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Section 1 contains a review of Gaussian mixture BP and particle BP, as well as a detailed explanation of our
strategy for learning edge potentials for these approaches from training data. Section 2 provides parameter settings
and experiment details for particle BP and discrete BP, in the synthetic image denoising and depth reconstruction
experiments. Section 3 contains a comparison of two different approximate feature sets: low rank approximation
of the tensor features and low rank approximation of the individual features alone. Section 4 is an experiment
on learning paper categories using citation networks. Sections 5 and 6 demonstrate the optimization objective of
locally consistent BP updates, and provide a derivation of these updates in terms of the conditional expectation.
Section 7 discusses the kernelization of Gaussian BP. Section 8 gives the error introduced by low rank approximation
of the messages.

1 Gaussian Mixture and Particle BP

We describe two competing approaches for nonparametric belief propagation: Gaussian mixture BP, originally
known as non-parametric BP (Sudderth et al., 2003), and particle BP (Ihler & McAllester, 2009). For these
algorithms, the edge potentials Ψ(xs, xt), self-potentials ψ(xt), and evidence potentials Ψ(xt, yt) must be provided
in advance by the user. Thus, we begin by describing how the edge potentials in Section 2 of the main document
may be learned from training data, but in a form applicable to these inference algorithms: we express P(xt|xs) as
a mixture of Gaussians. We then describe the inference algorithms themselves.

In learning the edge potentials, we turn to Sugiyama et al. (2010), who provide a least-squares estimate of a
conditional density in the form of a mixture of Gaussians,

P(v|u) =

b∑
i=1

αiκi(u, v) = α>κκκu,v,

where κi(u, v) is a Gaussian with diagonal covariance centred at1 (qi, ri). Given a training set {(uj , vj)}mj=1, we
obtain the coefficients

α :=

[(
Ĥ + λI

)−1

ĥ

]
+

,

where Ĥ :=
∑m

j=1

∫
V κκκuj ,vκκκ

>
uj ,vdv, ĥ :=

∑m
j=1κκκuj ,vj , λ is a regularization coefficient, and [α]+ sets all negative

entries of its argument to zero (the integral in Ĥ can easily be computed in closed form). We emphasize that the
Gaussian mixture representation takes a quite different form to the RKHS representation of the edge potentials.
Finally, to introduce evidence, we propose to use kernel ridge regression to provide a mean value of the hidden
variable xt given the observation yt, and to center a Gaussian at this value: again, the regression function is learned
nonparametrically from training data.

We now describe how these edge potentials are incorporated into Gaussian mixture BP. Assuming the incoming
messages are each a mixture of b Gaussians, the product of dt such messages will contain bdt Gaussians, which
causes an exponential blow-up in representation size and computational cost. In their original work, Sudderth
et al. address this issue using an approximation scheme. First, they subsample from the incoming mixture of
bdt Gaussians to draw b Gaussians, at a computational cost of O(dtτb

2) for each node, where τ is the number
of iterations of the associated Gibbs sampler (see their Algorithm 1). The evidence introduced via kernel ridge
regression is then incorporated, using a reweighting described by their Algorithm 2. Finally, in Algorithm 3, b

samples
{
xit
}b
i=1

are drawn from the reweighted mixture of b Gaussians, and for each of these,
{
xis
}b
i=1

are drawn

1These centres may be selected at random from the training observations. We denote the mixture kernel by κ(u, v) to distinguish
it from the RKHS kernels used earlier.
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from the conditional distribution xs|xit arising from the edge potential ψ(xs, xt) (which is itself a Gaussian mixture,

learned via the approach of Sugiyama et al.). Gaussians are placed on each of the centres
{
xis
}b
i=1

, and the process
is iterated.

In our implementation, we used the more efficient multiscale KD-tree sampling method of Ihler et al. (2003).
We converted the Matlab Mex implementation of Ihler (2003) to C++, and used GraphLab to execute sampling
in parallel with up to 16 cores. An input parameter to the sampling procedure is ε, the level of accuracy. We
performed a line search to set ε for high accuracy, but limited the execution time to be at most 1000 times slower
than KBP.

