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PROOF OF THEOREM 1

The existence of the asymptotic ratios rij is well-
known (Lemma 3.4, Seneta, 2006). Let us establish
the geometric rate. For any ` × `-matrix A = (aij),
define

φ(A) = min
i,j,k,l

aikajl

ajkail
.

Note that φ(A) ≤ 1. Using the concept of Birkhoff’s
contraction coefficient, one can show that

1−
√
φ(Mn)

1 +
√
φ(Mn)

≤
n∏

t=1

1−
√
φ(M(xt))

1 +
√
φ(M(xt))

(Chapter 3, Seneta, 2006). With ψ2 defined in Lemma
1 and using the fact that

√
φ(Mn) ≤ 1, we obtain

1−
√
φ(Mn)
2

≤
(

1− ψ

1 + ψ

)n

.

After a few elementary algebraic manipulations and
applying Bernoulli’s inequality, we obtain

φ(Mn) ≥ 1− 4
(

1− ψ

1 + ψ

)n

.

Now, note that the quantities

max
k∈Y

(
mn(i, k)
mn(j, k)

)
and min

k∈Y

(
mn(i, k)
mn(j, k)

)
are non-increasing and non-decreasing with n, respec-
tively (Lemma 3.1, Seneta, 2006). Moreover, by the
definition of φ(·), the ratio of the minimum to the max-
imum is greater than φ(Mn). �
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We show that c and κ satisfy∣∣P (−n,n)
λ (Yt = yt, . . . , Yt+k = yt+k |X = x)

−Pλ(Yt = yt, . . . , Yt+k = yt+k |X = x)
∣∣ ≤ cκn

for all n ∈ N such that −n ≤ t and n ≥ t+k. Introduce
the vectors ri(n) and ri(n) with the kth components
given by

rki(n) = min
l∈Y

(
gn(k, l)
gn(i, l)

)
,

rki(n) = max
l∈Y

(
gn(k, l)
gn(i, l)

)
.

In the same way, we define vectors sj(n) and sj(n)
with respect to Hn. It is easy to see that

ri(n)T Fsj(n) ≤
αt
−n(λ,x)T Fβn

t+k(λ,x)
αt
−n(λ,x, i)βn

t+k(λ,x, j)

≤ ri(n)T Fsj(n).

Furthermore, according to Theorem 1,

ri(n)T Fsj(n) ≤ rT
i Fsj ≤ ri(n)T Fsj(n).

Hence,∣∣∣∣αt
−n(λ,x)T Fβn

t+k(λ,x)
αt
−n(λ,x, i)βn

t+k(λ,x, j)
− rT

i Fsj

∣∣∣∣
≤
∣∣∣(ri(n)− ri(n)

)T
F
(
sj(n)− sj(n)

)∣∣∣.
According to Theorem 1, we obtain∣∣∣∣αt

−n(λ,x)T Fβn
t+k(λ,x)

αt
−n(λ,x, i)βn

t+k(λ,x, j)
− rT

i Fsj

∣∣∣∣
≤ 16

∥∥F∥∥ (msup

minf

)2 ( (1− ϕ)(1− ψ)
(1 + ϕ)(1 + ψ)

)n

where ‖F ‖ stands for the sum of all components of F .
Putting all together, we have

∣∣P (−n,n)
λ (Yt = yt, . . . , Yt+k = yt+k |X = x)

−Pλ(Yt = yt, . . . , Yt+k = yt+k |X = x)
∣∣

≤ 16
∥∥F∥∥ (msup

minf

)2 ( (1− ϕ)(1− ψ)
(1 + ϕ)(1 + ψ)

)n

×
k∏

i=1

mλ(xt+i, yt+i−1, yt+i),

and now the value for the constant is c obtained by
noting that

∥∥F∥∥ k∏
i=1

mλ(xt+i, yt+i−1, yt+i) ≤ `k+1m2k
sup.

The proof is complete. �
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Let ~A = ×t∈Z At. Note that ~τ−1 ~A = ×t∈Z At−1,
and hence π(τ−1A) = π(A) for all A ∈ A implies

~π(~τ−1 ~A) = π
( ⋂

t∈Z
τ−tAt−1

)
= π

(
τ−1

⋂
t∈Z

τ−(t−1)At−1

)
= π

( ⋂
t∈Z

τ−(t−1)At−1

)
= ~π( ~A).

Now suppose ~τ−1 ~A = ~A. A necessary condition for
this is At = A for all t ∈ Z. Setting Ã =

⋂
t∈Z τ

−t(A),
we obtain ~π( ~A) = π(Ã). Now note that τ−1Ã = Ã.
Thus, if π is τ -ergodic, we have π(Ã) = 0 or π(Ã) = 1,
and hence ~π( ~A) = 0 or ~π( ~A) = 1. �
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The proof that the invariant measure µλ is unique
requires an alternative representation of Markov pro-
cesses. WriteQ(λ,x1 . . .xn, i, j) to denote the (i, j)-th
component of the product Q(λ,x1) . . .Q(λ,xn). For
k > 1 consider the kth iterate of Qλ:

Qk
λ(z, C) =

∫
Z
Qλ(z′, C)Qk−1

λ (z, dz′).

Note that

Qk
λ((~x, y′0, y

′
1), ~A× {y0} × {y1})

=


Q(λ,x0 . . .xk−2, y

′
1, y0)Q(λ,xk−1, y0, y1)

if ~τk~x ∈ ~A,
0 otherwise.

Now let L1 = L1(µλ) denote the space of measurable
functions u : Z → R satisfying

∫
Z |u(z)|µλ(dz) < ∞.

For k ∈ N let Qk
λ be the operator on L1 defined by

Qk
λu(z) =

∫
Z
u(z′)Qk

λ(z, dz′).

