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APPENDIX — SUPPLEMENTARY
MATERIAL

APPENDIX A – PROOF OF PROPOSITION 1

Before we prove this result, we need to state the following
result from Richardson (2003). Given an ancestral set
A, the Markov blanketof vertexXv in A, mb(Xv, A),
is given by the district ofXv in (G)A (exceptXv itself)
along with all parents of elements of this district. Let a
total ordering≺ of the vertices ofG be any ordering such
that if Xv ≺ Xt, thenXt is not an ancestor ofXv in G.
A probability measure is said to satisfy theordered local
Markov conditionfor G with respect to≺ if, for any Xv

and ancestral setA such thatXt ∈ A\{Xv} ⇒ Xt ≺ Xv,
we haveXv is independent ofA\(mb(Xv, A) ∪ {Xv})
given mb(Xv, A). The main result from Richardson
(2003) states:

Theorem 1. The ordered local Markov condition is
equivalent to the global Markov condition in ADMGs6.

Proof of Proposition 1: The proof is done by induction on
|XV |, with the case|XV | = 1 being trivial. We will show
that if P (XV ) is a probability function that factorizes ac-
cording to (5), as given by an ADMGG, thenP (XV ) is
Markov with respect toG. To prove this, first notice there
must be someXv with no children inG, since the graph is
acyclic. LetXDi

be the district ofXv. By assumption,

P (XV ) = PF (Xv | XDi
∪ paG(XDi

))
× PF (XDi

\Xv | paG(XDi
)\XDi

)
×

∏

j 6=i Pj(XDj
| paG(XDj

)\XDj
)

(12)

SinceXv is childless, it does not appear in any of the fac-
tors in the expression above, except for the first. Hence,

P (XV \Xv) = PF (XDi
\Xv | paG(XDi

)\XDi
)

×
∏

j 6=i Pj(XDj
| paG(XDj

)\XDj
)
(13)

which by induction hypothesis is Markov with respect to
the marginal graph(G)XV \Xv

.

One minor detail about the induction hypothesis: it is
true that(G)XV \Xv

might have more districts thanG af-
ter removingXv: this might happen if removingXv

results on havingXDi
\Xv becoming disconnected in

(GXV \Xv
)↔. However, the result still holds by further fac-

torizingPF (XDi
\Xv | paG(XDi

)\XDi
) according to the

newly formed districts ofXDi
\Xv – which is possible by

the construction ofPF (·) andGi.

6Notice this reduces to the standard notion of local in-
dependence in DAGs, where a vertex is independent of its
(non-parental) non-descendants given its parents, from which
d-separation statements can be derived (Lauritzen, 1996, Pearl,
1988).

By the ordered local Markov property for ADMGs and
any ordering≺ whereXv is the last vertex, probability
function P (XV ) will be Markov with respect toG if,
according toP (XV ), the Markov blanket ofXv in G
makesXv independent of the remaining vertices. But
this true by construction, since this Markov blanket is
contained inXDi

∪ paG(XDi
) according to Theorem 1.�

APPENDIX B – BINARY CASE: RELATION TO
COMPLETE PARAMETERIZATION

A complete parameterization for binary ADMG models is
described by Richardson (2009). As we will see, parame-
ters are defined in the context of different marginals, analo-
gous to the purely bi-directed case (Drton and Richardson,
2008).

As in the bi-directed case, the joint probability distribution
is given by an inclusion-exclusion scheme:

P (XV = α(V )) =
∑

C:α−1(0)⊆C⊆V

g(C) (14)

whereg(C) is given by

(−1)|C\α−1(0)|
∏

H∈[C]G

P (XH = 0 |Xtail(H) = α(tail(H)))

andα(V ) is a binary vector in{0, 1}|XV |, α−1(0) being
a function that indicates which elements inXV were as-
signed to be zero.

EachC indicates which elements are set to zero in the re-
spective term of the summation. Depending onC, the fac-
torization changes.[C]G is a set of subsets ofXV : one
subset per district, each subset being barren inG. The cor-
respondingtail(H) is the Markov blanket for the ancestral
set that containsH as its set of childless vertices.

As in our discussion of standard CDNs, Equation (14)
can be interpreted as the CDF-to-probability transforma-
tion (3). It can be rewritten as

P (XV = α(V )) =
∑

C:α−1(0)⊆C⊆V

(−1)|C\α−1(0)|×

∏

H∈Di∩[C]G

P (XDi
\tail(H) ≤ α(V ) | Xtail(H) =

α(tail(H)))

Hence, this parameterization can also be interpreted as a
CDF parameterization. One important difference is that
each term in the summation uses only a subset of each dis-
trict, XDi

\tail(H) instead ofXDi
. Notice that some ele-

ments ofXDi
appear in the conditioning set (i.e.,tail(H)

contains some of the remaining elements ofXDi
, on top of

the respective parents).
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The need for using subsets comes from the necessity of
enforcing independence constraints entailed by bi-directed
paths. As in the CDN model, the MCDN criterion fac-
torizes each CDF according to its cliques as an indirect
way of accounting for such constraints. Hence, we do not
construct factorizations for different marginals: each factor
within a summation term in (14) includes all elements of
each district. We enforce that they remain barren by the
transformation in Section 3.3− which is unnecessary in
Richardson (2009) because only barren subsets are being
considered.

