two eigenvalues −
√

2,
√

2 with corresponding eigenvectors
(v>k ,−

√
2), (v>k ,

√
2). Thus, the determinant of the Jaco-

bian in Eq. (10), which equals the product of its eigenval-
ues, is non-zero.

By the implicit function theorem, this implies that there
is some open set T ⊆ R, 0 ∈ T , with well defined differen-
tiable functions µk : T 7→ R,uk : T 7→ Rn, such that

∀ t ∈ T, (µkI −M)uk = 0. (11)

Differentiating Eq. (11) at t = 0, and using the definition
of a Laplacian, we get(

dµk
dt

I − P ij
)
vk + (λkI − L)

dvk
dt

= 0.

Multiplying from the left by vl for any j 6= k, and using
the fact that v>l vi = 0 and Lvl = λlvl, we get that

−v>l P ijvk + (λk − λl)v>l
duk
dt

= 0,

or

(λk − λl)v>l
duk
dt

= v>l P
ijvk. (12)

Also, since v1, . . . ,vn is an orthonormal basis for Rn, and
duk/dt at t = 0 is orthogonal to vk (since the eigenvectors
are forced to lie on the unit sphere), we have

duk
dt

=

n∑
l=1

〈vl,
duk
dt
〉vl =

∑
l 6=k

〈vl,
duk
dt
〉vl.

Since we assume that λk is a simple eigenvector, the above
is equal to∑

l6=k

(λk − λl)−1(λk − λl)
(
v>l

duk
dt

)
vl,

which by Eq. (12) equals∑
l 6=k

(λk − λl)−1
(
v>l P

ijvk
)
vl.

Slightly rearranging, the theorem follows.

The following corollary to Thm. 3 provides an expression
for the squared norm of the derivative of the k-th eigen-
vector of the Laplacian. Its derivation is a simple algebraic
exercise, utilizing the orthogonality of the eigenvectors.

Corollary 1. Under the conditions and notation of
Thm. 3, define

ṽl =

{
vl/(λk − λl) λk 6= λl
0 λk = λl

Then
∥∥∥ duk(t)

dt

∣∣∣t=0

∥∥∥2, where the derivative is with respect to

the perturbation Eij, equals

(vk,i − vk,j)2
n∑
l=1

(ṽl,i − ṽl,j)2

Proof. Define the matrix G as

G =
∑

l:λl 6=λk

vlv
>
l

λk − λl
.

By Thm. 3, the vector duk(t)/dt at t = 0 w.r.t. per-
turbation Eij can be written as (vk,i − vk,j)(Gi − Gj),
where Gi, Gj are the i-th and j-th column of G. Therefore,

‖duk(t)/dt‖2 equals

(vk,i − vk,j)2
∥∥∥∥∥∥
∑

l:λl 6=λk

(vl,i − vl,j)vl
λk − λl

∥∥∥∥∥∥
2

= (vk,i − vk,j)2
∑

l:λl 6=λk

(
vl,i − vl,j
λk − λl

)2

,

since the eigenvectors are orthogonal to each other. This
equals the expression in the corollary statement.


