
A Complete Proof of Theorem 1

1 Statement of Theorem 1

Let’s recall some definitions and Theorem 1 from the submission.
𝐶𝑚𝑖𝑛 := min{𝐶1, 𝐶2, . . . , 𝐶𝑚}.
𝒞(𝒦+) := min

(
𝑚 + 1, ∥((𝜆𝑙)

𝑚+1
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)
, where 𝜆𝑙, 1 ≤ 𝑙 ≤ 𝑚 + 1, is the maximum eigenvalue of 𝐾𝑙. When 𝑝 > 1,

1/𝑝+ 1/𝑞 = 1. When 𝑝 = 1 we define 𝑞 = ∞.
𝐸1 := 𝐵/(2𝐶𝑚𝑖𝑛) +𝑚

(
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For any 𝐸, 𝑐 > 0, 𝐸′(𝐸, 𝑐) := 𝐸 +
(
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.

Theorem 1 Fix 𝛾 > 0, and 𝐶𝑙 > 0, 1 ≤ 𝑙 ≤ 𝑚. Let 𝑋 be a training set of 𝑛 i.i.d. data drawn from a distribution
𝒫, and 𝑈 be a landmark set of size 𝑛, for any ℎ ∈ ℋ1(𝐵,𝑋,𝑪𝒍) with 𝐵 > 0:

(i) With probability at least 1− 𝛿 over a random draw of 𝑋, we have
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(ii) With probability at least 1− 𝛿 over a random draw of 𝑋, we have

Pr
𝒫

[
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are the so-called slack variables.

2 A Complete Proof of Theorem 1(i)

Here we present the complete of Theorem 1(i). The true risk in this proof always refers to the true risk on the
main task. The goal here is to follow approaches proposed by Shivaswamy and Jebara (2010) and Lanckriet et
al. (2004) to derive a bound on the true risk that can guide the development of a practical algorithm. We want
to understand how the parameter 𝐵 in ℋ1(𝐵,𝑋,𝑪𝒍) influences the true risk. The obtained bound may not be
the tightest possible but it is informative, i.e., the complexity term in the bound will vanish when the number
of training data goes to infinite.

The proof of Theorem 1(i) is consisted of five steps. The whole strategy is to relate our problem to the problem
considered by by Shivaswamy and Jebara (2010) (specifically, the error bound analysis on the function class of∑−SVM, i.e. Definition 6 by Shivaswamy and Jebara (2010)) and then we can use the technique of landmark
set introduced by Shivaswamy and Jebara (2010) to overcome the difficulty of data-dependent regularization.

In this proof, Theorem 2, Theorem 3, Theorem 4, and Theorem 5 are existing results, or are trivial adaptations
of existing results to fit our settings. These four theorems are not new contributions of this proof.

Recall that the definition of ℋ1 in the submitted paper is: for any positive 𝐵, 𝐶𝑙, 1 ≤ 𝑙 ≤ 𝑚, and a training set



𝑋 of 𝑛 i.i.d. data, (NOTE: for notation convenience, we switch the symbols 𝑣𝑚+1 and 𝑤𝑚+1 in the original ℋ1.)

ℋ1(𝐵,𝑋,𝑪𝒍) :=
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We first relax ℋ1 to a more convenient form for the purpose of error bound analysis. Let’s define ℋ1′ as: for
any positive 𝐵, 𝐶𝑙, 1 ≤ 𝑙 ≤ 𝑚, and a training set 𝑋 of 𝑛 i.i.d. data

ℋ1′(𝐵,𝑋,𝑪𝒍) :=
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𝑤𝑙, 𝑣𝑙 ∈ 𝒳𝑙, 1 ≤ 𝑙 ≤ 𝑚+ 1; 𝑤𝑚+1 = 0,
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We can further relax ℋ1′ by eliminating the variable 𝑑𝑙’s appearing in (2.c) and (2.d), and converting these
two constraints to the form of the hypothesis class considered by Shivaswamy and Jebara (2010) (Definition 6
(Shivaswamy and Jebara, 2010)). Let 𝐷 := 𝐷 := 1/21, �̂�𝑙 := 𝑑𝑙𝑤𝑙. In Step 1 of our proof, we will relax ℋ1′ to
ℋ2 which is defined as: for any positive 𝐵, 𝐸, and a training set 𝑋 of 𝑛 i.i.d. data,

ℋ2(𝐵,𝐸,𝑋) :=

{(
𝑥𝑙
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�̂�𝑙, 𝑣𝑙 ∈ 𝒳𝑙, 1 ≤ 𝑙 ≤ 𝑚+ 1; �̂�𝑚+1 = 0,

(3.𝑎) ∥𝒅∥𝑝𝑝 ≤ 1, 𝒅 ≥ 0;
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Step 1: Associating ℋ1 with ℋ2.

