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Abstract

In this theoretical paper we develop an
asymptotic theory for Linear-Chain Condi-
tional Random Fields (L-CRFs) and apply it
to derive conditions under which the Max-
imum Likelihood Estimates (MLEs) of the
model weights are strongly consistent. We
first define L-CRFs for infinite sequences and
analyze some of their basic properties. Then
we establish conditions under which ergodic-
ity of the observations implies ergodicity of
the joint sequence of observations and labels.
This result is the key ingredient to derive con-
ditions for strong consistency of the MLEs.
Interesting findings are that the consistency
crucially depends on the limit behavior of the
Hessian of the likelihood function and that,
asymptotically, the state feature functions do
not matter.

1 INTRODUCTION

Conditional Random Fields (CRFs) are a widely pop-
ular model to describe the statistical dependence be-
tween sequences of “observations” and “labels” (Laf-
ferty et al., 2001). Applications include natural lan-
guage processing (Sutton and McCallum, 2006), the
analysis of genome data (Culotta et al., 2005), and
human activity recognition (Omar et al., 2010). Ex-
tensions of CRFs are hierarchical CRFs (Liao et
al. 2007b), relational CRFs (Taskar et al. 2002), and
semi-Markov CRFs (Sarawagi and Cohen 2004). The
key idea of CRFs is to represent the distribution of
the labels conditional on the observations by a Markov
random field. The simplest non-trivial class of mod-
els is that of Linear-Chain CRFs (L-CRFs) where the
random field forms a plain Markov chain.
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In this paper, we study asymptotical properties of the
Maximum Likelihood Estimates (MLEs) for the model
weights. More specifically, we assume that we are
given a sequence of observations and labels where the
distribution of the labels conditional on the observa-
tions follows an L-CRF with known feature functions
but unknown weights. In this setting, we investigate
conditions under which the MLEs converge to the true
weights as the length of the sequences goes to infinity.
Note that, to state and to analyze this problem, a def-
inition of L-CRFs for infinite sequences is required.

Our research is motivated by the following questions:
How can the weights and feature functions be jointly
estimated in the case where both are unknown? How
robust is the training and inference towards a sampling
bias (that is, when training and test data come from
different distributions)? How well is the model iden-
tifiable in the presence of noisy data? To tackle these
problems of great practical importance, the present
paper aims to achieve a better understanding of the
simplest case, namely, when the feature functions are
known and a sampling bias or noisy data is absent.
Furthermore, it provides a theoretical framework and
useful techniques to study the more complicated cases.

This paper is structured as follows: In Sec. 2 we in-
troduce some notation and review the definition of L-
CRFs for finite sequences. In Sec. 3 we define L-CRFs
for infinite sequences and derive some of their basic
properties. Sec. 4 establishes conditions under which
ergodicity of the sequence of observations implies er-
godicity of the joint sequence of observations and la-
bels. In Sec. 5 we apply the previous results to derive
conditions under which the MLEs are strongly consis-
tent. Sec. 6 concludes the paper.

2 PRELIMINARIES

Throughout this paper, let N, Z, R denote the sets of
natural numbers, integers and real numbers, respec-
tively. Let X be a metric space with the Borel sigma-
field A. To fix ideas, think of X as Rd equipped with
the Euclidean norm. Furthermore, consider a finite set
Y and let B denote the power set of Y. In the following
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we suppose that Y = {1, . . . , `} for some ` ∈ N. Now
let (Ω,F) be a measurable space, and let X = (Xt)t∈Z
and Y = (Yt)t∈Z be sequences of measurable mappings
from (Ω,F) into X and Y, respectively. We refer to
X and Y as the sequences of observations and labels,
respectively.

A conventional Linear-Chain Conditional Random
Field (L-CRF) specifies the conditional distribution of
Y n = (Y0, . . . , Yn) given Xn = (X0, . . . , Xn). The
distributions are parameterized as follows: Let f state

and f trans be vectors of R-valued functions defined on
X ×Y and X ×Y2, respectively, and µ, ν be R-valued
vectors of corresponding lengths. We call f state and
f trans the state and transition feature functions, and
µ, ν the model weights. Write λ for the stacked vector
(µ, ν), and let

λT f(xn,yn) =
n∑

t=0

µT f state(xt, yt)

+
n∑

t=1

νT f trans(xt, yt−1, yt) (1)

for xn = (x0, . . . , xn) ∈ Xn+1 and yn = (y0, . . . , yn) ∈
Yn+1. We make three remarks at this point: First,
the feature functions could also depend on t; here
we restrict ourselves to models where the dependen-
cies between observations and labels do not vary with
time. Second, the assumption that the feature func-
tions only depend on the current observation xt is
without loss of generality; if they depended on, say,
xt−l, . . . , xt+l, then simply consider the modified ob-
servations x̃t = (xt−l, . . . , xt+l) instead of xt. Third,
equation (1) suggests that there might be some over-
lap between the state and transition feature functions;
this is indeed the case and will play an important role
later.