Finally, we describe the inference procedure performed by Particle BP. In this case, each node t is associated

with a set of particles
{
xit
}b
i=1

, drawn i.i.d. from a distribution Wt(xt). Incoming messages mut are expressed as

weights of the particles xit. Unlike Gaussian mixture BP, the incoming messages all share the same set of particles,
which removes the need for Parzen window smoothing. The outgoing message mts is computed by summing over the
product of these weights and the edge and evidence potentials at the particles, yielding a set of weights over samples{
xis
}b
i=1

at node s; the procedure is then iterated (see Ihler & McAllester, 2009, eq. 8). We again implement this
algorithm using edge potentials computed according to Sugiyama et al. Since an appropriate sample distribution
Wt is hard to specify in advance, a resampling procedure must be carried out at each BP iteration, to refresh the
set of samples at each node and ensure the samples cover an appropriate support (this is a common requirement
in particle filtering). Thus, each iteration of Particle BP requires a Metropolis-Hastings chain to be run for every
node, which incurs a substantial computational cost. That said, we found that in practice, the resampling could be
conducted less often without an adverse impact on performance, but resulting in major improvements in runtime,
as described in Section 2 below. See (Ihler & McAllester, 2009, Section 6) for more detail.

2 Settings for Discrete and Particle BP

2.1 Depth Reconstruction from 2-D Images

2.1.1 Discrete BP

The log-depth was discretized into 30 bins, and edge parameters were selected to achieve locally consistent Loopy
BP marginals using the technique described in Wainwright et al. (2003). Empirically, finer discretizations did not
improve resultant accuracy, but increased runtime significantly. We used the Splash scheduling of Gonzalez et al.
(2009) since it provided the lowest runtime among all tested schedulings.

2.1.2 Particle BP

The particle belief propagation implementation was particularly difficult to tune due to its excessively high runtime.
Theoretically, results comparable to the Kernel BP method were attainable. However in practice, the extremely
high cost of the resampling phase on large models meant that only a small number of particles could be maintained
if a reasonable runtime was to be achieved on our evaluation set of 274 images.

Ultimately, we decided to find a configuration which allowed us to complete the evaluation in about 2 machine-
days on an 8-core Intel Nehalem machine; allowing inference on each evaluation image to take 10 minutes of
parallel computation. For each image, we ran 100 iterations of a simple linear-sweep scheduling, using 20 particles
per message, and resampling every 10 iterations. Each resampling phase ran MCMC for a maximum of 10 steps
per particle. We also implemented acceleration tricks where low weight particles (< 1E − 7 after normalization)
were ignored during the message passing process. Empirically this decreased runtime without affecting the quality
of results.

2.2 Synthetic Image Denoising

2.2.1 Discrete BP

To simplify evaluation, we permitted a certain degree of “oracle” information, by matching the discretization levels
during inference with the color levels in the ground-truth image.

We evaluated combined gradient/IPF + BP methods here to learn the edge parameters. We found that gra-
dient/IPF performed well when there were few colors in the image, but failed to converge when the number of
colors increased into the hundreds. This is partly due to the instability of BP, as well as the large number of free
parameters in the edge potential.
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Therefore once again, edge potentials were selected using the technique described in Wainwright et al. (2003).
This performed quite well empirically, as seen in Figure 1(c) (main document).

2.2.2 Particle BP

The high runtime of the Particle Belief Propagation again made accuracy evaluation difficult. As before, we tuned
the particle BP parameters to complete inference on the evaluation set of 110 images in 2 machine days, allowing
about 25 minutes per evaluation image. We ran 100 iterations of 30 particles per message, resampling every 15
iterations. Each resampling phase ran MCMC for a maximum of 10 steps per particle.

3 Effects of Approximate Message Updates

In this section, we study how different levels of feature approximation error ε affect the speed of kernel BP and
the resulting performance. Our experimental setup was the image denoising experiment described in Section 5.1
of the main document. We note that the computational cost of our constant message update is O(`2dmax) where `
is inversely related to the approximation error ε. This is a substantial runtime improvement over naively applying
a low rank kernel matrix approximation, which only results in a linear time update with computational cost
O(`mdmax). In this experiment, we varied the feature approximation error ε over three levels, i.e. 10−1, 10−2, 10−3,
and compared both speed and denoising performance of the constant time update to the linear time update.

From Figures 1 (a) and (c), we can see that for each approximation level, the constant time update achieves
about the same denoising performance as the linear time update, while at the same time being orders of magnitude
faster (by comparing Figures 1 (b) and (d)). Despite the fact that the constant time update algorithm makes an
additional approximation to the tensor product features, its denoising performance is not affected. We hypothesize
that the degradation in performance is largely caused by representing the messages in terms of a small number of
basis functions, while the approximation to the tensor features introduces little additional degradation.

Another interesting observation from Figure 1 (d) is that the runtime of constant time kernel BP update
increases as the number of colors in the image increases. This is mainly due to the increased number of test points
as the color number increases; and also partially due to the increased rank needed for approximating the tensor
features. In Figure 2, we plot the rank needed for kernel feature approximation and tensor feature approximation
for different numbers of colors and different approximation errors ε. It can be seen that in general, as we use a
smaller approximation error, the rank increases, leading to a slight increase in runtime.

Finally, we compare with kernel belief propagation in the absence of any low rank approximation (KBP Full).
Since KBP Full is computationally expensive, we reduced the denoising problem to images of size 50× 50 to allow
KBP to finish in reasonable time. We only compared on 100 color images, again for reasons of cost. We varied
the feature approximation error for the constant time and linear time approximation over three levels, 10−1, 10−2,
10−3, and compared both speed and denoising performance of KBP Full versus the constant time and linear time
updates.

The comparisons are shown in Figure 3. We can see from Figure 3(a) that the denoising errors for constant
time and linear time approximations decrease as we decrease the approximation error ε. Although the denoising
error of KBP Full is slightly lower than constant time approximations, it is a slight increase over the linear
time approximation at ε = 10−3. One reason might be that the kernel approximation also serves as a means of
regularization when learning the conditional embedding operator. This additional regularization may have slightly
improved the generalization ability of the linear time approximation scheme. In terms of runtime (Figure 3(b)),
constant time approximation is substantially faster than linear time approximation and KBP Full. In particular,
it is nearly 100 times faster than the linear time algorithm, and 10000 times faster than KBP Full.

4 Predicting Paper Categories

In this experiment, we predict paper categories from a combination of the paper features and their citation network.
Our data were obtained by crawling 143,086 paper abstracts from the ACM digital library, and extracting the
citation networks linking these papers. Each paper was labeled with a variable number of categories, ranging from
1 to 10; there were a total of 367 distinct categories in our dataset. For simplicity, we ignored directions in the
citation network, and treated it as an undirected graph (i.e, we did not distinguish “citing” and “being cited”).
The citation network was sparse, with more than 85% of the papers having fewer than 10 links. The maximum
number of links was 450.
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Figure 1: Average denoising error and runtime of linear time kernel BP versus constant time kernel BP, using
different feature approximation errors, over 10 test images with a varying number of image colors.

Paper category prediction is a multi-label problem with a large output space. The output is very sparse: the label
vectors have only a small number of nonzero entries. In this case, the simple one-against-all approach of learning
a single predictor for each category can become prohibitively expensive, both in training and in testing. Recently,
Hsu et al. (2009) proposed to solve this problem using compressed sensing techniques: high dimensional sparse
category labels are first compressed to lower dimensional real vectors using a random projection, and regressors are
learned for these real vectors. In the testing stage, high dimensional category labels are decoded from the predicted
real vectors of the test data using orthogonal marching pursuit (OMP).

