APPENDIX - SUPPLEMENTARY MATERIAL

APPENDIX A - PROOF OF PROPOSITION 1

Before we prove this result, we need to state the following result from Richardson (2003). Given an ancestral set A, the Markov blanket of vertex X_{v} in $A, m b\left(X_{v}, A\right)$, is given by the district of X_{v} in $(\mathcal{G})_{A}$ (except X_{v} itself) along with all parents of elements of this district. Let a total ordering \prec of the vertices of \mathcal{G} be any ordering such that if $X_{v} \prec X_{t}$, then X_{t} is not an ancestor of X_{v} in \mathcal{G}. A probability measure is said to satisfy the ordered local Markov condition for \mathcal{G} with respect to \prec if, for any X_{v} and ancestral set A such that $X_{t} \in A \backslash\left\{X_{v}\right\} \Rightarrow X_{t} \prec X_{v}$, we have X_{v} is independent of $A \backslash\left(m b\left(X_{v}, A\right) \cup\left\{X_{v}\right\}\right)$ given $m b\left(X_{v}, A\right)$. The main result from Richardson (2003) states:

Theorem 1. The ordered local Markov condition is equivalent to the global Markov condition in $A D M G s^{6}$.

Proof of Proposition 1: The proof is done by induction on $\left|X_{V}\right|$, with the case $\left|X_{V}\right|=1$ being trivial. We will show that if $P\left(X_{V}\right)$ is a probability function that factorizes according to (5), as given by an ADMG \mathcal{G}, then $P\left(X_{V}\right)$ is Markov with respect to \mathcal{G}. To prove this, first notice there must be some X_{v} with no children in \mathcal{G}, since the graph is acyclic. Let $X_{D_{i}}$ be the district of X_{v}. By assumption,

$$
\begin{align*}
P\left(X_{V}\right) & =P_{F}\left(X_{v} \mid X_{D_{i}} \cup p a_{\mathcal{G}}\left(X_{D_{i}}\right)\right) \\
& \times P_{F}\left(X_{D_{i}} \backslash X_{v} \mid p a_{\mathcal{G}}\left(X_{D_{i}}\right) \backslash X_{D_{i}}\right) \tag{12}\\
& \times \prod_{j \neq i} P_{j}\left(X_{D_{j}} \mid p a_{\mathcal{G}}\left(X_{D_{j}}\right) \backslash X_{D_{j}}\right)
\end{align*}
$$

Since X_{v} is childless, it does not appear in any of the factors in the expression above, except for the first. Hence,

$$
\begin{align*}
P\left(X_{V} \backslash X_{v}\right) & =P_{F}\left(X_{D_{i}} \backslash X_{v} \mid p a_{\mathcal{G}}\left(X_{D_{i}}\right) \backslash X_{D_{i}}\right) \\
& \times \prod_{j \neq i} P_{j}\left(X_{D_{j}} \mid p a_{\mathcal{G}}\left(X_{D_{j}}\right) \backslash X_{D_{j}}\right) \tag{13}
\end{align*}
$$

which by induction hypothesis is Markov with respect to the marginal graph $(\mathcal{G})_{X_{V} \backslash X_{v}}$.

One minor detail about the induction hypothesis: it is true that $(\mathcal{G})_{X_{V} \backslash X_{v}}$ might have more districts than \mathcal{G} after removing X_{v} : this might happen if removing X_{v} results on having $X_{D_{i}} \backslash X_{v}$ becoming disconnected in $\left(\mathcal{G}_{X_{V} \backslash X_{v}}\right)_{\leftrightarrow}$. However, the result still holds by further factorizing $P_{F}\left(X_{D_{i}} \backslash X_{v} \mid p a_{\mathcal{G}}\left(X_{D_{i}}\right) \backslash X_{D_{i}}\right)$ according to the newly formed districts of $X_{D_{i}} \backslash X_{v}$ - which is possible by the construction of $P_{F}(\cdot)$ and \mathcal{G}_{i}.

[^0]By the ordered local Markov property for ADMGs and any ordering \prec where X_{v} is the last vertex, probability function $P\left(X_{V}\right)$ will be Markov with respect to \mathcal{G} if, according to $P\left(X_{V}\right)$, the Markov blanket of X_{v} in \mathcal{G} makes X_{v} independent of the remaining vertices. But this true by construction, since this Markov blanket is contained in $X_{D_{i}} \cup p a_{\mathcal{G}}\left(X_{D_{i}}\right)$ according to Theorem 1.

APPENDIX B - BINARY CASE: RELATION TO COMPLETE PARAMETERIZATION

A complete parameterization for binary ADMG models is described by Richardson (2009). As we will see, parameters are defined in the context of different marginals, analogous to the purely bi-directed case (Drton and Richardson, 2008).