Now let x = (xt)t∈Z be a sequence in X and write
xn to denote the projection of x onto the components
(x0, . . . , xn). For any yn = (y0, . . . , yn) ∈ Yn+1, define
the conditional probability

P
(0,n)
λ (Y n = yn |X = x)

=
1

Zλ(xn)
exp

(
λT f(xn,yn)

)
(2)

where Zλ(xn) is the normalizing partition function

Zλ(xn) =
∑

y′
n∈Yn+1

exp
(
λT f(xn,y

′
n)
)
. (3)

Note that the conditional probability in (2) only de-
pends on the components x0, . . . , xn of x. Thus, P (0,n)

λ

specifies a conditional distribution for Y n given Xn.
In the next section we will define L-CRFs for infi-
nite sequences by considering conditional distributions
which depend on the entire sequence x.

The key step in applying L-CRFs is the specification
of the feature functions and the model weights. A
common approach is to select the feature functions
manually according to some expert domain knowledge;
alternative ways are to iteratively select those func-
tions from a set of candidates which give the largest
increase of the conditional log-likelihood (McCallum,
2003), or to use virtual evidence boosting (Liao et
al. 2007a). Given a fixed set of feature functions, the
model weights are usually learned from labeled train-
ing data by maximizing the conditional log-likelihood.
In Sec. 5 we suppose that the “true” feature functions
are known, and consider asymptotic properties of the
Maximum Likelihood estimates.

In the remaining part of this section we introduce an
alternative representation for the right hand side of
(2), which is fundamental to all that follows. Consider
the function αλ : X → R` with the ith component

αλ(x, i) = exp
(
µT f state(x, i)

)
.

Furthermore, let Mλ(x) be the `× `-matrix with the
(i, j)-th component

mλ(x, i, j) = exp
(
µT f state(x, j) + νT f trans(x, i, j)

)
.

In the terminology of Markov Random Fields,
αλ(xt, yt) is the potential of the event Xt = xt and
Yt = yt (with respect to the model weights λ), while
mλ(xt, yt−1, yt) is the potential of the event Xt = xt,
Yt−1 = yt−1 and Yt = yt. For a sequence x = (xt)t∈Z
in X and s, t ∈ Z with s ≤ t, define

αt
s(λ,x) = Mλ(xt)T . . .Mλ(xs)T αλ(xs−1),

βt
s(λ,x) = Mλ(xs+1) . . .Mλ(xt)(1, 1, . . . , 1)T .

Write αt
s(λ,x, i) and βt

s(λ,x, j) to denote the ith
and jth component of αt

s(λ,x) and βt
s(λ,x). Note

that αt
s(λ,x, yt) is the potential of the event Xs =

xs, . . . , Xt = xt and Yt = yt, while βt
s(λ,x, ys) is

the potential of the event Xs = xs, . . . , Xt = xt and
Ys = ys. The following is well-known (Wallach, 2004):

Proposition 1. Let t, k ∈ N such that t + k ≤ n.
Then, for all yt, . . . , yt+k ∈ Y,

P
(0,n)
λ (Yt = yt, . . . , Yt+k = yt+k |X = x)

=
αt

1(λ,x, yt)βn
t+k(λ,x, yt+k)

αt
1(λ,x)T βn

t (λ,x)

×
k∏

i=1

mλ(xt+i, yt+i−1, yt+i)

where, as usual, products over empty index sets are
equal to 1.
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3 L-CRFs FOR INFINITE
SEQUENCES

In this section we define L-CRFs for infinite sequences
and derive some of their basic properties. We will as-
sume that the following condition is satisfied:

(A1) The feature functions f state and f trans are
bounded, and the model weights λ are finite.

The next lemma states some obvious consequence of
assumption (A1) which will be needed below. Let minf

and msup denote the infimum and the supremum over
all mλ(x, i, j) with x ∈ X and i, j ∈ Y.
Lemma 1. Suppose that (A1) holds. Then minf > 0
and msup < ∞. In particular, the quantities ϕ2 and
ψ2 defined by

ϕ2 := inf
{

min
i,j,k,l∈Y

m(x, k, i)m(x, l, j)
m(x, k, j)m(x, l, i)

: x ∈ X
}
,

ψ2 := inf
{

min
i,j,k,l∈Y

m(x, i, k)m(x, j, l)
m(x, j, k)m(x, i, l)

: x ∈ X
}
,

are both strictly greater than zero.

