Asymptotic Theory for Linear-Chain Conditional Random Fields - Supplementary Material -

PROOF OF THEOREM 1

The existence of the asymptotic ratios $r_{i j}$ is wellknown (Lemma 3.4, Seneta, 2006). Let us establish the geometric rate. For any $\ell \times \ell$-matrix $\boldsymbol{A}=\left(a_{i j}\right)$, define

$$
\phi(\boldsymbol{A})=\min _{i, j, k, l} \frac{a_{i k} a_{j l}}{a_{j k} a_{i l}}
$$

Note that $\phi(\boldsymbol{A}) \leq 1$. Using the concept of Birkhoff's contraction coefficient, one can show that

$$
\frac{1-\sqrt{\phi\left(\boldsymbol{M}_{n}\right)}}{1+\sqrt{\phi\left(\boldsymbol{M}_{n}\right)}} \leq \prod_{t=1}^{n} \frac{1-\sqrt{\phi\left(\boldsymbol{M}\left(x_{t}\right)\right)}}{1+\sqrt{\phi\left(\boldsymbol{M}\left(x_{t}\right)\right)}}
$$

(Chapter 3, Seneta, 2006). With ψ^{2} defined in Lemma 1 and using the fact that $\sqrt{\phi\left(\boldsymbol{M}_{n}\right)} \leq 1$, we obtain

$$
\frac{1-\sqrt{\phi\left(\boldsymbol{M}_{n}\right)}}{2} \leq\left(\frac{1-\psi}{1+\psi}\right)^{n}
$$

After a few elementary algebraic manipulations and applying Bernoulli's inequality, we obtain

$$
\phi\left(\boldsymbol{M}_{n}\right) \geq 1-4\left(\frac{1-\psi}{1+\psi}\right)^{n}
$$

Now, note that the quantities

$$
\max _{k \in \mathcal{Y}}\left(\frac{m_{n}(i, k)}{m_{n}(j, k)}\right) \quad \text { and } \quad \min _{k \in \mathcal{Y}}\left(\frac{m_{n}(i, k)}{m_{n}(j, k)}\right)
$$

are non-increasing and non-decreasing with n, respectively (Lemma 3.1, Seneta, 2006). Moreover, by the definition of $\phi(\cdot)$, the ratio of the minimum to the maximum is greater than $\phi\left(\boldsymbol{M}_{n}\right)$.

PROOF OF THEOREM 2

We show that c and κ satisfy

$$
\begin{aligned}
& \mid P_{\boldsymbol{\lambda}}^{(-n, n)}\left(Y_{t}=y_{t}, \ldots, Y_{t+k}=y_{t+k} \mid \boldsymbol{X}=\boldsymbol{x}\right) \\
& \quad-P_{\boldsymbol{\lambda}}\left(Y_{t}=y_{t}, \ldots, Y_{t+k}=y_{t+k} \mid \boldsymbol{X}=\boldsymbol{x}\right) \mid \leq c \kappa^{n}
\end{aligned}
$$

for all $n \in \mathbb{N}$ such that $-n \leq t$ and $n \geq t+k$. Introduce the vectors $\underline{\boldsymbol{r}}_{i}(n)$ and $\overline{\boldsymbol{r}}_{i}(n)$ with the k th components given by

$$
\begin{aligned}
& \underline{r}_{k i}(n)=\min _{l \in \mathcal{Y}}\left(\frac{g_{n}(k, l)}{g_{n}(i, l)}\right), \\
& \bar{r}_{k i}(n)=\max _{l \in \mathcal{Y}}\left(\frac{g_{n}(k, l)}{g_{n}(i, l)}\right) .
\end{aligned}
$$

In the same way, we define vectors $\underline{\boldsymbol{s}}_{j}(n)$ and $\overline{\boldsymbol{s}}_{j}(n)$ with respect to \boldsymbol{H}_{n}. It is easy to see that

$$
\begin{aligned}
\underline{\boldsymbol{r}}_{i}(n)^{T} \boldsymbol{F} \underline{\boldsymbol{s}}_{j}(n) & \leq \frac{\boldsymbol{\alpha}_{-n}^{t}(\boldsymbol{\lambda}, \boldsymbol{x})^{T} \boldsymbol{F} \boldsymbol{\beta}_{t+k}^{n}(\boldsymbol{\lambda}, \boldsymbol{x})}{\alpha_{-n}^{t}(\boldsymbol{\lambda}, \boldsymbol{x}, i) \beta_{t+k}^{n}(\boldsymbol{\lambda}, \boldsymbol{x}, j)} \\
& \leq \overline{\boldsymbol{r}}_{i}(n)^{T} \boldsymbol{F} \overline{\boldsymbol{s}}_{j}(n)
\end{aligned}
$$