For the purposed of the present task, however, the compressed sensing approach ignores information from the
citation network: papers that share categories tend to cite each other more often. Intuitively, taking into account
category information from neighboring papers in the citation network should improve the performance of category
prediction. This intuition can be formalized using undirected graphical models: each paper i contains a category
variable yi ∈ {0, 1}367, and these variables are connected according to the citation network; each category variable
is also connected to a variable xi corresponding to the abstract of the paper. In our experiment, we used 9700
stem words for the abstracts, and xi ∈ R9700 was the tf-idf vector for paper i. The graphical model thus contains
two types of edge potential, Ψ(yi, yi) and Ψ(yi, yk), where k ∈ N (j) is the neighbor of j according to the citation
network.

It is difficult to learn this graphical model and perform inference on it, since the category variables yi have high
cardinality, making the marginalization step in BP prohibitively expensive. Inspired by the compressed sensing
approach for multilabel prediction, we first employed random projection kernels, and then used our kernel BP
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Figure 2: The rank obtained for kernel feature approximation and tensor feature approximation for different levels
of approximation error ε, for the image denoising problem.
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Figure 3: (a) Denoising error for the constant time approximate update (KBP) and linear time approximate update
(KBPLinear), over three levels of approximation error ε = {10−1, 10−2, 10−3}, versus kernel BP without low rank
approximation (Full). (b) Runtime corresponding to different approximation schemes.

algorithm. Let A ∈ Rd×367 be a random matrix containing i.i.d. Gaussian random variables of zero mean and
variance 1/d. We defined the random projection kernel for the category labels to be k(y, y′) = 〈Ay,Ay′〉 =
〈φ(y), φ(y′)〉, and used a linear kernel for the abstract variables. We ran kernel BP for 5 iterations, since further
iterations did not improve the performance. MAP assignment based on the belief was performed by finding a unit
vector φ(ŷ) = Aŷ that maximized the belief. The sparse category labels ŷ were decoded from φ(ŷ) using OMP.

To measure experimental performance, we performed 10 random splits of the papers, where in each split we
used 1/3 of the papers for training and the remaining 2/3 for testing. The random splits were controlled in such
a way that high degree nodes (with degree > 10) in the citation networks always appeared in the training set.
Such splitting reflects the data properties expected in real-world scenarios: important papers (high degree nodes
which indicate either influential papers or survey papers) are usually labeled, whereas the majority of papers may
not have a label; the automatic labeling is mainly needed for these less prominent papers. We used recall@k in
evaluating the performance of our method on the test data. We compared against the regression technique of Hsu
et al. for multilabel prediction, and a baseline prediction using the top k most frequent categories. For both our
method and the method of Hsu et al., we used a random projection matrix with d = 100.

Results are shown in Figure 4. Kernel BP performs better than multilabel prediction via compressed sensing
(i.e., the independent regression approach, which ignores graphical model structure) over a range of k values.
In particular, for the top 10 and 20 predicted categories, kernel BP achieves recall scores of 0.419 and 0.476,
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Figure 4: Comparison of kernel BP, multilabel prediction via compressed sensing (regression), and a baseline
prediction using the top k most frequent categories (mean) for ACM paper category prediction.

respectively, as opposed to 0.362 and 0.417 for independent regression.

5 Local Marginal Consistency Condition When Learning With BP

In this section, we show that fixed points of BP satisfy particular marginal consistency conditions (14) and (15)
below. As we will see, these arise from the fact that we are using a Bethe free energy approximation in fitting our
model, and the form of the fixed point equations that define the minimum of the Bethe free energy. The material
in this section draws from a number of references (for instance Yedidia et al., 2001, 2005; Wainwright & Jordan,
2008; Koller & Friedman, 2009), but is presented in a form specific to our case, since we are neither in a discrete
domain nor using exponential families.