3.1 Definition

Let x = (xt)t∈Z be fixed. Our goal is to define the
distribution of the infinite sequence Y conditional on
X = x. Let t ∈ Z and k ∈ N. We first specify
the conditional marginal distribution of (Yt, . . . , Yt+k).
Then, by applying Kolmogorov’s extension theorem,
we obtain the conditional distribution for the entire
sequence Y . Let yt, . . . , yt+k ∈ Y. For n ∈ N such
that −n ≤ t and n ≤ t+ k, define

P
(−n,n)
λ (Yt = yt, . . . , Yt+k = yt+k |X = x)

:=
αt
−n(λ,x, yt)βn

t+k(λ,x, yt+k)
αt
−n(λ,x)T βn

t (λ,x)

×
k∏

i=1

mλ(xt+i, yt+i−1, yt+i).

Comparing this to Proposition 1 we see that P (−n,n)
λ

specifies the conditional distribution of (Yt, . . . , Yt+k)
in the fashion of a conventional L-CRF considering the
finite observational context (X−n, . . . , Xn). Theorem
2 below shows that this distribution converges as n
tends to infinity. For the proof, we will need the fol-
lowing result.
Theorem 1. Suppose that (A1) holds. For a fixed
sequence (xt)t∈N in X , let Mn = (mn(i, j))i,j∈Y be
given by Mn = Mλ(x1) . . .Mλ(xn). Then there exist
positive numbers rij such that, for all i, j, k ∈ Y,

lim
n→∞

mn(i, k)
mn(j, k)

= rij ,

i.e., the rows of Mn tend to proportionality as n tends
to infinity. Moreover,

max
k∈Y

(
mn(i, k)
mn(j, k)

)
≥ rij ≥ min

k∈Y

(
mn(i, k)
mn(j, k)

)
for all n ∈ N, and

min
k∈Y

(
mn(i, k)
mn(j, k)

)
≥[

1− 4
(

1− ψ

1 + ψ

)n ]
max
k∈Y

(
mn(i, k)
mn(j, k)

)
with ψ given in Lemma 1. The same results apply, with
ϕ instead of ψ, for Mn = Mλ(x1)T . . .Mλ(xn)T .

Proof. The proof, which uses well-known results from
the theory of weak ergodicity (Seneta, 2006), is in-
cluded in the supplementary material.

Now we are prepared to establish the following result.

Theorem 2. Suppose that (A1) holds. Then the fol-
lowing limit is well-defined:

Pλ(Yt = yt, . . . , Yt+k = yt+k |X = x)

:= lim
n→∞

P
(−n,n)
λ (Yt = yt, . . . , Yt+k = yt+k |X = x).

Moreover, there exist constants c > 0 and 0 < κ < 1,
which do not depend on x, such that∣∣P (−n,n)

λ (Yt = yt, . . . , Yt+k = yt+k |X = x)

−Pλ(Yt = yt, . . . , Yt+k = yt+k |X = x)
∣∣ ≤ cκn.

Proof. Define Gn := Mλ(xt)T . . .Mλ(x−n)T and
Hn := Mλ(xt+k+1) . . .Mλ(xn). Write gn(i, j)
and hn(i, j) for the (i, j)-th components of Gn and
Hn. Note that αt

−n(λ,x) = Gnαλ(x−n−1) and
βn

t+k(λ,x) = Hn(1, 1, . . . , 1)T . Furthermore, with
F := Mλ(xt+1) . . .Mλ(xt+k), we have

αt
−n(λ,x)T βn

t (λ,x) = αt
−n(λ,x)T Fβn

t+k(λ,x).

According to Theorem 1, there exist numbers rij , sij

such that

lim
n→∞

gn(i, k)
gn(j, k)

= rij and lim
n→∞

hn(i, k)
hn(j, k)

= sij

for all k ∈ Y. Consequently, the ratio of αt
−n(λ,x, i)

to αt
−n(λ,x, j) converges to rij , and the ratio of

βn
t+k(λ,x, i) to βn

t+k(λ,x, j) converges to sij . Hence,

lim
n→∞

αt
−n(λ,x, i)βn

t+k(λ,x, j)
αt
−n(λ,x)T Fβn

t+k(λ,x)
=

1
rT

i Fsj
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where ri = (r1i, . . . , r`i)T and sj = (s1j , . . . , s`j)T ,
which proves the first part of the theorem. For the
second part, note that one can choose

κ =
(1− ϕ)(1− ψ)
(1 + ϕ)(1 + ψ)

with ϕ2 and ψ2 as defined in Lemma 1, and

c = 16
(
msup

minf

)2

`k+1m2k
sup.

See the supplementary material for details.

It is easy to verify that

Pλ(Yt = yt, . . . , Yt+k = yt+k |X = x) ≥ 0

and∑
yt,...,yt+k∈Y

Pλ(Yt = yt, . . . , Yt+k = yt+k |X = x) = 1,

so the distribution of (Yt, . . . , Yt+k) conditional on
X = x is well-defined. Furthermore, the collection of
all such marginal distributions with t ∈ Z and k ∈ N
satisfies the consistency conditions of Kolmogorov’s
extension theorem and hence specifies a unique prob-
ability measure on the space of sequences y = (yt)t∈Z
with yt ∈ Y. In this way, we obtain the distribution of
the infinite sequence Y conditional on X = x.