To understand how the parameterizations coincide, or
which constraints analogous to (4) emerge in our param-
eterization, consider first the following example. Using the
results from Richardson (2009), the graph in Figure 2(a)
needs the specification of the following marginals:

P (X1, X4) = P (X1)P (X4)
P (X1, X3, X4) = P (X3, X4 | X1)P (X1)
P (X1, X2, X4) = P (X1, X2 | X4)P (X4)

P (X1, X2, X3, X4) = P (X1, X2 | X4)P (X3, X4 | X1)
P (X1, X3) = P (X3 | X1)P (X1)
P (X2, X4) = P (X2 | X4)P (X4)

(15)
As an example, the probabilityP (X14 = 0, X23 = 1) ≡
P (X1 = 0, X2 = 1, X3 = 1, X4 = 0) can be derived from
the above factorizations and (14) as

P (X1 = 0, X2 = 1, X3 = 1, X4 = 0)

= P (X1 ≤ 0, X2 ≤ 1, X3 ≤ 1, X4 ≤ 0) −
P (X1 ≤ 0, X2 ≤ 1, X3 ≤ 0, X4 ≤ 0) −
P (X1 ≤ 0, X2 ≤ 0, X3 ≤ 1, X4 ≤ 0) +
P (X1 ≤ 0, X2 ≤ 0, X3 ≤ 0, X4 ≤ 0)

= P (X1 = 0, X4 = 0) −
P (X1 = 0, X3 = 0, X4 = 0) −
P (X1 = 0, X2 = 0, X4 = 0) +
P (X1 = 0, X2 = 0, X3 = 0, X4 = 0)

= P (X1 = 0)P (X4 = 0) −
P (X34 = 0 | X1 = 0)P (X1 = 0) −
P (X12 = 0 | X4 = 0)P (X4 = 0) +
P (X12 = 0 | X4 = 0)P (X34 = 0 |X1 = 0)

where the last line comes from the pool of possible fac-
torizations (15). The corresponding probability using the

MCDN parameterization is

= P (X1 = 0, X2 = 1 |X4 = 0) ×
P (X3 = 1, X4 = 0 |X1 = 0)

= [P (X1 ≤ 0, X2 ≤ 1 | X4 = 0) −
P (X1 ≤ 0, X2 ≤ 0 | X4 = 0)] ×
[P (X3 ≤ 1, X4 ≤ 0 | X1 = 0) −
P (X3 ≤ 0, X4 ≤ 0 | X1 = 0)]

= (P (X1 = 0|X4 = 0)−
P (X1 = 0, X2 = 0 |X4 = 0))×
(P (X4 = 0 | X1 = 0)−
P (X3 = 0, X4 = 0 |X1 = 0))

= (P (X1 = 0)− P (X1 = 0, X2 = 0 | X4 = 0))×
(P (X4 = 0)− P (X3 = 0, X4 = 0 | X1 = 0))

= P (X1 = 0)P (X4 = 0) −
P (X34 = 0 |X1 = 0)P (X1 = 0) −
P (X12 = 0 |X4 = 0)P (X4 = 0) +
P (X12 = 0 |X4 = 0)P (X34 = 0 | X1 = 0)

where the first line comes from the factorization of
P (X1 = 0, X2 = 1, X3 = 1, X4 = 0) according to (5)
and the fourth line comes from the Markov properties of
eachGi factor. Although these parameterizations have the
same high-level parameters, they still do not coincide, as
shown in the next example.

For a more complicated case where an extra constraint ap-
pears in our parameterization, consider Figure 3(a). In
Richardson (2009), it is shown that one of the parame-
ters of the complete parameterization isP (X1 = 0, X3 =
0 | X2 = 0, X4 = 0, X5 = 0), which reflects the fact that
X1 andX5 are dependent given all other variables. This
also true in our case, except that according to Figure 3(c),
our corresponding CDF is given by

F (x1 | X2)F (x1, x3)F (x2, x3)F (x3, x4)F (x4, x5)×

F (x3 | X5)F (x2 | X4)

which, evaluated atX12345 = 0, gives

P (X1 = 0 | X2 = 0)P (X1 = 0, X3 = 0)×

P (X2 = 0, X3 = 0)P (X3 = 0, X4 = 0)×

P (X4 = 0, X5 = 0)P (X3 = 0 | X5 = 0)×

P (X2 = 0 | X4 = 0)

implying that P (X12345 = 0) factorizes as
f(X1, X2, X3, X4)g(X2, X3, X4, X5), the generalization
to (4).