The parameters of a pairwise Markov random field (MRF) can be learned by maximizing the log-likelihood of
the model P with respect to true underlying distribution P?. Denote the model by

P(X) :=
1

Z

∏
(s,t)∈E

Ψst(Xs, Xt)
∏
s∈V

Ψs(Xs)

where Z :=
∫
X

∏
(s,t)∈E Ψst(Xs, Xt)

∏
s∈V Ψs(Xs) is the partition function that normalizes the distribution. The

model parameters {Ψst(Xs, Xt),Ψs(Xs)} can be estimated by maximizing

L = EX∼P?(X) [logP(X)]

= EX∼P?(X)

 ∑
(s,t)∈E

log Ψst(Xs, Xt) +
∑
s∈V

log Ψs(Xs)− logZ

 . (1)

Define Ψ̃st(Xs, Xt) := log Ψst(Xs, Xt) and Ψ̃s(Xs) := log Ψs(Xs). Setting the derivatives of L with respect to{
Ψ̃st(Xs, Xt), Ψ̃s(Xs)

}
to zero, we have

∂L
∂Ψ̃s(Xs)

= P?(Xs, Xt)−
∂ logZ

∂Ψ̃st(Xs, Xt)
= 0, (2)

∂L
∂Ψ̃s(Xs)

= P?(Xs)−
∂ logZ

∂Ψ̃s(Xs)
= 0. (3)

For a general pairwise MRF on a loopy graph, computing the log-partition function, logZ, is intractable. Following
e.g. Yedidia et al. (2001, 2005) and Koller & Friedman (2009, Ch. 11), logZ may be approximated as a minimum
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of the Bethe free energy with respect to a new set of parameters {bst, bs},

F ({bst, bs}) =
∑

(s,t)∈E

∫
X

∫
X
bst(Xs, Xt) [log bst(Xs, Xt)− log Ψst(Xs, Xt)Ψs(Xs)Ψt(Xt)] dXsdXt

−
∑
s∈V

(ds − 1)

∫
X
bs(Xs) [log bs(Xs)− log Ψs(Xs)] dXs, (4)

subject to normalization and marginalization constraints,
∫
X bs(Xs)dXs = 1,

∫
X bst(Xs, Xt)dXs = bt(Xt). Let

F ? := min{bst,bs} F (we note that Bethe free energy is not convex, and hence there can be multiple local minima.
Our reasoning does not require constructing a specific local minimum, and therefore we simply write F ?). The zero
gradient conditions on the partial derivatives of L are then approximated as

∂L
∂Ψ̃s(Xs)

≈ P?(Xs, Xt)−
∂F ?

∂Ψ̃st(Xs, Xt)
= 0, (5)

∂L
∂Ψ̃s(Xs)

≈ P?(Xs)−
∂F ?

∂Ψ̃s(Xs)
= 0. (6)

Since F is a linear function of
{

Ψ̃st(Xs, Xt), Ψ̃s(Xs)
}

for every fixed {bst, bs}, Danskin’s theorem (Bertsekas, 1999,

p. 717) gives us a way to compute the partial derivatives of F ?. These are

∂F ?

∂Ψ̃st(Xs, Xt)
=
∂F ({b?st, b?s})
∂Ψ̃st(Xs, Xt)

= b?st(Xs, Xt), (7)

∂F ?

∂Ψ̃s(Xs)
=
∂F ({b?st, b?s})
∂Ψ̃s(Xs)

= b?s(Xs), (8)

where {b?st, b?s} := argmin{bst,bs} F . Therefore, according to (5) and (6), learning a pairwise MRF using the Bethe
energy variational approximation to the log partition function results in the following matching conditions,

P?(Xs, Xt) = b?st(Xs, Xt), (9)

P?(Xs) = b?s(Xs). (10)