Throughout the rest of this paper, let Θ be a set of
model weights such that each λ ∈ Θ satisfies assump-
tion (A1). For simplicity we assume that the distribu-
tion of X does not depend on λ. More precisely, let X
denote the space of sequences x = (xt)t∈Z in X , and A
be the corresponding product sigma-field. We assume
there exists a probability measure PX on (X ,A) such
that PX(A) = Pλ(X ∈ A) for all A ∈ A and λ ∈ Θ.

3.2 Basic Properties

The following corollary summarizes consequences of
the previous definition. Statement (ii) says that the
probability for the transition between any two labels
is always bounded away from zero, regardless of the
observational context. This result will be of particular
importance in Sec. 4 where we investigate under which
conditions ergodicity of X implies ergodicity of the
joint sequence (X,Y ).
Corollary 1. Suppose that condition (A1) holds and
hence the distribution of Y conditional on X = x is
well-defined for every x = (xt)t∈Z.

(i) In the definition of the distribution of Y condi-
tional on X = x we may assume, without loss
of generality, that the weighted state feature func-
tions are equal to zero, µT f state = 0.

(ii) Y conditional on X = x is a Markov process with

Pλ(Yt+1 = yt+1 |Yt = yt, X = x)

= mλ(xt+1, yt, yt+1) lim
n→∞

βn
t+1(λ,x, yt+1)
βn

t (λ,x, yt)
.

Furthermore, for all yt, yt+1 ∈ Y,

Pλ(Yt+1 = yt+1 |Yt = yt, X = x) ≥ 1
`

(
minf

msup

)2

.

(iii) If X is stationary, then the joint sequence (X,Y )
is stationary.

Proof. (i) Consider the state and transition feature
functions f̃

state
, f̃

trans
and the weights µ̃, ν̃ given in

such a way that µ̃T f̃
state

= 0 and

ν̃T f̃
trans

(xt, yt−1, yt) = µT f state(xt, yt)
+ νT f trans(xt, yt−1, yt).

It is easy to see that the resulting distributions for
Y conditional on X = x are identical; in particular,
the limit in Theorem 2 does not depend on the values
of the vectors αλ(xt−n). (ii) The equality is directly
obtained by the definition of the conditional distribu-
tion of Y , and it is easily verified that it holds for any
Pλ(Yt+1 = yt+1 |Yt = yt, . . . , Yt−k = yt−k,X = x)
with k ∈ N. To establish the lower bound note that,
according to Theorem 1,

βn
t+1(λ,x, yt+1)
βn

t+1(λ,x, yt)
≥ minf

msup

for all x ∈ X and n ∈ N. Since βn
t (λ,x) =

Mλ(xt+1)βn
t+1(λ,x), the result follows. (iii) The sta-

tionarity of the joint sequence is obvious because

Pλ(X ∈ A, Y ∈ B)

=
∫

A

Pλ(Y ∈ B |X = x)PX(dx)

for any measurable events A and B, and by the sta-
tionarity of X the integral on the right hand side is
invariant with respect to time shifts of X and Y in
the integrand.

Throughout the rest of this paper, any expected value
such as Eλ[g(Xt, Yt)] or Eλ[g(Xt, Yt−1, Yt)] is with re-
spect to the joint stationary distribution of X and Y ,
provided that X is stationary.

4 JOINT ERGODICITY

In this section, we establish conditions under which
the joint sequence (X,Y ) is ergodic. The key step is
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to embed this joint sequence in a Markov chain in a
random environment. Recall that X is the space of se-
quences x = (xt)t∈Z in X , and A is the corresponding
product sigma-field. Let τ denote the shift operator
on X , that is, τkx = x′ with x′ = (x′t)t∈Z given by
x′t = xt+k. As we show below, a sufficient condition
for joint ergodicity is that besides (A1) the following
condition is satisfied:

(A2) X is ergodic, i.e., the probability measure PX

on (X ,A) satisfies PX(A) = PX(τ−1A) for every
A ∈ A, and PX(A) = 0 or PX(A) = 1 for every
set A ∈ A such that A = τ−1A.

A particular consequence of condition (A2) is that X
is stationary. Furthermore, for every measurable func-
tion g : X → R such that E|g(X)| <∞,

lim
n→∞

1
n

n∑
t=1

g(τ tX) = E[g(X)]

P -almost surely (Cornfeld et al., 1982), where we omit
the subscript λ in Pλ and Eλ as the distribution of X
does not depend on λ. Note that condition (A2) is not
too restrictive. For example, any stationary ARMA
process is ergodic, and a sufficient condition for sta-
tionary Gaussian processes to be ergodic is that the
autocovariances go to zero as the lag goes to infinity.