Firstly, the relation between ℋ1 and ℋ1′ can be obviously stated as:

Lemma 1 If 𝐵 > 0, 𝐶𝑙 > 0, 1 ≤ 𝑙 ≤ 𝑚, and 𝑋 is a random draw of 𝑛 i.i.d. training data, then ℋ1(𝐵,𝑋,𝑪𝒍) ⊆
ℋ1′(𝐵,𝑋,𝑪𝒍)

Proof. For any (𝒅,𝒘, 𝒗) ∈ ℋ1(𝐵,𝑋,𝑪𝒍), (1.a) implies (2.a). The constraint for (1.b),(1.c), and (1.d) implies

(2.b), (2.c), and (2.d). Thus, (𝒅,𝒘, 𝒗) ∈ ℋ1′(𝐵,𝑋,𝑪𝒍).

1In the paper by Shivaswamy and Jebara (2010), 𝐷 := 1−𝐷 and 0 < 𝐷 < 1, which is more general. In our model, we

fix 𝐷 and 𝐷 to be 1/2.



In the following, we show that the relation between ℋ1′ and ℋ2 is

Lemma 2 If 𝐵 > 0, 𝐶𝑙 > 0, 1 ≤ 𝑙 ≤ 𝑚, and 𝑋 is a random draw of 𝑛 training data, then ℋ1′(𝐵,𝑋,𝑪𝒍) ⊆
ℋ2(𝐵,𝐸1, 𝑋)

Before proving Lemma 2, we need the following

Lemma 3 Given fixed positive 𝐵, 𝐶𝑙 with 1 ≤ 𝑙 ≤ 𝑚 and an i.i.d. training sample 𝑋 of size 𝑛, for any
(𝒅,𝒘, 𝒗) ∈ ℋ1′ , we have
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𝑖 , . . . ,
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𝑑𝑙
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𝑛𝜆𝑙 (by (2.c) and sup
∥𝑧∥2≤1

𝑧𝑇𝐾𝑙𝑧 = 𝜆𝑙,when 𝐾𝑙 is s.p.d..)

≤
√
2𝐵𝑛∥𝒅∥𝑝∥(𝜆𝑙)𝑚𝑙=1∥𝑞/𝐶𝑚𝑖𝑛 (by Hölder′s inequality)

≤
√
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≤ 𝑛𝑚1/(2𝑞)
√
2𝐵/𝐶𝑚𝑖𝑛 (by 𝜆𝑙 ≤ 𝑇𝑟(𝐾𝑙) = 𝑛.)

We are now ready to prove Lemma 2.

Proof. (For Lemma 2.) Consider any (𝒅,𝒘, 𝒗) ∈ ℋ1′(𝐵,𝑋,𝑪𝒍). It suffices to verify that (𝒅, �̂�, 𝒗) satisfies (3.c)
when 𝐸 = 𝐸1.

Since 0 ≤ 𝑑𝑙 ≤ 1, 𝐶𝑙 > 0, �̂�𝑙 = 𝑑𝑙𝑤𝑙, and 𝑑𝑙 = 0 implies �̂�𝑙 = 0, we have
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(Recall that 𝐷 = 1/2.)

By Lemma 3, we have
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Hence, (2.d) implies that

𝐷

2𝑛
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( 𝑚∑
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√
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)
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(Recall that 𝐷 = 1/2.)

(5) and (6) together imply (3.c). Therefore, (𝒅, �̂�, 𝒗) ∈ ℋ2(𝐵,𝐸1, 𝑋).

We can see that (3.c) has the same form as the hypothesis class considered by Shivaswamy and Jebara (2010)
(i.e.,

∑−SVM) because we can view the classifier in (3.c) as a vector concatenating �̂�1, �̂�2, . . . , �̂�𝑚 and each
datum as a vector concatenating 𝑥1, 𝑥2, . . . , 𝑥𝑚. Hence, we can use the results from Shivaswamy and Jebara
(2010). Here we fix 𝐷 and 𝐷 to be 1/2. The definition of 𝐷 and 𝐷 by Shivaswamy and Jebara (2010) is more
general than the definition here. The reason of using 𝐷 and 𝐷 here instead of just using the values 1/2 is to
explicitly show the similarity between (3.c) and the hypothesis class of

∑−SVM (Shivaswamy and Jebara 2010).