Note that, if k > 1,

Qk
λu(~x, y

′
0, y

′
1) =

∑
y0,y1∈Y

u(~τk~x, y0, y1)

× Q(λ,x0 . . .xk−2, y
′
1, y0)Q(λ,xk−1, y0, y1).

For the proof that the invariant measure µλ is unique,
let u0 ∈ L1 with u0 > 0 and consider the conservative
set C∗ ⊂ Z given by

C∗ =

{
z ∈ Z : lim

n→∞

n∑
k=1

Qk
λu0(z) = ∞

}
.

Note that the set C∗ is independent of the choice of
u0. Furthermore, let Ci denote the class of invariant
sets,

Ci =
{
C ∈ C : Qλ1C = 1C µλ-almost everywhere

}
.

We say that Ci is trivial if µλ(C) = 0 or µλ(C) = 1 for
every C ∈ Ci. A sufficient condition for the existence
of at most one invariant probability measure on (Z, C)
is that C∗ = Z (up to a µλ-null set) and Ci is trivial
(Theorem VI.A, Foguel, 1969). We first show that
C∗ = Z. According to Corollary 1 (ii), we have

inf
{
Q(λ,x1 . . .xn, i, j) : n ∈ N, i, j ∈ Y

}
≥ 1

`

(
minf

msup

)2

for every ~x = (xt)t∈Z. Hence, for k > 1,

Qk
λu0(~x, y′0, y

′
1) ≥

1
`2

(
minf

msup

)4 ∑
y0,y1∈Y

u0(~τk~x, y0, y1).

Furthermore, since ~PX is ~τ -ergodic on ( ~X , ~A),

lim
n→∞

1
n

n∑
k=1

u0(~τk~x, y0, y1)

=
∫

~X
u0(~x

′, y0, y1) ~PX(d~x′)

for ~PX -almost every ~x ∈ ~X . Now, under the assump-
tion u0 > 0, the integral on the right hand side is
strictly greater than 0, hence the unnormalized series
on the left hand side would tend to ∞. This argument
shows that the series in the definition of C∗ diverges
for µλ-almost every z ∈ Z, and hence C∗ = Z up to a
µλ-null set.

To show that Ci is trivial, let C ∈ Ci be such that
µλ(C) > 0 and Qλ1C(z) = 1C(z) for µλ-almost every
z ∈ Z. Note that Qλ1C(z) = Qλ(z, C). If (A1) holds,
then all entries of the transition matrix Q are strictly
greater than 0, and hence a necessary condition for
Qλ(z, C) = 1 is that C = ~A × Y × Y for some set
~A ∈ ~A, which implies that Qλ(z, C) = 1 ~A(~τ~x) and
1C(z) = 1 ~A(~x) for µλ-almost every z = (~x, y0, y1) ∈
Z. Now note that 1 ~A(~τ~x) = 1 ~A(~x) is equivalent to
~A = ~τ−1 ~A, and if (A2) holds, then ~PX( ~A) = 0 or
~PX( ~A) = 1 for each set ~A satisfying this condition. �
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We wish to establish that

1
n

n∑
t=1

E
(0:n)
λ

[
f(Xt, Yt−1, Yt) |X

]
∼ 1

n

n∑
t=1

Eλ

[
f(Xt, Yt−1, Yt) |X

]
.



Let i, j ∈ Y. Similar to the proof of Theorem 2, we
obtain that P (0:n)

λ (Yt−1 = i, Yt = j |X = x) converges
to some limit P (0:∞)

λ (Yt−1 = i, Yt = j |X = x) as n
tends to infinity, and there exist constants c > 0 and
0 < κ < 1 not depending on x such that∣∣P (0:n)

λ (Yt−1 = i, Yt = j |X = x)−

P
(0:∞)
λ (Yt−1 = i, Yt = j |X = x)

∣∣ ≤ cκn−t.

Consequently,

lim
n→∞

1
n

n∑
t=1

∣∣P (0:n)
λ (Yt−1 = i, Yt = j |X = x)−

P
(0:∞)
λ (Yt−1 = i, Yt = j |X = x)

∣∣ = 0

which shows that

1
n

n∑
t=1

E
(0:n)
λ

[
f(Xt, Yt−1, Yt) |X

]
∼ 1

n

n∑
t=1

E
(0:∞)
λ

[
f(Xt, Yt−1, Yt) |X

]
,

where E
(0:∞)
λ stands for the conditional expectation

with respect to P (0:∞)
λ . Now, noting that

E
(0:∞)
λ

[
f(Xt, Yt−1, Yt) |X

]
∼ Eλ

[
f(Xt, Yt−1, Yt) |X

]
,

we obtain the statement. �
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Let x = (xt)t∈Z be fixed. Using Corollary 1 (ii) and ar-
guments similar to the proof of Theorem 2, it is not dif-
ficult to show that the difference between the probabil-
ities Pλ(Yt−1 = i, Yt = j, Yt+k−1 = l, Yt+k = m |X =
x) and Pλ(Yt−1 = i, Yt = j |X = x) × Pλ(Yt+k−1 =
l, Yt+k = m |X = x) decays at a geometric rate.
Since f is bounded, it follows that the covariance of
f(Xt, Yt−1, Yt) and f(Xt+k, Yt+k−1, Yt+k) conditional
on X = x decays component-wise at a geometric
rate, and integrating with respect to PX shows that
γλ(k) decays to 0 at a geometric rate. Consequently,∑n

k=1 γλ(k) < ∞. Similar to the proof of Lemma 5,
we obtain that

lim
n→∞

γ̂
(n)
λ (k) = γλ(k)

and

∇2Ln(λ) ∼ −

(
γλ(0) + 2

n∑
k=1

γλ(k)

)

Pλ0-almost surely. The proof is complete. �


