
Details on Optimizing P1

1 Optimization of P1

For notation convenience, we switch the symbols 𝑣𝑚+1 and 𝑤𝑚+1 in the original P1. Then P1 in the submitted
paper becomes

P1 min
𝒘,𝒗,𝝃,𝒅
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𝑑𝑙(𝜉
𝑙
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2 + 𝐶
𝑛∑

𝑖=1

𝜉𝑚+1
𝑖

s.t. 𝑦𝑙𝑖(𝑤
𝑇
𝑙 𝜙𝑙(𝑥

𝑙
𝑖)) ≥ 1− 𝜉𝑙𝑖, 1 ≤ 𝑙 ≤ 𝑚, 1 ≤ 𝑖 ≤ 𝑛;

𝒅 ≥ 0, ∥𝒅∥𝑝𝑝 ≤ 1, 𝝃 ≥ 0,

𝑦𝑚+1
𝑖

(𝑚+1∑
𝑙=1

𝑑𝑙(𝑤𝑙 + 𝑣𝑙)
𝑇𝜙𝑙(𝑥

𝑙
𝑖)
) ≥ 1− 𝜉𝑚+1

𝑖 , when 1 ≤ 𝑖 ≤ 𝑛 (1)

where 0 is a column vector whose elements are all 0’s. Inequalities between two vectors are taken element-wise,
and 𝐶𝑙, 1 ≤ 𝑙 ≤ 𝑚 and 𝐶 are positive user defined parameters.

To convert P1 into a convex optimization problem, we can simply replace 𝑤𝑙 , 𝑣𝑙 (1 ≤ 𝑙 ≤ 𝑚 + 1), and 𝜉𝑙𝑖
(1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑙 ≤ 𝑚) with �̂�𝑙/𝑑𝑙, 𝑣𝑙/𝑑𝑙, and 𝜉𝑙𝑖/𝑑𝑙, respectively. If 𝑑𝑙 = 0, we define 𝑎/𝑑𝑙 = ∞ when 𝑎 ∕= 0,

and 𝑎/𝑑𝑙 = 0 when 𝑎 = 0. Omitting the hat notation for �̂�, 𝑣, and 𝜉 for simplicity, P1 becomes

P2 min
𝒘,𝒗,𝝃,𝒅
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+ 𝐶

𝑛∑
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(𝜉𝑚+1
𝑖 ) (2)

s.t. 𝑦𝑙𝑖(𝑤
𝑇
𝑙 𝜙𝑙(𝑥

𝑙
𝑖)) ≥ 𝑑𝑙 − 𝜉𝑙𝑖, 1 ≤ 𝑙 ≤ 𝑚; 1 ≤ 𝑖 ≤ 𝑛 (3)

𝑦𝑚+1
𝑖

(𝑚+1∑
𝑙=1

(𝑤𝑙 + 𝑣𝑙)𝜙𝑙(𝑥
𝑙
𝑖)
) ≥ 1− 𝜉𝑚+1

𝑖 , 1 ≤ 𝑖 ≤ 𝑛 (4)

𝒅 ≥ 0, ∥𝒅∥𝑝𝑝 ≤ 1, 𝝃 ≥ 0 (5)

Now it is clear from P2 that the quadratic error weighted by ‘𝒅’ (see Eq. 1.d of the submitted paper) make
it easy to formulate a convex problem. Without the ‘𝒅’ in Eq. (1.d) of the submitted paper, the error terms

for auxiliary tasks in P2 become
(
𝜉𝑙𝑖
)2
/𝑑2𝑙 which is not convex. It is also important to note that analytically

eliminating ‘𝒅’ in P2 is not so simple as that in MKL (nor its p-norm variant considered by Micchelli and Pontil
(2007)) with the technique proposed by Rakotomamonjy et al. (2008), and Micchelli and Pontil (2007), because
‘𝒅’ presents in both the objective function and auxiliary task constraints of P2.

We can obtain the dual of P2 following a standard method as that used in the non-sparse MKL (Kloft et al.,
2009). However, directly solving the dual problem may create some numerical problems as discussed by Kloft
et al. (2009). Hence, we employ the cutting plane algorithm to solve P2. The dual objective will still be used
for checking the stopping condition, i.e., the relative duality gap. Fixing 𝒅, we can solve the partial Lagrangian
w.r.t. 𝒘,𝒗, and 𝝃. For brevity, we provide the semi-infinite programming formulation directly:

P3 min
𝒅,𝜌

𝜌 s.t. 𝒅 ≥ 0, ∥𝒅∥𝑝𝑝 ≤ 1,

𝑎𝑛𝑑 𝜌 ≥
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𝑑1𝒆

𝑇 , 𝑑2𝒆
𝑇 , . . . , 𝑑𝑚𝒆𝑇 , 𝒆𝑇
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𝑙=1

𝑑𝑙𝑄𝑙

)
for all 𝜶 satisifying 0 ≤ 𝜶, and 𝜶𝑚+1 ≤ 𝐶

where 𝜶 is the Lagrange multiplier vector such that 𝜶 =
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)(𝑚+1)
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)
, and for each 𝑙, 𝜶𝑙 =

(
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𝑖)
(𝑛)
(𝑖=1)

)
, and

𝑄𝑙 =
(
𝜶𝑙
)𝑇(

1
𝐶𝑙
𝐾𝑙 ∘

(
𝒚𝑙
(
𝒚𝑙
)𝑇)

+ 𝑰

)
𝜶𝑙 + 𝐶𝑙

(
𝜶𝑚+1

)𝑇(
𝐾𝑙 ∘

(
𝒚𝑚+1

(
𝒚𝑚+1
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𝜶𝑚+1



+ 2
𝐶𝑙

(
𝜶𝑙
)𝑇(

𝐾𝑙 ∘
(
𝒚𝑙
(
𝒚𝑚+1

)𝑇))
𝜶𝑚+1, where 𝐶𝑙 = 1/𝐶𝑙 + 1, for 1 ≤ 𝑙 ≤ 𝑚.

When 𝑙 = 𝑚+ 1,

𝑄𝑚+1 =
(
𝜶𝑚+1

)𝑇(
𝐾𝑚+1 ∘

(
𝒚𝑚+1

(
𝒚𝑚+1

)𝑇))
𝜶𝑚+1, where “∘” denotes the element-wise product between two

matrices.

P3 can be solved by the cutting plane algorithm with a standard QP (quadratic programming) to find its most
violated constraint. For the restricted master problem (Sonnenburg et al., 2006) of this algorithm, we use CVX1

directly, rather than solve an approximate problem (Kloft et al., 2009). Based on Slater’s condition, we can use
the relative duality gap as a stopping criterion and we set a threshold of 10−2 in our experiment.

2 Derivation for the Dual of P2

The dual of P2 is used in checking the stopping condition. Suppose the Lagrangian multipliers for (3) and (4)

in P2 are
((

𝛼𝑙
𝑖

)(𝑚+1,𝑛)

(𝑙,𝑖)=(1,1)

)
. Multipliers for the three terms in (5) are

(
(𝛾𝑙)

𝑚+1
𝑙=1

)
, (1/𝑝)𝛽, and

((
𝜂𝑙𝑖
)(𝑚+1,𝑛)

(𝑙,𝑖)=(1,1)

)
respectively.

Let’s define 𝐷 = {𝑎/𝑏 : 𝑎 > 𝑏, 𝑎 is a positive even number, and 𝑏 is a positive odd number.}

Proposition 1 If 𝑝 ∈ 𝐷, the Wolfe dual of P2 is the following:

D1 max
𝜶

𝒆𝑇𝜶𝑚+1 −
(

𝑚+1∑
𝑙=1

(
𝑄′

𝑙

) 𝑝
𝑝−1

) 𝑝−1
𝑝

(6)

s.t. 0 ≤ 𝜶, and 𝜶𝑚+1 ≤ 𝐶 (7)

for 1 ≤ 𝑙 ≤ 𝑚, we let

𝑄′
𝑙 = max

(1
2
𝑄𝑙 − 𝒆𝑇𝜶𝑙, 0

)
(8)
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(
𝜶𝑙
)𝑇( 1

𝐶𝑙
𝐾𝑙 ∘

(
𝒚𝑙
(
𝒚𝑙
)𝑇)

+ 𝑰

)
𝜶𝑙

+ 𝐶𝑙

(
𝜶𝑚+1

)𝑇(
𝐾𝑙 ∘

(
𝒚𝑚+1

(
𝒚𝑚+1

)𝑇))
𝜶𝑚+1

+
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(
𝜶𝑙
)𝑇(

𝐾𝑙 ∘
(
𝒚𝑙
(
𝒚𝑚+1

)𝑇))
𝜶𝑚+1 (9)

where 𝐶𝑙 = 1/𝐶𝑙 + 1 and “∘” represents the element-wise product between two matrices. When 𝑙 = 𝑚 + 1,
𝑄′

𝑚+1 = (1/2)𝑄𝑚+1 where

𝑄𝑚+1 =
(
𝜶𝑚+1

)𝑇(
𝐾𝑚+1 ∘

(
𝒚𝑚+1

(
𝒚𝑚+1

)𝑇))
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1Available at: http://stanford.edu/˜boyd/cvx



Proof. Taking derivative w.r.t. to the Lagrangian ℒ(𝜶,𝜸, 𝛽,𝜼) of P2 we have

∂ℒ
∂𝑤𝑙

= 𝐶𝑙
𝑤𝑇

𝑙

𝑑𝑙
−

𝑛∑
𝑖=1

𝛼𝑙
𝑖𝑦

𝑙
𝑖𝜙𝑙(𝑥

𝑙
𝑖)−

𝑛∑
𝑖=1

𝛼𝑚+1
𝑖 𝑦𝑚+1

𝑖 𝜙𝑙(𝑥
𝑙
𝑖), 1 ≤ 𝑙 ≤ 𝑚 (10)

∂ℒ
∂𝑣𝑙

=
𝑣𝑇𝑙
𝑑𝑙

−
𝑛∑

𝑖=1

𝛼𝑚+1
𝑖 𝑦𝑚+1

𝑖 𝜙𝑙(𝑥
𝑙
𝑖), 1 ≤ 𝑙 ≤ 𝑚+ 1 (11)

∂ℒ
∂𝜉𝑙𝑖

=
𝜉𝑙𝑖
𝑑𝑙

− 𝛼𝑙
𝑖 − 𝜂𝑙𝑖, 1 ≤ 𝑙 ≤ 𝑚; 1 ≤ 𝑖 ≤ 𝑛 (12)

∂ℒ
∂𝜉𝑚+1

𝑖

= 𝐶 − 𝛼𝑚+1
𝑖 − 𝜂𝑚+1

𝑖 , 1 ≤ 𝑖 ≤ 𝑛 (13)

∂ℒ
∂𝑑𝑙

= −𝐶𝑙

2

∥𝑤𝑙∥2
𝑑2𝑙

− ∥𝑣𝑙∥2
𝑑2𝑙

− 1

2

𝑛∑
𝑖=1

(𝜉𝑙𝑖)
2

𝑑2𝑙
+ 𝒆𝑇𝜶𝑙 + 𝛽𝑑𝑝−1

𝑙 − 𝛾𝑙, 1 ≤ 𝑙 ≤ 𝑚 (14)

∂ℒ
∂𝑑𝑚+1

= −1

2

∥𝑣𝑚+1∥2
𝑑2𝑚+1

+ 𝛽𝑑𝑝−1
𝑚+1 − 𝛾𝑚+1, (15)

Setting all these to zero, and plugging all back into the Lagrangian, we have

ℒ(𝜶,𝜸, 𝛽,𝜼) =𝒆𝑇𝜶𝑚+1 − 1

𝑝
𝛽 − 𝑝− 1

𝑝
𝛽

−1
𝑝−1

(
𝑚+1∑
𝑙=1

(
𝐺𝑙

) 𝑝
𝑝−1

)
(16)

where for 1 ≤ 𝑙 ≤ 𝑚

𝐺𝑙 = 𝑄′′
𝑙 + 𝛾𝑙 + 𝜼𝑇

𝑙 𝜶
𝑙 +

1

2
𝜼𝑇
𝑙 𝜼𝑙 (17)

and

𝐺𝑚+1 = 𝑄′′
𝑚+1 + 𝛾𝑚+1 (18)

where 𝑄′′
𝑙 = 1

2𝑄𝑙 − 𝒆𝑇𝜶𝑙, 1 ≤ 𝑙 ≤ 𝑚 and 𝑄′′
𝑚+1 = 𝑄′

𝑚+1.

We have 𝑝 ∈ 𝐷 and this ensures the following: when solving for 𝑑𝑙 from Eq.(14) after replacing ∥𝑤𝑙∥2/𝑑2𝑙 , ∥𝑣𝑙∥2/𝑑2𝑙
and (𝜉𝑙𝑖)

2/𝑑2𝑙 by Eq.(11), (12), and (13), we always obtain a real solution for 𝑑𝑙. Also, since 𝑝 ∈ 𝐷,
(
𝐺𝑙

) 𝑝
𝑝−1

is always a non-negative value. Thus, to maximize ℒ(𝜶,𝜸, 𝛽,𝜼): (a). if 𝑄′′
𝑙 ≥ 0, then 𝛾𝑙 and 𝜼𝑙 = 0; (b). if

𝑄′′
𝑙 ≥ 0, then 𝛾𝑙 = −𝑄′′

𝑙 , and still 𝜼𝑙 = 0. Hence, to maximize Eq.(16), we can eliminate 𝜸 and 𝜼, and replace
all the 𝑄′′

𝑙 with 𝑄′. Further, following Kloft et al. (2009), let’s take derivative of (16) w.r.t 𝛽 and ignoring that
it is non-negative. Now, at the maximum of the Lagrangian,

𝛽 =

(
𝑚+1∑
𝑙=1

(
𝑄′

𝑙

) 𝑝
𝑝−1

) 𝑝−1
𝑝

(19)

and 𝛽 here is always non-negative. This concludes the proof.
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