Step 2: Introducing the landmark set.

In ℋ2, (3.c) is dependent on the training data and this creates a difficulty to derive a bound on the true risk by
the empirical Rademacher complexity. Shivaswamy and Jebara (2010) developed a method by using the so-called
landmark set to overcome this difficulty. For our specific problem, the key idea is to eliminate the dependence of
(3.c) on the training data by replacing the training data appearing in (3.c) with the so-called landmark variables,
which are i.i.d. variables drawn from the same distribution 𝒫 as the training data. After the introduction of the
landmark variables, we can obtain a hypothesis class independent of the training data, which can be considered
as fixed before observing the training data, and the usual method to derive error bounds on the true risk using
the empirical Rademacher complexity can be applied.

Let’s use 𝑈𝑖 =
((

𝑢𝑙
𝑖

)𝑚+1

𝑙=1
,
(
𝑦𝑙𝑖
)𝑚+1

𝑙=1

)
, 1 ≤ 𝑖 ≤ 𝑛 to denote the 𝑖-th landmark variable corresponding to 𝑋𝑖 =((

𝑥𝑙
𝑖

)𝑚+1

𝑙=1
,
(
𝑦𝑙𝑖
)𝑚+1

𝑙=1

)
, 1 ≤ 𝑖 ≤ 𝑛, which is the 𝑖-th training data. Each of the 𝑛 landmark variables is drawn

i.i.d. from the distribution 𝒫, which is the same as the training set. 𝑈 denotes a set of landmark variables, i.e.,
the landmark set, and 𝑋 represents the training set. To replace the training data in (3.c) with the landmark



variables, we define ℋ3 as: for any positive 𝐵, 𝐸, and a landmark set 𝑈 of 𝑛 i.i.d. data

ℋ3(𝐵,𝐸,𝑈) =

{(
𝑥𝑙
)𝑚+1

𝑙=1
→

𝑚+1∑
𝑙=1

(
�̂�𝑙 + 𝑑𝑙𝑣𝑙

)𝑇
𝑥𝑙
∣∣∣ (7)

�̂�𝑙, 𝑣𝑙 ∈ 𝒳𝑙, 1 ≤ 𝑙 ≤ 𝑚+ 1; �̂�𝑚+1 = 0,

(7.𝑎) ∥𝒅∥𝑝𝑝 ≤ 1, 𝒅 ≥ 0;

(7.𝑏)
1

2

𝑚+1∑
𝑙=1

𝑑𝑙∥𝑣𝑙∥2 ≤ 𝐵;

(7.𝑐)
𝐷

2

𝑚∑
𝑙=1

∥�̂�𝑙∥2 + 𝐷

2𝑛

𝑛∑
𝑖=1

( 𝑚∑
𝑙=1

�̂�𝑇
𝑙 𝑢

𝑙
𝑖

)2 ≤ 𝐸

}

ℋ3 is completely independent of the training data 𝑋 and therefore it can be considered as fixed before observing
the training data, and standard arguments to derive true risk bounds based on the Rademacher complexity (or
its empirical version) can be applied to ℋ3.

Step 3: Obtaining a true risk bound for ℋ3.

Let ℛ̂𝑛(ℋ) denotes the empirical Rademacher complexity (Bartlett and Mendelson, 2002) of a function class ℋ.
We restate a previous result stated by Bartlett and Mendelson (2002) and Shivaswamy and Jebara (2010), and
we adapt the theorem to our setting in the following way:

Theorem 2 [(Bartlett and Mendelson, 2002) and (Shivaswamy and Jebara, 2010)] Fix 𝛾 > 0. Let ℱ
be the class of functions from 𝒳 ×{±1} → ℝ given by 𝑓

(
(𝑥𝑙)𝑚+1

𝑙=1 , 𝑦𝑚+1
)
= −𝑦𝑚+1ℎ

(
(𝑥𝑙)𝑚+1

𝑙=1

)
for any ℎ ∈ ℋ. Let

𝑋𝑖 =
((

𝑥𝑙
𝑖

)𝑚+1

𝑙=1
,
(
𝑦𝑙𝑖
)𝑚+1

𝑙=1

)
, 1 ≤ 𝑖 ≤ 𝑛, be drawn i.i.d. from a probability distribution 𝒫. Then, with probability

at least 1− 𝛿 over the samples of size 𝑛, the following bound holds:

Pr
𝒫

[
𝑦𝑚+1 ∕= sign

(
ℎ
(
(𝑥𝑙)𝑚+1

𝑙=1

))] ≤ 1

𝑛𝛾

𝑛∑
𝑖=1

𝜉𝑚+1
𝑖 +

2

𝛾
ℛ̂𝑛(ℱ) + 3

√
ln(2/𝛿)

2𝑛
(8)

where 𝜉𝑚+1
𝑖 = max

(
0, 𝛾 − 𝑦𝑚+1

𝑖 ℎ
(
(𝑥𝑙

𝑖)
𝑚+1
𝑙=1

))
are the so-called slack variables.

Notice that ℛ̂𝑛(ℱ) = ℛ̂𝑛(ℋ) for 𝑦𝑚+1 ∈ {±1}.
By Theorem 2, to obtain a bound on the true risk for any function from ℋ3, we just need to get a bound on
ℛ̂𝑛(ℋ3). To bound ℛ̂𝑛(ℋ3), we can use Theorem 11 and Theorem 15(𝑖) proposed in the paper by Shivaswamy
and Jebara (2010). We first restate these two results by adapting them to our setting. Before introducing these
two theorems by Shivaswamy and Jebara (2010), we need some definitions:

𝒢𝑈
𝐸,𝐷

:=

{(
𝑥𝑙
)𝑚+1

𝑙=1
→

𝑚∑
𝑙=1

�̂�𝑇
𝑙 𝑥

𝑙
∣∣∣�̂�𝑙 ∈ 𝒳𝑙, 1 ≤ 𝑙 ≤ 𝑚; (9)

(9.𝑎)
𝐷

2

𝑚∑
𝑙=1

∥�̂�𝑙∥2 + 𝐷

2𝑛

𝑛∑
𝑖=1

( 𝑚∑
𝑙=1

�̂�𝑇
𝑙 𝑢

𝑙
𝑖

)2 ≤ 𝐸

}

We also define a matrix 𝐾 ′ with its (𝑖, 𝑗) element 𝐾 ′(𝑖, 𝑗) := ⟨((𝑥𝑙
𝑖)

𝑚
𝑙=1

)
, (𝑥𝑙

𝑗)
𝑚
𝑙=1

)⟩. We define 𝑅 as an upper

bound on the norm of
(
(𝑥𝑙

𝑖)
𝑚
𝑙=1

)
. The superscripts here are 𝑚 and this is because in the definition of 𝒢𝑈

𝐸,𝐷
(Eq.

9), 𝑥𝑚+1 does not have any effect.

Let’s restate Theorem 11 in the paper of Shivaswamy and Jebara (2010) in our setting:

Theorem 3 [Shivaswamy and Jebara, 2010] ℛ̂𝑛(𝒢𝑈
𝐸,𝐷

) ≤ 𝑇1(𝑈,𝑋), where for any training set ℬ and

landmark set 𝒜,

𝑇1(𝒜,ℬ) := 2
√

2𝐸
∣ℬ∣

(∑
(𝑥𝑙)𝑚+1

𝑙=1 ∈ℬ
(
(𝑥𝑙)𝑚𝑙=1

)𝑇(
𝐷𝑰 + 𝐷

∣𝒜∣
∑

(𝑢𝑙)𝑚+1
𝑙=1 ∈𝒜

(
(𝑢𝑙)𝑚𝑙=1

)(
(𝑢𝑙)𝑚𝑙=1

)𝑇)−1(
(𝑥𝑙)𝑚𝑙=1

)) 1
2



and Theorem 15(𝑖) in their paper:

Theorem 4 [Shivaswamy and Jebara, 2010] With probability at least 1− 𝛿,

𝑇1(𝑈, 𝑆) ≤ 𝑬𝑈 [𝑇1(𝑈, 𝑆)] +
2𝑅4

√
ln(1/𝛿)𝐸

𝐷
√
𝑛
√
𝑡𝑟(𝐾 ′)

(10)

Recall that we assume that ⟨𝑥, 𝑥⟩ = 1, for any 𝑥 ∈ 𝒳𝑙 and for all 1 ≤ 𝑙 ≤ 𝑚 + 1. Thus, 𝑡𝑟(𝐾 ′) = 𝑚𝑛 and
𝑅4 = 𝑚2.