We now introduce the notion of belief propagation as a means of finding the minima of the Bethe free energy. This
will in turn lead to local marginal consistency conditions for learning with BP. Yedidia et al. (2001) showed that
the fixed point of F (and therefore the global minimum {b?st, b?s}) must satisfy the relations

b?st(Xs, Xt) = αΨst(Xs, Xt)Ψs(Xs)Ψt(Xt)
∏

u∈Γs\t

m?
us(Xs)

∏
v∈Γt\s

m?
vt(Xt), (11)

b?s(Xs) = αΨs(Xs)
∏
u∈Γs

m?
us(Xs), (12)

where α denotes a normalization constant and {m?
ts} are the fixed point messages,

m?
ts(Xs) = α

∫
X

Ψst(Xs, Xt)Ψt(Xt)
∏

u∈Γt\s

m?
ut(Xt) dXt. (13)

Thus,

P?(Xs, Xt) = αΨst(Xs, Xt)Ψs(Xs)Ψt(Xt)
∏

u∈Γs\t

m?
us(Xs)

∏
v∈Γt\s

m?
vt(Xt), (14)

P?(Xs) = αΨs(Xs)
∏
u∈Γs

m?
us(Xs). (15)

Combining these relations and assuming that P?(Xs) and m?
ts(Xs) are strictly positive, we can also obtain the

consistent relation for the local conditionals,

P?(Xt|Xs) =
P?(Xs, Xt)

P?(Xs)
=

Ψst(Xs, Xt)Ψs(Xt)
∏

u∈Γt\sm
?
ut(Xt)

m?
ts(Xs)

. (16)
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6 BP Inference Using Learned Potentials

The inference problem in pairwise MRFs is to compute the marginals or the log partition function for the model
with learned potentials. Belief propagation is an iterative algorithm for performing approximate inference in MRFs.
BP can also be viewed as an iterative algorithm for minimizing the Bethe free energy approximation to the log
partition function. The results of this algorithm are a set of beliefs which can be used for obtaining the MAP
assignment of the corresponding variables.

The BP message update (with the learned potentials) is

mts(Xs) = α

∫
X

Ψst(Xs, Xt)Ψt(Xt)
∏

u∈Γt\s

mut(Xt) dXt, (17)

and at any iteration, the beliefs can be computed using the current messages,

Bst(Xs, Xt) = αΨst(Xs, Xt)Ψs(Xs)Ψt(Xt)
∏

u∈Γs\t

mus(Xs)
∏

v∈Γt\s

mvt(Xt), (18)

Bs(Xs) = αΨs(Xs)
∏
u∈Γs

mus(Xs). (19)

To see how the message update equation can be expressed using the true local conditional P?(Xt|Xs), we divide

both size of (17) by the fixed point message m?
ts(Xs) during BP learning stage, and introduce 1 =

∏
u∈Γt\s

m?
ut(Xt)∏

u∈Γt\s
m?

ut(Xt)
.

The message update equation in (17) can then be re-written as

mts(Xs)

m?
ts(Xs)

=

∫
X

Ψst(Xs, Xt)Ψt(Xt)
∏

u∈Γt\smut(Xt)

m?
ts(Xs)

∏
u∈Γt\s

mut(Xt)

m?
ut(Xt)

dXt. (20)

The belief at any iteration becomes

Bs(Xs) = αΨs(Xs)
∏
u∈Γs

mus(Xs) =

(∏
u∈Γs

mst(Xs)

m?
st(Xs)

)(
αΨs(Xs)

∏
u∈Γs

m?
st(Xs)

)
. (21)

We reparameterize the message as

mst(Xt)←−
mst(Xt)

m?
st(Xt)

. (22)

Since the potentials are learned via BP, we can use the relation in (16) to obtain

mts(Xs) =

∫
X
P?(Xt|Xs)

∏
u∈Γt\s

mut(Xt) dXt. (23)

Similarly, we obtain from (15) that

Bs(Xs) =

(∏
u∈Γs

mst(Xs)

)
P?(Xs). (24)