Furthermore, according to Theorem 1,

$$
\underline{\boldsymbol{r}}_{i}(n)^{T} \boldsymbol{F} \underline{\boldsymbol{s}}_{j}(n) \leq \boldsymbol{r}_{i}^{T} \boldsymbol{F} \boldsymbol{\boldsymbol { s } _ { j }} \leq \overline{\boldsymbol{r}}_{i}(n)^{T} \boldsymbol{F} \overline{\boldsymbol{s}}_{j}(n)
$$

Hence,

$$
\begin{aligned}
& \left|\frac{\boldsymbol{\alpha}_{-n}^{t}(\boldsymbol{\lambda}, \boldsymbol{x})^{T} \boldsymbol{F} \boldsymbol{\beta}_{t+k}^{n}(\boldsymbol{\lambda}, \boldsymbol{x})}{\alpha_{-n}^{t}(\boldsymbol{\lambda}, \boldsymbol{x}, i) \beta_{t+k}^{n}(\boldsymbol{\lambda}, \boldsymbol{x}, j)}-\boldsymbol{r}_{i}^{T} \boldsymbol{F} \boldsymbol{s}_{j}\right| \\
& \quad \leq\left|\left(\overline{\boldsymbol{r}}_{i}(n)-\underline{\boldsymbol{r}}_{i}(n)\right)^{T} \boldsymbol{F}\left(\overline{\boldsymbol{s}}_{j}(n)-\underline{\boldsymbol{s}}_{j}(n)\right)\right| .
\end{aligned}
$$

According to Theorem 1, we obtain

$$
\begin{aligned}
& \left|\frac{\boldsymbol{\alpha}_{-n}^{t}(\boldsymbol{\lambda}, \boldsymbol{x})^{T} \boldsymbol{F} \boldsymbol{\beta}_{t+k}^{n}(\boldsymbol{\lambda}, \boldsymbol{x})}{\alpha_{-n}^{t}(\boldsymbol{\lambda}, \boldsymbol{x}, i) \beta_{t+k}^{n}(\boldsymbol{\lambda}, \boldsymbol{x}, j)}-\boldsymbol{r}_{i}^{T} \boldsymbol{F} \boldsymbol{s}_{j}\right| \\
& \quad \leq 16\|\boldsymbol{F}\|\left(\frac{m_{\text {sup }}}{m_{\text {inf }}}\right)^{2}\left(\frac{(1-\varphi)(1-\psi)}{(1+\varphi)(1+\psi)}\right)^{n}
\end{aligned}
$$

where $\|\boldsymbol{F}\|$ stands for the sum of all components of \boldsymbol{F}. Putting all together, we have

$$
\begin{aligned}
& \mid P_{\boldsymbol{\lambda}}^{(-n, n)}\left(Y_{t}=y_{t}, \ldots, Y_{t+k}=y_{t+k} \mid \boldsymbol{X}=\boldsymbol{x}\right) \\
& -P_{\boldsymbol{\lambda}}\left(Y_{t}=y_{t}, \ldots, Y_{t+k}=y_{t+k} \mid \boldsymbol{X}=\boldsymbol{x}\right) \mid \\
& \leq 16\|\boldsymbol{F}\|\left(\frac{m_{\text {sup }}}{m_{\mathrm{inf}}}\right)^{2}\left(\frac{(1-\varphi)(1-\psi)}{(1+\varphi)(1+\psi)}\right)^{n} \\
& \quad \times \prod_{i=1}^{k} m_{\boldsymbol{\lambda}}\left(x_{t+i}, y_{t+i-1}, y_{t+i}\right)
\end{aligned}
$$

and now the value for the constant is c obtained by noting that

$$
\|\boldsymbol{F}\| \prod_{i=1}^{k} m_{\boldsymbol{\lambda}}\left(x_{t+i}, y_{t+i-1}, y_{t+i}\right) \leq \ell^{k+1} m_{\mathrm{sup}}^{2 k}
$$

The proof is complete.