Before bounding ℛ̂𝑛(ℋ3), we need one more lemma as follows: Let supℋ represent the supremum over all
classifiers from ℋ.

Lemma 4 Given training data 𝑋, 𝑬𝝈

[
supℋ3

∣∣∣∣∣∑𝑛
𝑖 𝜎𝑖

∑𝑚+1
𝑙 𝑑𝑙𝑣

𝑇
𝑙 𝑥

𝑙
𝑖

∣∣∣∣∣
]

≤ √
2𝐵𝑛𝒞(𝒦+), where 𝝈 is the

Rademacher random variable.

Proof. We can bound the LHS (left hand side) following the proof of Lemma 3. We just need to modify the
proof of Lemma 3 in the following way: (a). every 𝐶𝑙 equals 1; (b). replacing 𝑚 by 𝑚 + 1 and 𝑤 by 𝑣; (c).
𝑦𝑙𝑖 = 𝜎𝑖, and 𝒚𝑙 = (𝜎𝑖)

𝑛
𝑖=1 = 𝝈. Thus, inequality (4) becomes

∣∣∣∣∣
𝑛∑
𝑖

𝜎𝑖

𝑚+1∑
𝑙

𝑑𝑙𝑣
𝑇
𝑙 𝑥

𝑙
𝑖

∣∣∣∣∣ ≤
√

2𝐵𝑛∥(𝜆𝑙)
𝑚+1
𝑙=1 ∥𝑞 (11)

We can also bound the LHS following the method proposed by Lanckriet et al. (2004). We still use the proof
of Lemma 3 as above until the inequality (*) in the proof of Lemma 3. Then, we obtain another bound for the
LHS by

𝑬𝝈

[
sup
ℋ3

∣∣∣∣∣
𝑛∑
𝑖

𝜎𝑖

𝑚+1∑
𝑙

𝑑𝑙𝑣
𝑇
𝑙 𝑥

𝑙
𝑖

∣∣∣∣∣
]

≤
√
2𝐵𝑬𝝈

[
sup
ℋ3

√√√⎷𝑚+1∑
𝑙=1

𝑑𝑙𝝈𝑇𝑲𝑙𝝈

]
(by inequality (∗) in the proof of Lemma 3)

≤
√
2𝐵𝑬𝝈

[
sup
ℋ3

√√√⎷𝑚+1∑
𝑙=1

𝝈𝑇𝑲𝑙𝝈

]
=

√
2𝐵𝑬𝝈

[√√√⎷𝑚+1∑
𝑙=1

𝝈𝑇𝑲𝑙𝝈

]

≤
√
2𝐵

(
𝑚+1∑
𝑙=1

𝑬𝝈

[
𝝈𝑇𝑲𝑙𝝈

])1/2

=
√
2𝐵

(
𝑚+1∑
𝑙=1

𝑬𝝈

[ 𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝜎𝑖𝜎𝑗𝐾𝑙(𝑖, 𝑗)
])1/2

=
√
2𝐵

(
𝑚+1∑
𝑙=1

𝑬𝝈

[ 𝑛∑
𝑖=1

𝜎2
𝑖𝐾𝑙(𝑖, 𝑖)

])1/2

=
√
2𝐵(𝑚+ 1)𝑛 (recall that 𝐾𝑙(𝑖, 𝑖) = 1) (12)

Combining inequalities (11) and (12) yields the bound stated in the lemma.

We are now ready to derive a bound for ℛ̂𝑛(ℋ3). With probability at least 1− 𝛿, for any positive 𝐸 and 𝐵, we



have

ℛ̂𝑛(ℋ3(𝐵,𝐸,𝑈)) =𝑬𝝈

[
sup
ℋ3

∣∣∣∣∣ 2𝑛
𝑛∑
𝑖

𝜎𝑖

𝑚+1∑
𝑙=1

(
�̂�𝑙 + 𝑑𝑙𝑣𝑙

)𝑇
𝑥𝑙
𝑖

∣∣∣∣∣
]

≤ 2

𝑛
𝑬𝝈

[
sup
ℋ3

∣∣∣∣∣
𝑛∑
𝑖

𝜎𝑖

𝑚∑
𝑙

�̂�𝑇
𝑙 𝑥

𝑙
𝑖

∣∣∣∣∣
]