4.1 Markov Chains in Random Environments

Let us demonstrate how the joint sequence (X,Y ) can
be embedded in a Markov chain. By ~X we denote
the space of sequences ~x = (xt)t∈Z with xt ∈ X for
t ∈ Z, that is, each xt is a sequence in X . Write
~A for the corresponding product sigma-field. Let ~τ
denote the shift operator on ~X , that is, ~τk~x = ~x′

with ~x′ = (x′t)t∈Z given by x′t = xt+k. For a given
probability measure π on (X ,A), let the probability
measure ~π on ( ~X , ~A) be defined as follows: For ~A ∈ ~A
write ~A =×t∈Z At with At ∈ A. Then define

~π( ~A) := π
( ⋂

t∈Z
τ−tAt

)
.

We say that ~π is ~τ -ergodic if ~π(~τ−1 ~A) = ~π( ~A) for all
~A ∈ ~A, and ~π( ~A) = 0 or ~π( ~A) = 1 for each ~A ∈ ~A sat-
isfying ~τ−1 ~A = ~A. The proof of the following technical
lemma is included in the supplementary material.

Lemma 2. If π is τ -ergodic, then ~π is ~τ -ergodic.

Note that according to Lemma 2, if the sequence X is
ergodic, then the probability measure ~PX on ( ~X , ~A)
is ~τ -ergodic.

Now consider the measurable space (Z, C) with Z =
~X × Y × Y and C = ~A× B × B. Let λ ∈ Θ be fixed.
We are going to define a Markov sequence Z = (Zt)t∈N
with values in Z such that Z has the same distribution
as the sequence ((τk+tX)k∈Z, Yt−1, Yt)t∈N measured
with respect to Pλ. Using results on invariant mea-
sures of Markov processes we are then going to show
that the sequence Z is ergodic and, consequently,

lim
n→∞

1
n

n∑
t=1

g((τ t+kX)k∈Z, Yt−1, Yt)

= Eλ

[
g((τ t+kX)k∈Z, Yt−1, Yt)

]
(4)

Pλ-almost surely for every measurable g : Z → R for
which Eλ|g((τ t+kX)k∈Z, Yt−1, Yt)| < ∞. As a special
case, we obtain the following result which will be of
great importance for analyzing the asymptotical prop-
erties of Maximum Likelihood estimates.
Theorem 3. If conditions (A1) and (A2) hold, and
g : X × Y × Y → R satisfies Eλ|g(Xt, Yt−1, Yt)| <∞,
then

lim
n→∞

1
n

n∑
t=1

g(Xt, Yt−1, Yt) = Eλ[g(Xt, Yt−1, Yt)]

Pλ-almost surely.

In order to establish this theorem, let us first con-
sider how to define Z. Let µλ be the distribution on
(Z, C) induced by ((τk+1X)k∈Z, Y0, Y1) measured with
respect to Pλ, that is,

µλ( ~A× {y0} × {y1})
:= Pλ((τk+1X)k∈Z ∈ ~A, Y0 = y0, Y1 = y1).

This will serve us as the initial distribution of Z. In
order to specify a Markov kernel on (Z, C), let Q(λ,x)
with x ∈ X denote the `× `-matrix with the (i, j)-th
component

Q(λ,x, i, j) = mλ(x0, i, j) lim
n→∞

βn
1 (λ,x, j)
βn

0 (λ,x, i)
.

Note that, for this matrix to be well-defined, it is suf-
ficient to assume that condition (A1) holds. Now we
define the Markov kernel Qλ from (Z, C) into itself,

Qλ((~x, y′0, y
′
1), ~A× {y0} × {y1})

:=
{
Q(λ,x0, y

′
1, y1) if y0 = y′1 and ~τ~x ∈ ~A,

0 otherwise.

It is not difficult to see that Z with the initial distribu-
tion µλ and the Markov kernel Qλ has the same distri-
bution as ((τk+tX)k∈Z, Yt−1, Yt)t∈N measured with re-
spect to Pλ. Note that Z can be regarded as a Markov
chain in a random environment (Cogburn, 1984; Orey,
1991). In particular, the pairs (Yt−1, Yt) with t ∈ N
form a Markov chain where the transition probabili-
ties from (Yt−1, Yt) to (Yt, Yt+1) are governed by the
stationary environment τ tX.
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4.2 Invariant Measures

For the proof that Z is ergodic and hence (4) applies,
we use results on invariant measures of Markov chains.
In fact, by the stationarity of X and Corollary 1 (iii),
it is easily verified that the measure µλ is invariant for
Qλ, that is,

µλ(C) =
∫
Z
Qλ(z, C)µλ(dz)

for every C ∈ C. It only remains to show that the in-
variant measure µλ for Qλ is unique (Corollary 2.5.2,
Hernández-Lerma and Lasserre, 2003). This fact is
stated in the next lemma, the proof of which is in-
cluded in the supplementary material.