PROOF OF LEMMA 2

Let $\vec{A}=X_{t \in \mathbb{Z}} A_{t}$. Note that $\vec{\tau}^{-1} \vec{A}=X_{t \in \mathbb{Z}} A_{t-1}$, and hence $\pi\left(\tau^{-1} A\right)=\pi(A)$ for all $A \in \mathcal{A}$ implies

$$
\begin{aligned}
\vec{\pi}\left(\vec{\tau}^{-1} \vec{A}\right) & =\pi\left(\bigcap_{t \in \mathbb{Z}} \tau^{-t} A_{t-1}\right) \\
& =\pi\left(\tau^{-1} \bigcap_{t \in \mathbb{Z}} \tau^{-(t-1)} A_{t-1}\right) \\
& =\pi\left(\bigcap_{t \in \mathbb{Z}} \tau^{-(t-1)} A_{t-1}\right) \\
& =\vec{\pi}(\vec{A}) .
\end{aligned}
$$

Now suppose $\vec{\tau}^{-1} \vec{A}=\vec{A}$. A necessary condition for this is $A_{t}=A$ for all $t \in \mathbb{Z}$. Setting $\tilde{A}=\bigcap_{t \in \mathbb{Z}} \tau^{-t}(A)$, we obtain $\vec{\pi}(\vec{A})=\pi(\tilde{A})$. Now note that $\tau^{-1} \tilde{A}=\tilde{A}$. Thus, if π is τ-ergodic, we have $\pi(\tilde{A})=0$ or $\pi(\tilde{A})=1$, and hence $\vec{\pi}(\vec{A})=0$ or $\vec{\pi}(\vec{A})=1$.

PROOF OF LEMMA 3

The proof that the invariant measure $\mu_{\boldsymbol{\lambda}}$ is unique requires an alternative representation of Markov processes. Write $Q\left(\boldsymbol{\lambda}, \boldsymbol{x}_{1} \ldots \boldsymbol{x}_{n}, i, j\right)$ to denote the (i, j)-th component of the product $\boldsymbol{Q}\left(\boldsymbol{\lambda}, \boldsymbol{x}_{1}\right) \ldots \boldsymbol{Q}\left(\boldsymbol{\lambda}, \boldsymbol{x}_{n}\right)$. For $k>1$ consider the k th iterate of $Q_{\boldsymbol{\lambda}}$:

$$
Q_{\boldsymbol{\lambda}}^{k}(z, C)=\int_{\mathcal{Z}} Q_{\boldsymbol{\lambda}}\left(z^{\prime}, C\right) Q_{\boldsymbol{\lambda}}^{k-1}\left(z, d z^{\prime}\right)
$$

Note that

$$
\begin{aligned}
& Q_{\boldsymbol{\lambda}}^{k}\left(\left(\overrightarrow{\boldsymbol{x}}, y_{0}^{\prime}, y_{1}^{\prime}\right), \vec{A} \times\left\{y_{0}\right\} \times\left\{y_{1}\right\}\right) \\
& \quad=\left\{\begin{array}{cl}
Q\left(\boldsymbol{\lambda}, \boldsymbol{x}_{0} \ldots \boldsymbol{x}_{k-2}, y_{1}^{\prime}, y_{0}\right) Q\left(\boldsymbol{\lambda}, \boldsymbol{x}_{k-1}, y_{0}, y_{1}\right) \\
0 & \text { if } \vec{\tau}^{k} \overrightarrow{\boldsymbol{x}} \in \vec{A}, \\
\text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Now let $L_{1}=L_{1}\left(\mu_{\boldsymbol{\lambda}}\right)$ denote the space of measurable functions $u: \mathcal{Z} \rightarrow \mathbb{R}$ satisfying $\int_{\mathcal{Z}}|u(z)| \mu_{\boldsymbol{\lambda}}(d z)<\infty$. For $k \in \mathbb{N}$ let Q_{λ}^{k} be the operator on L_{1} defined by

$$
Q_{\boldsymbol{\lambda}}^{k} u(z)=\int_{\mathcal{Z}} u\left(z^{\prime}\right) Q_{\boldsymbol{\lambda}}^{k}\left(z, d z^{\prime}\right)
$$