+
2

𝑛
𝑬𝝈

[
sup
ℋ3

∣∣∣∣∣
𝑛∑
𝑖

𝜎𝑖

𝑚+1∑
𝑙

𝑑𝑙𝑣
𝑇
𝑙 𝑥

𝑙
𝑖

∣∣∣∣∣
]

≤
(
𝑬𝑈 [𝑇1(𝑈,𝑋)] +

2𝑚3/2
√
ln(1/𝛿)𝐸

𝐷𝑛

)
(by Theorem 2 and Theorem 3)

+

√
2𝐵𝒞(𝒦+)√

𝑛
(by Lemma 4)

≤
(
2
√
2𝐸

𝑛
𝑬𝑈 [𝑇 (𝑈,𝑋)] +

2𝑚3/2
√
ln(1/𝛿)𝐸

𝐷𝑛

)
+

√
2𝐵𝒞(𝒦+)√

𝑛
(13)

The last inequality comes from the relation between the definitions of 𝑇 (𝑈,𝑋) in Theorem 1(i) and 𝑇1(𝑈,𝑋) in
Theorem 3. Plugging inequality (13) into Theorem 2, we obtain a bound on the true risk when learning with
the hypothesis class ℋ3. But, note that ℋ3 is defined on the landmark variables. Our original problem is not
learning with ℋ3, and we will eliminate the landmark variables in Step 4.

Step 4: Associating ℋ2 with ℋ3.

Let

𝐸′
1(𝐸, 𝑐) := 𝐸 +

(
4𝑅

√
2𝐸

𝑛𝐷
+ 6

√
ln(𝑐/𝛿)

2𝑛

)(𝐸
2
+

𝐷𝐸𝑅2

2𝐷

)
(14)

Recall that 𝑅2 = 𝑚 and 𝐷 = 1/2. So 𝐸′
1(𝐸, 𝑐) = 𝐸′(𝐸, 𝑐). Again, the reason we use 𝐸′

1 here is to explicitly
show the connection to the function class considered by Shivaswamy and Jebara (2010).

Let

𝒢𝑋
𝐸,𝐷

:=

{(
𝑥𝑙
)𝑚+1

𝑙=1
→

𝑚∑
𝑙=1

�̂�𝑇
𝑙 𝑥

𝑙
∣∣∣�̂�𝑙 ∈ 𝒳𝑙, 1 ≤ 𝑙 ≤ 𝑚; (15)

(15.𝑎)
𝐷

2

𝑚∑
𝑙=1

∥�̂�𝑙∥2 + 𝐷

2𝑛

𝑛∑
𝑖=1

( 𝑚∑
𝑙=1

�̂�𝑇
𝑙 𝑥

𝑙
𝑖

)2 ≤ 𝐸

}

where 𝑋 is the training data. So, 𝒢𝑋
𝐸,𝐷

is dependent on the training data while in 𝒢𝑈
𝐸,𝐷

(see Eq. 9) the training

data is replaced by the landmark variables.

We need to restate Theorem 16 from Shivaswamy and Jebara (2010) as follows:

Theorem 5 [Shivaswamy and Jebara 2010] With probability at least 1 − 2𝛿, for any 𝐸 > 0, 𝒢𝑋
𝐸,𝐷

⊆
𝒢𝑈
𝐸′

1(𝐸,2),𝐷
.

We obtain a corollary of Theorem 5

Corollary 1 With probability at least 1− 2𝛿, ℋ2(𝐵,𝐸1, 𝑋) ⊆ ℋ3(𝐵,𝐸′(𝐸1, 2), 𝑈).

Proof. Consider any (𝒅, �̂�, 𝒗) ∈ ℋ2(𝐵,𝐸1, 𝑋). 𝒅 and 𝒗 satisfy (7.a) and (7.b). Thus, to determine whether
(𝒅, �̂�, 𝒗) ∈ ℋ3(𝐵,𝐸′(𝐸1, 2), 𝑋) holds, it is equivalent to check whether �̂� satisfies (7.c). By Theorem 5, we

know that the probability that �̂� satisfies (7.c) is at least 1− 2𝛿 and this concludes the proof.