Lemma 3. Suppose that conditions (A1) and (A2)
hold. Then the invariant measure µλ for Qλ is unique.

5 CONSISTENCY OF MAXIMUM
LIKELIHOOD ESTIMATES

In this section, we apply the previous results to study
the following problem: Suppose that the distribu-
tion of the sequences X and Y is governed by Pλ0

with λ0 ∈ Θ unknown, and we observe realizations
of the subsequences Xn = (X0, . . . , Xn) and Y n =
(Y0, . . . , Yn). Under which conditions can we identify
λ0 as the sample length n tends to infinity?

According to Corollary 1 (i), we may assume in our
analysis that the weighted state feature functions are
equal to zero. Therefore, to simplify notation, we write
f instead of f trans in the following, so the weighted
feature functions in (1) are given by

λT f(xn,yn) =
n∑

t=1

λT f(xt, yt−1, yt).

In order to estimate λ0, consider the objective function

Ln(λ) =
1
n

(
λT f(Xn,Y n)− logZλ(Xn)

)
(5)

with the partition function Zλ(Xn) as in (3). Note
that Ln(λ) is the average conditional log-likelihood of
Y n given Xn based on the finite L-CRF model P (0:n)

λ .
Now consider the estimate λ̂n of λ0 obtained by max-
imizing the conditional log-likelihood,

λ̂n := arg max
λ∈Θ

Ln(λ).

If Ln(λ) is strictly concave, then the argmax is unique
and can be found using gradient-based search (Sha and
Pereira, 2003). Obviously, a necessary and sufficient
condition for Ln(λ) to be strictly concave is that the
number of labels ` is greater than or equal to 2, and

there exists a yn ∈ Yn+1 such that at least one com-
ponent of f(Xn,yn) is non-zero.

In the following we investigate conditions under which
the estimates λ̂n are strongly consistent, that is,

lim
n→∞

λ̂n = λ0

Pλ0-almost surely (Lehmann, 1999). Sufficient condi-
tions will be given in Theorem 4 below. The key step
is to establish conditions under which Ln(λ) converges
uniformly to a function L(λ), and L(λ) has a unique
maximum in λ0. To establish uniform convergence, we
need to make the following assumption on the param-
eter space:

(A3) The parameter space Θ is compact.

In our case where the model parameters are R-valued
vectors, a sufficient condition for (A3) is that Θ is the
Cartesian product of finite closed intervals.

5.1 Convergence of the Likelihood Function

First, we show that Ln(λ) converges for every λ ∈ Θ.

Lemma 4. Suppose that assumptions (A1) and (A2)
hold. Then there exists a function L(λ) such that, for
every λ ∈ Θ,

lim
n→∞

Ln(λ) = L(λ)

Pλ0-almost surely.

Proof. Let λ ∈ Θ. We show convergence separately
for both terms on the right hand side of (5). For the
first term we obtain, according to Theorem 3,

lim
n→∞

1
n

λT f(Xn,Y n) = λTEλ0 [f(Xt, Yt−1, Yt)]

Pλ0-almost surely. For the second term, note that

1
n

logZλ(Xn) ∼ 1
n

log
∥∥Mλ(X1) . . .Mλ(Xn)

∥∥
as n → ∞, where ∼ denotes asymptotical equiva-
lence and ‖(mij)‖ =

∑
i,j |mij |. Now, let L1(x1) :=

log ‖Mλ(x1)‖ and, for t > 1,

Lt(xt, . . . , x1) := log

∥∥Mλ(x1) . . .Mλ(xt)
∥∥∥∥Mλ(x1) . . .Mλ(xt−1)
∥∥ .

By the same arguments as in the proof of Theorem
2, the rows of the matrices Mλ(xt−k) . . .Mλ(xt) and
Mλ(xt−k) . . .Mλ(xt−1) tend to proportionality as k
goes to ∞. Therefore,

L(xt, xt−1, . . .) := lim
k→∞

Lk(xt, . . . , xt−k+1)
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is well-defined. Putting all together, we obtain

1
n

logZλ(Xn) ∼ 1
n

n∑
t=1

L(Xt, Xt−1, . . .),

and by the ergodicity of X the latter expression
converges Pλ0-almost surely to Eλ0 [L(Xt, Xt−1, . . .)].
Hence the proof is complete.

For the proof that the convergence of Ln(λ) to L(λ)
is uniform on Θ, we need to consider the gradient of
Ln(λ), which is given by

∇Ln(λ) =
1
n

f(Xn,Y n)

− 1
n

∑
yn∈Yn

exp
(
λT f(Xn,yn)

)
Zλ(Xn)

f(Xn,yn).

