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Abstract

Prediction markets show considerable promise
for developing flexible mechanisms for machine
learning. Here, machine learning markets for
multivariate systems are defined, and a utility-
based framework is established for their anal-
ysis. This differs from the usual approach of
defining static betting functions. It is shown that
such markets can implement model combination
methods used in machine learning, such as prod-
uct of expert and mixture of expert approaches
as equilibrium pricing models, by varying agent
utility functions. They can also implement mod-
els composed of local potentials, and message
passing methods. Prediction markets also allow
for more flexible combinations, by combining
multiple different utility functions. Conversely,
the market mechanisms implement inference in
the relevant probabilistic models. This means
that market mechanism can be utilized for im-
plementing parallelized model building and in-
ference for probabilistic modelling.

1 Introduction

One intriguing feature of the history of machine learning,
is that despite its ubiquitous methods, its immediate impor-
tance in a data rich world, and the desire for automation,
the machine learning endeavour typically involves tackling
each new problem through the individual crafting of a so-
lution by experienced practitioners. The practitioners of-
ten use compositional structures to build machine learning
models, but despite the large number of different models,
the number of different compositional approaches is quite
small. Almost all fall in to one or other of the following
categories:

Model averaging e.g. Bayesian model averaging, boost-
ing [9, 20].
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Mixtures e.g. mixture of experts [13], mixture models,
topic models [12, 5] and Dirichlet process mixtures.

Products/Factors e.g. Markov random fields, Conditional
random fields, product of experts [11], Boltzmann ma-
chines, belief networks.

Mixings e.g. Independent Component Analysis based
models and Gaussianization [21].

Although hybrid modelling has an extensive history, it is
still the case that individual models are usually a composi-
tion of multiple homogenous elements rather than inhomo-
geneous ones. Despite this, the results of the Netflix chal-
lenge [3] suggest these individually designed results seem
to be outperformed by combinations of differing methods,
pooled using fairly simple pooling (e.g. model averaging)
mechanisms.

Extending machine learning methods to more and more
complicated scenarios will require increasing the flexibil-
ity of the modelling approaches. It may well be desirable
to build models from inhomogeneous units as standard, and
experiment with more flexible compositional methods. In
this paper we suggest that machine learning markets play
a role in this. If they are to contribute in this way then we
must establish that they can extend machine learning meth-
ods. At the very least such markets must be able to im-
plement current model structures and perform inference in
those structures. A firm probabilistic interpretation is im-
portant, and any new approach should allow both the free-
dom for individual model building and the suitable combi-
nation of methods. In the paper we show that given a set
of agents, the market equilibrium can implement a number
of standard componential probabilistic model formalisms.
Hence market dynamics provide a mechanism for proba-
bilistic inference in those models.

Machine Learning Markets are prediction markets involv-
ing individual machine learning agents, each with a utility
function and a probabilistic belief about the domain to be
modelled. The goods in this market represent bets on out-
comes of individual system states, and a no-arbitrage as-
sumption means that the price of goods can be interpreted
probabilistically. The approach of this prediction market
goes beyond the simple single binary state predictors that
are common in consideration of real prediction markets.
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Rather we consider prediction markets on large joint spaces
and multiple variables at one time.

We establish that some of the key model combination meth-
ods listed above can be directly implemented by groups
of agents, and inference in those models is obtained by
market dynamics. Different model combination methods
are obtained via different utility functions for the individ-
ual agents. We also show that it is possible to consider
agents with niche beliefs about a small subset of the vari-
ables in the system, and show that we can derive typical
factor graph (i.e. product) representations from such sys-
tems.

As the agents are autonomous entities acting in a mar-
ket, the methods outlined here are very amenable to par-
allelism. We show that by restricting the goods available
in the market, the market dynamics can be represented as
message-passing mechanisms between pricing and stock-
holding, which are akin to the messages between variables
and factors in message passing on factor graphs.