Note that, if $k>1$,

$$
\begin{aligned}
& Q_{\boldsymbol{\lambda}}^{k} u\left(\overrightarrow{\boldsymbol{x}}, y_{0}^{\prime}, y_{1}^{\prime}\right)=\sum_{y_{0}, y_{1} \in \mathcal{Y}} u\left(\vec{\tau}^{k} \overrightarrow{\boldsymbol{x}}, y_{0}, y_{1}\right) \\
& \quad \times Q\left(\boldsymbol{\lambda}, \boldsymbol{x}_{0} \ldots \boldsymbol{x}_{k-2}, y_{1}^{\prime}, y_{0}\right) Q\left(\boldsymbol{\lambda}, \boldsymbol{x}_{k-1}, y_{0}, y_{1}\right)
\end{aligned}
$$

For the proof that the invariant measure $\mu_{\boldsymbol{\lambda}}$ is unique, let $u_{0} \in L_{1}$ with $u_{0}>0$ and consider the conservative set $C^{*} \subset \mathcal{Z}$ given by

$$
C^{*}=\left\{z \in \mathcal{Z}: \lim _{n \rightarrow \infty} \sum_{k=1}^{n} Q_{\lambda}^{k} u_{0}(z)=\infty\right\}
$$

Note that the set C^{*} is independent of the choice of u_{0}. Furthermore, let \mathcal{C}_{i} denote the class of invariant sets,
$\mathcal{C}_{i}=\left\{C \in \mathcal{C}: Q_{\boldsymbol{\lambda}} \mathbf{1}_{C}=\mathbf{1}_{C} \mu_{\boldsymbol{\lambda}}\right.$-almost everywhere $\}$.
We say that \mathcal{C}_{i} is trivial if $\mu_{\boldsymbol{\lambda}}(C)=0$ or $\mu_{\boldsymbol{\lambda}}(C)=1$ for every $C \in \mathcal{C}_{i}$. A sufficient condition for the existence of at most one invariant probability measure on $(\mathcal{Z}, \mathcal{C})$ is that $C^{*}=\mathcal{Z}$ (up to a $\mu_{\boldsymbol{\lambda}}$-null set) and \mathcal{C}_{i} is trivial (Theorem VI.A, Foguel, 1969). We first show that $C^{*}=\mathcal{Z}$. According to Corollary 1 (ii), we have

$$
\begin{aligned}
\inf \left\{Q\left(\boldsymbol{\lambda}, \boldsymbol{x}_{1} \ldots \boldsymbol{x}_{n}, i, j\right): n \in \mathbb{N}, i, j\right. & \in \mathcal{Y}\} \\
& \geq \frac{1}{\ell}\left(\frac{m_{\mathrm{inf}}}{m_{\mathrm{sup}}}\right)^{2}
\end{aligned}
$$

for every $\overrightarrow{\boldsymbol{x}}=\left(\boldsymbol{x}_{t}\right)_{t \in \mathbb{Z}}$. Hence, for $k>1$,
$Q_{\lambda}^{k} u_{0}\left(\overrightarrow{\boldsymbol{x}}, y_{0}^{\prime}, y_{1}^{\prime}\right) \geq \frac{1}{\ell^{2}}\left(\frac{m_{\mathrm{inf}}}{m_{\mathrm{sup}}}\right)^{4} \sum_{y_{0}, y_{1} \in \mathcal{Y}} u_{0}\left(\vec{\tau}^{k} \overrightarrow{\boldsymbol{x}}, y_{0}, y_{1}\right)$.
Furthermore, since $\vec{P}_{\boldsymbol{X}}$ is $\vec{\tau}$-ergodic on $(\overrightarrow{\mathcal{X}}, \overrightarrow{\mathcal{A}})$,