Messages from Evidence Node Given evidence xt at node Xt, the outgoing message from Xt to Xs is
mts(Xs) = αΨst(Xs, xt)Ψt(xt). Using similar reasoning to the case of an internal node, we have

mts(Xs)

m?
ts(Xs)

=
Ψst(Xs, xt)Ψt(xt)

m?
ts(Xs)

(25)

=
Ψst(Xs, xt)Ψt(xt)

∏
u∈Γt\sm

?
ut(xt)

m?
ts(Xs)

1∏
u∈Γt\sm

?
ut(xt)

(26)

= P?(xt|Xs)
1∏

u∈Γt\sm
?
ut(xt)

(27)

∝ P?(xt|Xs) (28)

where
∏

u∈Γt\sm
?
ut(xt) is constant given a fixed value Xt = xt. Reparametrizing the message mts(Xs)← mts(Xs)

m?
ts(Xs) ,

the outgoing message from the evidence node is simply the true likelihood function evaluated at xt.
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7 A Note on Kernelization of Gaussian BP

In this section, we consider the problem of defining a joint Gaussian graphical model in the feature space induced
by a kernel. We follow Bickson (2008) in our presentation of the original Gaussian BP setting. We will show that
assuming a Gaussian in an infinite feature space leads to challenges in interpretation and estimation of the model.

Consider a pairwise MRF,

P(X) =
∏
s∈V

Ψs(Xs)
∏

(s,t)∈E

Ψst(Xs, Xt). (29)

In the case of the Gaussian, the probability density function takes the form

P(X) ∝ exp
(
− 1

2 (X− µ)>A(X− µ)
)

∝ exp
(
− 1

2X
>AX− b>X

)
,

where A = C−1 is the precision matrix, and
Aµ = b.

Putting this in the form (29), the node and edge potentials are written

Ψs(Xs) , exp
(
− 1

2X
>
s AssXs + bsXs

)
(30)

and
Ψst(Xs, Xt) , exp

(
−X>s AstXt

)
. (31)

We now consider how these operations would appear in Hilbert space. In this case, we would have

Ψs(Xs) := exp
(
− 1

2 〈φ(Xs), Assφ(Xs)〉F + 〈bs, φ(Xs)〉F
)
,

and
Ψst(Xs, Xt) := exp (−〈φ(Xs), Astφ(Xt)〉F ) .

We call the Ass and Ast precision operators, by analogy with the finite dimensional case. At this point, we already
encounter a potential difficulty in kernelizing Gaussian BP: how do we learn the operators Ass, bs and Ast from
data? We could in principle define a covariance operator C with (s, t)th block the pairwise covariance operator
Cst, but Ast would then be the (s, t)th block of C−1, which is difficult to compute. As we shall see below, however,
these operators appear in the BP message updates.

Next, we describe a message passing procedure for the Gaussian potentials in (30) and (31). The message from
t to s is written

mts(Xs) =

∫
X

Ψst(Xs, Xt)Ψt(Xt)
∏

u∈Γt\s

mut(Xt)︸ ︷︷ ︸
(a)

dXt.

We first consider term (a) in the above. We will assume, with justification to follow, that mut(Xt) takes the form

mut(Xt) ∝ exp
(
− 1

2X
>
t PutXt + µ>utXt

)
,

where the terms Put and µut are defined by recursions specified below (we retain linear algebraic notation for
simplicity). It follows that Ψt(Xt)

∏
u∈Γt\smut(Xt) is proportional to a Gaussian,

Ψt(Xt)
∏

u∈Γt\s

mut(Xt) ∝ exp
(
− 1

2X
>
t Pt\sXt + µ>t\sXt

)
,

where we define the intermediate operators

µt\s := µt +
∑

u∈Γt\s

µut

and
Pt\s := Ass +

∑
u∈Γt\s

Put .
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To compute the message mts(Xs), we integrate

mts(Xs) =

∫
X

Ψst(Xs, Xt)Ψt(Xt)
∏

u∈Γt\s

mut(Xt) dXt

=

∫
X

exp (−XtAtsXs) exp
(
− 1

2X
>
t Pt\sXt + µ>t\sXt

)
dXt (32)