Lemma 5. Suppose that assumptions (A1) and (A2)
hold. Then, for every λ ∈ Θ,

lim
n→∞

∇Ln(λ) = Eλ0 [f(Xt, Yt−1, Yt)]

−Eλ[f(Xt, Yt−1, Yt)]

Pλ0-almost surely.

Proof. The convergence of the first term again follows
by Theorem 3. For the second term, note that

1
n

∑
yn∈Yn

exp
(
λT f(Xn,yn)

)
Zλ(Xn)

f(Xn,yn)

=
1
n

n∑
t=1

E
(0:n)
λ

[
f(Xt, Yt−1, Yt) |X

]
,

where E(0:n)
λ

[
f(Xt, Yt−1, Yt) |X

]
is the conditional ex-

pectation of f(Xt, Yt−1, Yt) given X under the finite
L-CRF model P (0:n)

λ . Using arguments similar to the
proof of the uniform bound in Theorem 2, one can
show that E(0:n)

λ

[
f(Xt, Yt−1, Yt) |X

]
can be replaced

by the conditional expectation of f(Xt, Yt−1, Yt) given
X under the infinite L-CRF model Pλ, that is,

1
n

n∑
t=1

E
(0:n)
λ

[
f(Xt, Yt−1, Yt) |X

]
∼ 1

n

n∑
t=1

Eλ

[
f(Xt, Yt−1, Yt) |X

]
.

See the supplementary material for details. Now, as
Eλ

[
f(Xt, Yt−1, Yt) |X

]
= Eλ

[
f(X0, Y−1, Y0) | τ tX

]
for every t, we obtain

1
n

n∑
t=1

Eλ

[
f(Xt, Yt−1, Yt) |X

]
= Eλ

[
f(Xt, Yt−1, Yt)

]
Pλ-almost surely by the ergodicity of X.

Now we are ready to prove that Ln(λ) converges to
L(λ) uniformly on Θ.

Lemma 6. Suppose that conditions (A1)-(A3) hold.
Then the convergence of Ln(λ) to L(λ) is uniform on
Θ, that is,

lim
n→∞

sup
λ∈Θ

∣∣Ln(λ)− L(λ)
∣∣ = 0

Pλ0-almost surely.

Proof. Since Θ is compact, it is sufficient to show that
Ln(λ) is stochastically equicontinuous, i.e., for Pλ-
almost every ω ∈ Ω and every ε > 0, there exists a
δ > 0 and an n0(ω) such that

sup
‖λ1−λ2‖≤δ

∣∣Ln(λ1)(ω)− Ln(λ2)(ω)
∣∣ ≤ ε

for all n ≥ n0(ω). By the Mean value theorem, there
exists a (random) h ∈ [0, 1] such that∣∣Ln(λ1)− Ln(λ2)

∣∣ ≤
∥∥λ1 − λ2

∥∥
×
∥∥∇Ln((1− h)λ1 + hλ2)

∥∥.
To bound the second factor on the right hand side note
that for any λ (not necessarily lying in Θ),

∥∥∇Ln(λ)
∥∥ ≤ 1

n

n∑
t=1

∥∥f(Xt, Yt−1, Yt)
∥∥

+
1
n

n∑
t=1

∑
i,j∈Y

∥∥f(Xt, i, j)
∥∥.

Let Un denote this upper bound. By the ergodicity of
X we obtain that Un converges Pλ0-almost surely to
a finite limit, which we denote by U . Now, for Pλ0-
almost every ω ∈ Ω there exists an n0(ω) such that
‖Un(ω) − U‖ ≤ ε for all n ≥ n0(ω). Substituting this
into the above inequality, we obtain∣∣Ln(λ1)(ω)− Ln(λ2)(ω)

∣∣ ≤
(
U + ε

) ∥∥λ1 − λ2

∥∥
for all n ≥ n0(ω). Setting δ := ε/(U + ε), we see that
the sequence Ln(λ) is stochastically equicontinuous.

5.2 Convergence of the Hessian

Based on the previous results, we are now able to state
the following sufficient conditions for strong consis-
tency of λ̂n.

Theorem 4. Suppose that conditions (A1)-(A3) hold,
and the limit of ∇2Ln(λ) is finite and strictly negative
definite. Then L(λ) is strictly concave on Θ, and

lim
n→∞

λ̂n = λ0

Pλ0-almost surely.
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Proof. According to Lemma 6, we have uniform con-
vergence of Ln(λ) to L(λ) on Θ. Thus, if the limit of
∇2Ln(λ) is strictly negative definite, L(λ) is strictly
concave and hence has a unique maximum. It only
remains to show that this maximum is L(λ0). Under
the assumption that the limit of ∇2Ln(λ) is finite, the
gradient of L(λ) is given by the limit of ∇Ln(λ). Ac-
cording to Lemma 5, this limit is zero if λ = λ0, hence
L(λ0) is the unique maximum of L(λ) on Θ.

