
A Summary of Proof of Theorem 1

Here, we summarized the main steps and ideas of our complete proof in order to help the readers understand
the whole strategy.

1 A Summary of the Proof of Theorem 1(i)

The proof of Theorem 1(i) is consisted of five steps. The whole strategy is to relate our problem to the problem
considered by Shivaswamy and Jebara (2010) (specifically, the error bound analysis on the function class of∑−SVM, i.e., Definition 6 by Shivaswamy and Jebara (2010)) and follow their methods. Their key idea is to
use a landmark set 𝑈 , an i.i.d. sample of size 𝑛, to remove the dependence of the hypothesis class on the training
data 𝑋. We need some definitions first. 𝐷 := 𝐷 := 1/2 and �̂�𝑙 := 𝑑𝑙𝑤𝑙. We define ℋ2 as
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Step 1: Associating ℋ1 with ℋ2. (For notation convenience, we switch the symbols 𝑣𝑚+1 and 𝑤𝑚+1 in the
original ℋ1.) This step is our major contribution in this proof while other steps are adapted from the approach
by Shivaswamy and Jebara (2010) to our specific problem. This step provides the basics for later steps because
the data-dependent constraint (1.c) in ℋ2 is similar to the hypothesis class of

∑−SVM analyzed by Shivaswamy
and Jebara (2010). We relax ℋ1 to ℋ2 by the following lemma (Recall the definition of ℋ1 and 𝐸1 in section 2.3
and section 2.4).

Lemma 1 If 𝐵 > 0, 𝐶𝑙 > 0, 1 ≤ 𝑙 ≤ 𝑚, and the training set 𝑋 is a random draw of 𝑛 i.i.d. data, then
ℋ1(𝐵,𝑋,𝑪𝒍) ⊆ ℋ2(𝐵,𝐸1, 𝑋)

Step 2: Introducing the landmark set. We define ℋ3 relying on the landmark set 𝑈 independent of the
training data 𝑋 as: for any 𝐵,𝐸 > 0,
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Step 3: Obtaining a true risk bound for ℋ3. Following Lanckriet et al. (2004), Theorem 11 and Theorem
15(𝑖) from Shivaswamy and Jebara (2010), we can bound the empirical Rademacher complexity of ℋ3 as: with
probability at least 1− 𝛿, for any positive 𝐸 and 𝐵,
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where 𝑇 (𝑈,𝑋) is defined in Theorem 1(i) and 𝒞(𝒦+) is defined in section 2.4. Since ℋ3 is independent of the
training data, we can bound the true risk of functions from ℋ3 with the empirical Rademacher complexity of
ℋ3.
Step 4: Associating ℋ2 with ℋ3. We have a corollary of Theorem 16 by Shivaswamy and Jebara (2010)

Corollary 1 With probability at least 1− 2𝛿, ℋ2(𝐵,𝐸1, 𝑋) ⊆ ℋ3(𝐵,𝐸′(𝐸1, 2), 𝑈).

Step 5: Obtaining the true risk bound for ℋ1. Using a union bound to combine Lemma 1, Corollary 1,
inequality (3), and Theorem 14 from Shivaswamy and Jebara (2010), we finally obtain a true risk bound for
functions from ℋ1 in Theorem 1(i).
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