Completing the square, we get the parameters of the message mts in the standard form,

Pts = −A>tsP−1
t\sAts (33)

µts = −µ>t\sP
−1
t\sAts. (34)

There are two main difficulties in implementing the above procedure in feature space. First, it is not clear
how to learn the precision operators from the data. Second, we need to invert these precision operators. Thus,
it remains a challenging open question to define Gaussian BP in feature space. The feature space Gaussian BP
updates may be contrasted with the kernel BP updates we propose in the main text. The latter have regularized
closed form empirical estimates, and they are very different from the Gaussian BP form in (32) and parameter
updates in (33) and (34).

8 Message Error Incurred by the Additional Feature Approximation

We bound the difference between the estimated conditional embedding operator ÛX⊗t |Xs
and its counterpart ŨX⊗t |Xs

after further feature approximation. Assume ‖φ(x)‖F ≤ 1, and define the tensor feature ξ(x) :=
⊗

u\s φ(x). Denote

by ξ̃(x) and φ̃(x) the respective approximations of ξ(x) and φ. Furthermore, let the approximation error after the

incomplete QR decomposition be ε = max
{

maxX

∥∥∥φ(x)− φ̃(x)
∥∥∥
F
, maxX

∥∥∥ξ(X)− ξ̃(x)
∥∥∥
H

}
. It follows that∥∥∥ÛX⊗t |Xs

− ŨX⊗t |Xs

∥∥∥
HS

(35)

≤
∥∥∥ĈX⊗t Xs

(ĈXsXs + λmI)−1 − C̃X⊗t Xs
(C̃XsXs + λmI)−1

∥∥∥
HS

(36)

≤
∥∥∥(ĈX⊗t Xs

− C̃X⊗t Xs
)(ĈXsXs + λmI)−1

∥∥∥
HS

+
∥∥∥C̃X⊗t Xs

[
(C̃XsXs + λmI)−1 − (ĈXsXs + λmI)−1

]∥∥∥
HS

(37)

≤ 1

λm

∥∥∥ĈX⊗t Xs
− C̃X⊗t Xs

∥∥∥
HS

+
1

λ
3/2
m

∥∥∥ĈXsXs − C̃XsXs

∥∥∥
HS

. (38)

For the first term,

1

λm

∥∥∥ĈX⊗t Xs
− C̃X⊗t Xs

∥∥∥
HS

(39)

=
1

λm

∥∥∥∥∥ 1

m

∑
i

ξ(xis)φ(xis)
> − 1

m

∑
i

ξ̃(xis)φ̃(xis)
>

∥∥∥∥∥
HS

(40)

≤ 1

λm

1

m

∑
i

∥∥∥ξ(xis)φ(xis)
> − ξ̃(xis)φ̃(xis)

>
∥∥∥
HS

(41)

≤ 1

λm
max

i

∥∥∥ξ(xis)φ(xis)
> − ξ̃(xis)φ̃(xis)

>
∥∥∥
HS

(42)

≤ 1

λm
max

i

{∥∥∥ξ(xis)φ(xis)
> − ξ̃(xis)φ(xis)

>
∥∥∥
HS

+
∥∥∥ξ̃(xis)φ(xis)

> − ξ̃(xis)φ̃(xis)
>
∥∥∥
HS

}
(43)

≤ 2ε

λm
. (44)

Similarly, for the second term,

1

λ
3/2
m

∥∥∥ĈXsXs
− C̃XsXs

∥∥∥
HS
≤ 2ε

λ
3/2
m

. (45)
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Combining the results, we obtain ∥∥∥ÛX⊗t |Xs
− ŨX⊗t |Xs

∥∥∥
HS
≤ 2ε(λ−1

m + λ−3/2
m ). (46)
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