Let us analyze the asymptotic behavior of ∇2Ln(λ).
In order to compute the second partial derivatives,
let n ∈ N and write λ as a stacked vector λ =
(λ1, . . . ,λn) with λ1 = . . . = λn. Correspondingly,
consider the stacked feature functions f(Xn,Y n) =
(f(X1, Y0, Y1), . . . ,f(Xn, Yn−1, Yn)), so that

λT f(Xn,Y n) =
n∑

t=1

λT
t f(Xt, Yt−1, Yt).

Note that the first partial derivatives of Ln(λ) with
respect to λt are given by

∂

∂λt
Ln(λ) =

1
n

f(Xt, Yt−1, Yt)

− 1
n
E

(0:n)
λ

[
f(Xt, Yt−1, Yt) |X

]
.

By further differentiating this expression with respect
to λt+k (for k such that 1 ≤ t+ k ≤ n), we obtain

∂2

∂λt∂λt+k
Ln(λ) = − 1

n
E

(0:n)
λ

[
f(Xt, Yt−1, Yt) |X

]
×E(0:n)

λ

[
f(Xt+k, Yt+k−1, Yt+k) |X

]T
+

1
n
E

(0:n)
λ

[
f(Xt, Yt−1, Yt)f(Xt+k, Yt+k−1, Yt+k)T |X

]
.

For k = 0, 1, . . . , n− 1, consider the sum of all second
partial derivatives with the lag k,

γ̂
(n)
λ (k) =

n−k∑
t=1

∂2

∂λt∂λt+k
Ln(λ),

and note that the Hessian of Ln(λ) can be written as

∇2Ln(λ) = −

(
γ̂

(n)
λ (0) + 2

n−1∑
k=1

γ̂
(n)
λ (k)

)
.

The following lemma shows that, if conditions (A1)
and (A2) are satisfied, the limit of ∇2Ln(λ) is finite.
The proof is included in the supplementary material.
According to the proof of Theorem 4, we obtain that
λ0 is one solution of argmaxλ∈Θ L(λ), however, this
solution is not unique unless the limit of ∇2Ln(λ) is
non-singular.

Lemma 7. Suppose that conditions (A1) and (A2)
hold. Then

lim
n→∞

∇2Ln(λ) = −

(
γλ(0) + 2

∞∑
k=1

γλ(k)

)
Pλ0-almost surely, where

γλ(k) =
Covλ

[
f(Xt, Yt−1, Yt), f(Xt+k, Yt+k−1, Yt+k)

]
is the matrix of covariances between f(Xt, Yt−1, Yt)
and f(Xt+k, Yt+k−1, Yt+k) measured with respect to
Pλ. In particular, the limit of ∇2Ln(λ) is finite.

The following corollary states a simple necessary con-
dition for the limit of the Hessian ∇2Ln(λ) to be non-
singular and hence for the solution of argmaxλ∈Θ L(λ)
to be unique.
Corollary 2. Suppose that conditions (A1) and (A2)
hold and the vector of feature functions f has dimen-
sionality d. Then a necessary condition for the limit
of ∇2Ln(λ) to be non-singular is that for every pair
a ∈ R, b ∈ Rd with b 6= 0 there exist i, j ∈ Y and a sub-
set A ⊂ X with PX(A) > 0 such that bT f(x, i, j) 6= a
for all x ∈ A.

In particular, the solution of argmaxλ∈Θ L(λ) fails to
be unique if any of the components of f can be ex-
pressed as linear combinations of each other. We leave
it as an open problem whether the conditions in Corol-
lary 2 are also sufficient for non-singularity. Note that
the answer is affirmative when the feature functions
f(xt, yt−1, yt) do not depend on yt−1. In this case the
matrices γλ(k) are zero for all k > 0, and hence the
limit of ∇2Ln(λ) is equal to γλ(0).

6 CONCLUSIONS

We have taken a first step to a rigorous study of
asymptotic properties of Maximum Likelihood Esti-
mates (MLEs) in Linear-Chain Conditional Random
Fields (L-CRFs). Our analysis is based on L-CRFs
for infinite sequences, which are defined by the limit
distributions of conventional L-CRFs as the length of
the observational context tends to infinity. We have
derived basic properties of these L-CRFs and shown
that ergodicity of the observation sequence implies
ergodicity of the joint sequence of observations and
labels. Based on these results, we have established
uniform convergence of the average conditional log-
likelihood and of the gradient, and pointwise conver-
gence of the Hessian. Under the assumption that the
limit of the Hessian is non-singular, our results show
that the MLEs are strongly consistent. The ques-
tion under which conditions non-singularity holds is
an open problem for future research.
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