Step 5: Obtaining the true risk bound for ℋ1. By Lemma 1, Lemma 2, and Corollary 1 we can easily
obtain the following corollary:

Corollary 2 If 𝐵 > 0, 𝐶𝑙 > 0, 1 ≤ 𝑙 ≤ 𝑚, 𝑋 is a random draw of 𝑛 i.i.d. training data from the distribution
𝒫, and 𝑈 is a landmark set of 𝑛 i.i.d. data drawn from the same distribution 𝒫, with probability at least 1− 2𝛿,
ℋ1(𝐵,𝑋,𝑪𝒍) ⊆ ℋ3(𝐵,𝐸′(𝐸1, 2), 𝑈).

By the set-inclusion result in Corollary 2, we can derive the final risk bound on the data-dependent function
class ℋ1 by the true risk bound of the data-independent function class ℋ3.

Using a union bound to combine Theorem 2, inequality (13), and Corollary 2, we finally obtain the bound
in Theorem 1(i). Notice that we replace 𝛿 with 𝛿/4 and this is because the bound in Theorem 2 holds with
probability at least 1− 𝛿, inequality (13) holds with probability at least 1− 𝛿, and the set-inclusion in Corollary
2 holds with probability at least 1− 2𝛿.

3 A Complete Proof of Theorem 1(ii)

The goal here is to bound the RHS of the bound in Theorem 1(i) with data-independent terms. To achieve this,
we need two inequalities.

Firstly, we can easily see that

𝒞(𝐾+) ≤ 𝑚+ 1 (16)

Secondly let’s bound the term 𝑬𝑈 [𝑇 (𝑈,𝑋)] in the bound of Theorem 1(i). Letting the dimension of
(
𝑥𝑙
𝑖

)𝑚
𝑙=1

be 𝑑, we have �̄�𝑇 (𝑰 + (1/𝑛)
∑𝑛

𝑖=1 �̄�𝑖�̄�
𝑇
𝑖 )

−1�̄� ≤ 𝑚�̄�, for any �̄�, �̄�𝑖 ∈ ℝ𝑑, �̄�𝑇 �̄� = 𝑚 , �̄�𝑇
𝑖 �̄�𝑖 = 𝑚, where �̄� denotes

the largest eigenvalue of the s.p.d. matrix (𝑰 + (1/𝑛)
∑𝑛

𝑖=1 �̄�𝑖�̄�
𝑇
𝑖 )

−1. Letting 𝑧 be the smallest eigenvalue of the
symmetric positive semidefinite matrix (1/𝑛)

∑𝑛
𝑖=1 �̄�𝑖�̄�

𝑇
𝑖 , we have �̄� = 1/(1 + 𝑧), and 𝑧 ≥ 0. Therefore �̄� ≤ 1.

Thus,

𝑬𝑈

[
𝑛∑

𝑖=1

(
(𝑥𝑙

𝑖)
𝑚
𝑙=1

)𝑇(1
2
𝑰 +

1

2𝑛

𝑛∑
𝑗=1

(
(𝑢𝑙

𝑗)
𝑚
𝑙=1

)(
(𝑢𝑙

𝑗)
𝑚
𝑙=1

)𝑇)−1(
(𝑥𝑙

𝑖)
𝑚
𝑙=1

)] 1
2

≤
(

𝑛∑
𝑖=1

𝑬𝑈

[(
(𝑥𝑙

𝑖)
𝑚
𝑙=1

)𝑇(1
2
𝑰 +

1

2𝑛

𝑛∑
𝑗=1

(
(𝑢𝑙

𝑗)
𝑚
𝑙=1

)(
(𝑢𝑙

𝑗)
𝑚
𝑙=1

)𝑇)−1(
(𝑥𝑙

𝑖)
𝑚
𝑙=1

)]) 1
2

(by convexity)

≤
( 𝑛∑
𝑖=1

1

2
𝑚�̄�
) 1

2 ≤
√

1

2
𝑚𝑛 (17)

Combining inequalities (16) and (17), we obtain the bound in Theorem 1(ii), which is independent of the training
data 𝑋.

We finally point out that the techniques used by Srebro and Ben-david (2006) and Cortes et al. (2010) for error
bound analysis of MKL can be applied to handle the terms (1.b) and (1.c) of ℋ1 and to improve the fourth term
in the bounds of Theorem 1(i),(ii). However, the major difficulty here is how to handle the data-dependent term
(1.d) of ℋ1. In addition, the approach by Srebro and Ben-david (2006) is based on the covering number and it
is not very convenient to incorporate that into the proof here.
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