Most importantly the homogeneity of the agents which
form the above models can be relaxed in favour of many
different forms of agents with varying utility functions,
without any change in the overall structure of the system.
As a result a whole spectrum of different model combina-
tion procedures can be implemented here.

The focus of this paper is the examination of model combi-
nation methods for agents that have already learnt their be-
liefs. We leave the examination of learning in these markets
to future work. However this examination of combination
methods is also of moot philosophical interest. Subjective
Bayesian methods for handling the updating of individual
belief are well established. However the issue of rationally
combining the posterior beliefs of different agents to form
a consensus belief is a long-standing and unsolved issue in
Bayesian philosophy [10]. Though we do not pretend that
the approach described here is a solution to this, we do sug-
gest that it is one way the problem could be considered, and
indeed relates to the considerations given by other authors
[19, 18, 14].

Finally we note that one further issue that is not discussed
in any detail in this paper, but is nevertheless important.
The flexibility of the market structure allows any agent to
produce new derivative stocks which can be added to the
market, and can be traded on like any other. This effectively
allows for the generation of new features.

In the market economic analysis, we will take a neoclas-
sical perspective and primarily utilize a competitive equi-
librium assumption. This assumption is merely for illus-
tration of the consequences of such equilibria, rather than
suggesting that is precisely how such a market would oper-
ate. Because we will be utilizing concave utility functions,
we know the market system will have a unique fixed point
[1].

2 Previous Work

Here we summarize the main previous work in machine
learning and prediction markets. The number of papers di-
rectly establishing market mechanisms for implementing
existing probabilistic machine learning methods is small.
One important paper is [15], where the authors do consider
a prediction market to form model combination for ma-
chine learning. They only consider predictions regarding
a single multinomial variable, and their agents do not have
utilities, but are instead endowed with betting functions.
These betting functions may not be derivable from any suit-
able utility, and indeed require that the amount bet is pro-
portional to the total wealth, a constraint not seen by some
of the utility functions used here. Even so this paper es-
tablishes that artificial prediction markets can provide use-
ful mechanisms for combining classifiers. We believe the
power of prediction markets can go well beyond this and
can be a powerful tool for the overall machine learning en-
deavour. More recently other learning methods have been
related to prediction markets [7]. However here the focus
is on cost function based markets, where a global market
maker is defined and the global cost function for the market
is specified. The relationship between a global cost func-
tion The case we consider here is a more general market
condition with no global market marker and independent
agents, defined by their respective utility functions. Each
agent follows a standard utility maximizing procedure: this
is fully parallel. We also consider the case where goods can
correspond to only a limited number of the (usually expo-
nential number of) marginal outcomes, which has not been
discussed hitherto.

The potential of prediction markets has long been talked
about [2, 17, 24]. In [8] the authors compared a number
of different mechanisms for expert aggregation including a
simple prediction market approach. Different market de-
signs have different features, and ensuring good prediction
market design with sufficient fluidity [6] will be critical
for efficiently reaching equilibrium. In [22] the authors
examine the statistical properties of market agent models,
whereas in [16] the authors consider prediction markets in
the context of Bayesian learning.

3 Prediction Markets

A market provides a basic process for the exchange of
goods between different agents. We define a basic market
as follows.

Definition 1 (Market) A market is a mechanism for the
exchange of goods. The market itself is neutral with respect
to the goods, or the trades. As such the market itself cannot
acquire or owe goods, and hence is subject to the market
constraint that the total number of goods sold is equal to
the total number of goods bought. Any currency is simply
another good in the context of a basic market. However
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we will assume that in this context there is an agreed cur-
rency: all participants in the market are happy to use that
currency for the purposes of trade.

Within this definition, there are many potential forms and
mechanisms for implementing a market. For the sake of
simplicity will only consider charge-free markets in the
context of this paper. We define a position in this mar-
ket as the stock holding (i.e. number of each of the goods
owned) of any individual. We assume that agents can hold
a short position (i.e. debt or negative holding) in a stock. A
positive holding in a stock is called a long position.