As in the bi-directed case, the joint probability distribution is given by an inclusion-exclusion scheme:

$$
\begin{equation*}
P\left(X_{V}=\alpha(V)\right)=\sum_{C: \alpha^{-1}(0) \subseteq C \subseteq V} g(C) \tag{14}
\end{equation*}
$$

where $g(C)$ is given by

$$
(-1)^{\left|C \backslash \alpha^{-1}(0)\right|} \prod_{H \in[C]_{\mathcal{G}}} P\left(X_{H}=0 \mid X_{\operatorname{tail}(H)}=\alpha(\operatorname{tail}(H))\right)
$$

and $\alpha(V)$ is a binary vector in $\{0,1\}^{\left|X_{V}\right|}, \alpha^{-1}(0)$ being a function that indicates which elements in X_{V} were assigned to be zero.

Each C indicates which elements are set to zero in the respective term of the summation. Depending on C, the factorization changes. $[C]_{\mathcal{G}}$ is a set of subsets of X_{V} : one subset per district, each subset being barren in \mathcal{G}. The corresponding $\operatorname{tail}(H)$ is the Markov blanket for the ancestral set that contains H as its set of childless vertices.

As in our discussion of standard CDNs, Equation (14) can be interpreted as the CDF-to-probability transformation (3). It can be rewritten as

$$
\begin{gathered}
P\left(X_{V}=\alpha(V)\right)=\sum_{C: \alpha^{-1}(0) \subseteq C \subseteq V}(-1)^{\left|C \backslash \alpha^{-1}(0)\right|} \times \\
\prod_{H \in D_{i} \cap[C]_{\mathcal{G}}} P\left(X_{D_{i}} \backslash \operatorname{tail}(H) \leq \alpha(V) \mid X_{\operatorname{tail}(H)}=\right. \\
\alpha(\operatorname{tail}(H)))
\end{gathered}
$$

Hence, this parameterization can also be interpreted as a CDF parameterization. One important difference is that each term in the summation uses only a subset of each district, $X_{D_{i}} \backslash \operatorname{tail}(H)$ instead of $X_{D_{i}}$. Notice that some elements of $X_{D_{i}}$ appear in the conditioning set (i.e., $\operatorname{tail}(H)$ contains some of the remaining elements of $X_{D_{i}}$, on top of the respective parents).

The need for using subsets comes from the necessity of enforcing independence constraints entailed by bi-directed paths. As in the CDN model, the MCDN criterion factorizes each CDF according to its cliques as an indirect way of accounting for such constraints. Hence, we do not construct factorizations for different marginals: each factor within a summation term in (14) includes all elements of each district. We enforce that they remain barren by the transformation in Section 3.3 - which is unnecessary in Richardson (2009) because only barren subsets are being considered.

To understand how the parameterizations coincide, or which constraints analogous to (4) emerge in our parameterization, consider first the following example. Using the results from Richardson (2009), the graph in Figure 2(a) needs the specification of the following marginals:

$$
\begin{align*}
P\left(X_{1}, X_{4}\right) & =P\left(X_{1}\right) P\left(X_{4}\right) \\
P\left(X_{1}, X_{3}, X_{4}\right) & =P\left(X_{3}, X_{4} \mid X_{1}\right) P\left(X_{1}\right) \\
P\left(X_{1}, X_{2}, X_{4}\right) & =P\left(X_{1}, X_{2} \mid X_{4}\right) P\left(X_{4}\right) \\
P\left(X_{1}, X_{2}, X_{3}, X_{4}\right) & =P\left(X_{1}, X_{2} \mid X_{4}\right) P\left(X_{3}, X_{4} \mid X_{1}\right) \\
P\left(X_{1}, X_{3}\right) & =P\left(X_{3} \mid X_{1}\right) P\left(X_{1}\right) \\
P\left(X_{2}, X_{4}\right) & =P\left(X_{2} \mid X_{4}\right) P\left(X_{4}\right) \tag{15}
\end{align*}
$$

As an example, the probability $P\left(X_{14}=0, X_{23}=1\right) \equiv$ $P\left(X_{1}=0, X_{2}=1, X_{3}=1, X_{4}=0\right)$ can be derived from the above factorizations and (14) as
$P\left(X_{1}=0, X_{2}=1, X_{3}=1, X_{4}=0\right)$

$$
\begin{aligned}
= & P\left(X_{1} \leq 0, X_{2} \leq 1, X_{3} \leq 1, X_{4} \leq 0\right)- \\
& P\left(X_{1} \leq 0, X_{2} \leq 1, X_{3} \leq 0, X_{4} \leq 0\right)- \\
& P\left(X_{1} \leq 0, X_{2} \leq 0, X_{3} \leq 1, X_{4} \leq 0\right)+ \\
& P\left(X_{1} \leq 0, X_{2} \leq 0, X_{3} \leq 0, X_{4} \leq 0\right) \\
= & P\left(X_{1}=0, X_{4}=0\right)- \\
& P\left(X_{1}=0, X_{3}=0, X_{4}=0\right)- \\
& P\left(X_{1}=0, X_{2}=0, X_{4}=0\right)+ \\
& P\left(X_{1}=0, X_{2}=0, X_{3}=0, X_{4}=0\right) \\
= & P\left(X_{1}=0\right) P\left(X_{4}=0\right)- \\
& P\left(X_{34}=0 \mid X_{1}=0\right) P\left(X_{1}=0\right)- \\
& P\left(X_{12}=0 \mid X_{4}=0\right) P\left(X_{4}=0\right)+ \\
& P\left(X_{12}=0 \mid X_{4}=0\right) P\left(X_{34}=0 \mid X_{1}=0\right)
\end{aligned}
$$

where the last line comes from the pool of possible factorizations (15). The corresponding probability using the