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} u_{0}\left(\vec{\tau}^{k} \overrightarrow{\boldsymbol{x}}, y_{0}, y_{1}\right) \\
&=\int_{\overrightarrow{\boldsymbol{x}}} u_{0}\left(\overrightarrow{\boldsymbol{x}}^{\prime}, y_{0}, y_{1}\right) \vec{P}_{\boldsymbol{X}}\left(d \overrightarrow{\boldsymbol{x}}^{\prime}\right)
\end{aligned}
$$

for $\vec{P}_{\boldsymbol{X}}$-almost every $\overrightarrow{\boldsymbol{x}} \in \overrightarrow{\mathcal{X}}$. Now, under the assumption $u_{0}>0$, the integral on the right hand side is strictly greater than 0 , hence the unnormalized series on the left hand side would tend to ∞. This argument shows that the series in the definition of C^{*} diverges for $\mu_{\boldsymbol{\lambda}}$-almost every $z \in \mathcal{Z}$, and hence $C^{*}=\mathcal{Z}$ up to a $\mu_{\boldsymbol{\lambda}}$-null set.
To show that \mathcal{C}_{i} is trivial, let $C \in \mathcal{C}_{i}$ be such that $\mu_{\boldsymbol{\lambda}}(C)>0$ and $Q_{\boldsymbol{\lambda}} \mathbf{1}_{C}(z)=\mathbf{1}_{C}(z)$ for $\mu_{\boldsymbol{\lambda}}$-almost every $z \in \mathcal{Z}$. Note that $Q_{\boldsymbol{\lambda}} \mathbf{1}_{C}(z)=Q_{\boldsymbol{\lambda}}(z, C)$. If (A1) holds, then all entries of the transition matrix Q are strictly greater than 0 , and hence a necessary condition for $Q_{\boldsymbol{\lambda}}(z, C)=1$ is that $C=\vec{A} \times \mathcal{Y} \times \mathcal{Y}$ for some set $\vec{A} \in \overrightarrow{\mathcal{A}}$, which implies that $Q_{\boldsymbol{\lambda}}(z, C)=\mathbf{1}_{\vec{A}}(\vec{\tau} \overrightarrow{\boldsymbol{x}})$ and $\mathbf{1}_{C}(z)=\mathbf{1}_{\vec{A}}(\overrightarrow{\boldsymbol{x}})$ for $\mu_{\boldsymbol{\lambda}}$-almost every $z=\left(\overrightarrow{\boldsymbol{x}}, y_{0}, y_{1}\right) \in$ \mathcal{Z}. Now note that $\mathbf{1}_{\vec{A}}(\vec{\tau} \overrightarrow{\boldsymbol{x}})=\mathbf{1}_{\vec{A}}(\overrightarrow{\boldsymbol{x}})$ is equivalent to $\vec{A}=\vec{\tau}^{-1} \vec{A}$, and if (A2) holds, then $\vec{P}_{\boldsymbol{X}}(\vec{A})=0$ or $\vec{P}_{\boldsymbol{X}}(\vec{A})=1$ for each set \vec{A} satisfying this condition.

PROOF OF LEMMA 5

We wish to establish that

$$
\begin{aligned}
& \frac{1}{n} \sum_{t=1}^{n} E_{\boldsymbol{\lambda}}^{(0: n)}\left[\boldsymbol{f}\left(X_{t}, Y_{t-1}, Y_{t}\right) \mid \boldsymbol{X}\right] \\
& \sim \frac{1}{n} \sum_{t=1}^{n} E_{\boldsymbol{\lambda}}\left[\boldsymbol{f}\left(X_{t}, Y_{t-1}, Y_{t}\right) \mid \boldsymbol{X}\right]
\end{aligned}
$$

Let $i, j \in \mathcal{Y}$. Similar to the proof of Theorem 2, we obtain that $P_{\boldsymbol{\lambda}}^{(0: n)}\left(Y_{t-1}=i, Y_{t}=j \mid \boldsymbol{X}=\boldsymbol{x}\right)$ converges to some limit $P_{\boldsymbol{\lambda}}^{(0: \infty)}\left(Y_{t-1}=i, Y_{t}=j \mid \boldsymbol{X}=\boldsymbol{x}\right)$ as n tends to infinity, and there exist constants $c>0$ and $0<\kappa<1$ not depending on \boldsymbol{x} such that