MCDN parameterization is

$$
\begin{aligned}
= & P\left(X_{1}=0, X_{2}=1 \mid X_{4}=0\right) \times \\
& P\left(X_{3}=1, X_{4}=0 \mid X_{1}=0\right) \\
= & {\left[P\left(X_{1} \leq 0, X_{2} \leq 1 \mid X_{4}=0\right)-\right.} \\
& \left.P\left(X_{1} \leq 0, X_{2} \leq 0 \mid X_{4}=0\right)\right] \times \\
& {\left[P\left(X_{3} \leq 1, X_{4} \leq 0 \mid X_{1}=0\right)-\right.} \\
& \left.P\left(X_{3} \leq 0, X_{4} \leq 0 \mid X_{1}=0\right)\right] \\
= & \left(P\left(X_{1}=0 \mid X_{4}=0\right)-\right. \\
& \left.P\left(X_{1}=0, X_{2}=0 \mid X_{4}=0\right)\right) \times \\
& \left(P\left(X_{4}=0 \mid X_{1}=0\right)-\right. \\
& \left.P\left(X_{3}=0, X_{4}=0 \mid X_{1}=0\right)\right) \\
= & \left(P\left(X_{1}=0\right)-P\left(X_{1}=0, X_{2}=0 \mid X_{4}=0\right)\right) \times \\
& \left(P\left(X_{4}=0\right)-P\left(X_{3}=0, X_{4}=0 \mid X_{1}=0\right)\right) \\
= & P\left(X_{1}=0\right) P\left(X_{4}=0\right)- \\
& P\left(X_{34}=0 \mid X_{1}=0\right) P\left(X_{1}=0\right)- \\
& P\left(X_{12}=0 \mid X_{4}=0\right) P\left(X_{4}=0\right)+ \\
& P\left(X_{12}=0 \mid X_{4}=0\right) P\left(X_{34}=0 \mid X_{1}=0\right)
\end{aligned}
$$

where the first line comes from the factorization of $P\left(X_{1}=0, X_{2}=1, X_{3}=1, X_{4}=0\right)$ according to (5) and the fourth line comes from the Markov properties of each \mathcal{G}_{i} factor. Although these parameterizations have the same high-level parameters, they still do not coincide, as shown in the next example.
For a more complicated case where an extra constraint appears in our parameterization, consider Figure 3(a). In Richardson (2009), it is shown that one of the parameters of the complete parameterization is $P\left(X_{1}=0, X_{3}=\right.$ $\left.0 \mid X_{2}=0, X_{4}=0, X_{5}=0\right)$, which reflects the fact that X_{1} and X_{5} are dependent given all other variables. This also true in our case, except that according to Figure 3(c), our corresponding CDF is given by

$$
\begin{aligned}
& F\left(x_{1} \mid X_{2}\right) F\left(x_{1}, x_{3}\right) F\left(x_{2}, x_{3}\right) F\left(x_{3}, x_{4}\right) F\left(x_{4}, x_{5}\right) \times \\
& F\left(x_{3} \mid X_{5}\right) F\left(x_{2} \mid X_{4}\right)
\end{aligned}
$$

which, evaluated at $X_{12345}=0$, gives

$$
\begin{aligned}
& P\left(X_{1}=0 \mid X_{2}=0\right) P\left(X_{1}=0, X_{3}=0\right) \times \\
& P\left(X_{2}=0, X_{3}=0\right) P\left(X_{3}=0, X_{4}=0\right) \times \\
& P\left(X_{4}=0, X_{5}=0\right) P\left(X_{3}=0 \mid X_{5}=0\right) \times \\
& P\left(X_{2}=0 \mid X_{4}=0\right)
\end{aligned}
$$

implying that $P\left(X_{12345}=0\right)$ factorizes as $f\left(X_{1}, X_{2}, X_{3}, X_{4}\right) g\left(X_{2}, X_{3}, X_{4}, X_{5}\right)$, the generalization to (4).

[^0]: ${ }^{6}$ Notice this reduces to the standard notion of local independence in DAGs, where a vertex is independent of its (non-parental) non-descendants given its parents, from which d-separation statements can be derived (Lauritzen, 1996, Pearl, 1988).