$$
\begin{aligned}
& \mid P_{\boldsymbol{\lambda}}^{(0: n)}\left(Y_{t-1}=i, Y_{t}=j \mid \boldsymbol{X}=\boldsymbol{x}\right)- \\
& \quad P_{\boldsymbol{\lambda}}^{(0: \infty)}\left(Y_{t-1}=i, Y_{t}=j \mid \boldsymbol{X}=\boldsymbol{x}\right) \mid \leq c \kappa^{n-t}
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
\left.\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=1}^{n} \right\rvert\, P_{\boldsymbol{\lambda}}^{(0: n)}\left(Y_{t-1}=i, Y_{t}=j \mid \boldsymbol{X}=\boldsymbol{x}\right)- \\
\quad P_{\boldsymbol{\lambda}}^{(0: \infty)}\left(Y_{t-1}=i, Y_{t}=j \mid \boldsymbol{X}=\boldsymbol{x}\right) \mid=0
\end{aligned}
$$

which shows that

$$
\begin{aligned}
& \frac{1}{n} \sum_{t=1}^{n} E_{\boldsymbol{\lambda}}^{(0: n)}\left[\boldsymbol{f}\left(X_{t}, Y_{t-1}, Y_{t}\right) \mid \boldsymbol{X}\right] \\
& \\
& \sim \frac{1}{n} \sum_{t=1}^{n} E_{\boldsymbol{\lambda}}^{(0: \infty)}\left[\boldsymbol{f}\left(X_{t}, Y_{t-1}, Y_{t}\right) \mid \boldsymbol{X}\right]
\end{aligned}
$$

where $E_{\lambda}^{(0: \infty)}$ stands for the conditional expectation with respect to $P_{\boldsymbol{\lambda}}^{(0: \infty)}$. Now, noting that
$E_{\boldsymbol{\lambda}}^{(0: \infty)}\left[\boldsymbol{f}\left(X_{t}, Y_{t-1}, Y_{t}\right) \mid \boldsymbol{X}\right] \sim E_{\boldsymbol{\lambda}}\left[\boldsymbol{f}\left(X_{t}, Y_{t-1}, Y_{t}\right) \mid \boldsymbol{X}\right]$,
we obtain the statement.

PROOF OF LEMMA 7

Let $\boldsymbol{x}=\left(x_{t}\right)_{t \in \mathbb{Z}}$ be fixed. Using Corollary 1 (ii) and arguments similar to the proof of Theorem 2, it is not difficult to show that the difference between the probabilities $P_{\boldsymbol{\lambda}}\left(Y_{t-1}=i, Y_{t}=j, Y_{t+k-1}=l, Y_{t+k}=m \mid \boldsymbol{X}=\right.$ $\boldsymbol{x})$ and $P_{\boldsymbol{\lambda}}\left(Y_{t-1}=i, Y_{t}=j \mid \boldsymbol{X}=\boldsymbol{x}\right) \times P_{\boldsymbol{\lambda}}\left(Y_{t+k-1}=\right.$ $\left.l, Y_{t+k}=m \mid \boldsymbol{X}=\boldsymbol{x}\right)$ decays at a geometric rate. Since \boldsymbol{f} is bounded, it follows that the covariance of $\boldsymbol{f}\left(X_{t}, Y_{t-1}, Y_{t}\right)$ and $\boldsymbol{f}\left(X_{t+k}, Y_{t+k-1}, Y_{t+k}\right)$ conditional on $\boldsymbol{X}=\boldsymbol{x}$ decays component-wise at a geometric rate, and integrating with respect to $P_{\boldsymbol{X}}$ shows that $\gamma_{\boldsymbol{\lambda}}(k)$ decays to 0 at a geometric rate. Consequently, $\sum_{k=1}^{n} \gamma_{\boldsymbol{\lambda}}(k)<\infty$. Similar to the proof of Lemma 5, we obtain that

$$
\lim _{n \rightarrow \infty} \hat{\gamma}_{\boldsymbol{\lambda}}^{(n)}(k)=\gamma_{\boldsymbol{\lambda}}(k)
$$

and

$$
\nabla^{2} \mathcal{L}_{n}(\boldsymbol{\lambda}) \sim-\left(\gamma_{\boldsymbol{\lambda}}(0)+2 \sum_{k=1}^{n} \gamma_{\boldsymbol{\lambda}}(k)\right)
$$

$P_{\boldsymbol{\lambda}_{0}}$-almost surely. The proof is complete.