Suppose we have a market where one type of good being
traded is a bet, and the other is a currency. In this con-
text we can define a bet as a good that pays a fixed amount
(taken to be 1 Grubnick1 without loss of generality) depen-
dent on a particular outcome of a future occurrence, and
pays nothing otherwise. Markets consisting of trades of
this form of good are called prediction markets2.

Definition 2 (Prediction Market) A prediction market
(for the purposes of this paper) is a market with an agreed
currency and where the remaining goods are bets with a
fixed return on a particular outcome of a future occurrence
(and a zero return otherwise). Individuals may choose to
create those goods for sale, i.e. produce a bet and sell it at
a price. This is equivalent to a short position in that bet.

We will also make the assumption that the agents in the
market view the currency as a risk-free asset, in that they
are happy to define utility functions in terms of that cur-
rency.

4 Definitions

We start with a basic definition of the terms we will be
using, followed by examples of how these will actually be
used in practice.

Suppose we have a sample space Ω of all possible outcomes
of the set of relevant (future) occurrences. The elements of
Ω are called events, and one and only one of those events
will be the actual outcome.

Suppose we also have a σ-field F on Ω. We enumerate a
set of market goods by k = 1, 2, . . . NG, each associated
with a set mk ∈ F to be bets that pay out 1 Grubnick if the
outcome is in mk.

We enumerate a set of agents i = 1, 2, . . . NA. Each agent
can buy or sell any of the market goods. Hence each agent
has a position vector (or stock holding) si in all the goods
available. sik is the total number of items agent i has of
good k. sik < 0 indicates a short position in that good.
Note that is this paper sik is not the total amount invested
in item k: that depends also on the costs of the good.

1The currency of Elbonia is, naturally, respected worldwide.
2More specifically this is sometimes called a winner-takes-all

market: see e.g. [24, p2].

Each agent also has an associated utility function Ui(W )
defined in terms of the currency, denoting the utility to the
agent of a wealth of W Grubnicks. Each agent will also
have a belief, that is a probability measure Pi defined on
(Ω,F). We can also consider agents who have beliefs de-
fined on subspaces (Ωi,Fi) of the probability space (Ω,F).
We call these local beliefs, and this will be appropriate for
example where we consider distributions of many random
variables, and these sub-fields are the σ-fields induced by
certain subsets of those random variables.

In practice we will work with random variables, and hence
the underlying σ-fields will be implicit. We will consider
the cases of a single multiclass random variable, and a dis-
crete multivariate random variable. We will define specific
market goods in each instance.

Although many different utility functions are possible,
three will be particularly important in this paper. These
are now given.

4.1 Various Utility Functions

4.1.1 Linear debt-free utility

The first utility function we will consider is

US(x) = x if x > 0 and −∞ otherwise. (1)
(where S denotes straight). This utility function prevents
an agent from going into debt but otherwise is linear. This
utility is not strictly concave (concave utility functions re-
sult in equilibrium solutions).

4.1.2 Logarithmic utility

The second utility is concave, and takes a logarithmic form.
This too does not allow debt, but has decreasing utility
gains for increasing wealth.

UL(x) = log x (2)
where L is for logarithm.

4.1.3 Exponential decaying negative utility

The third utility function that we consider is

UE(x) = − exp(−x) (3)
where E stands for exponential. This utility is upper
bounded, and allows for unlimited assets and unlimited
debts. The effective disutility of debt is exponentially
growing, whereas the benefits of ever increasing assets be-
comes marginal. It is a concave utility function and it has
one analytic property that has a simplifying effect:

− exp(W − x) = − exp(W ) exp(−x) (4)
which says that decision regarding a change in wealth x are
independent of current wealth W .

For such a utility function, decisions do not depend on the
wealth or budget of that individual. As a result in mar-
kets where all agents have exponentially decaying nega-
tive utility, the wealth of the agents is irrelevant and can be
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removed from the equation. This utility function is com-
monly just called an exponential utility.

4.2 Market Structure

The observant reader will notice the cost of goods has not
yet been mentioned. This is because the cost of goods is a
function of the agents’ trading preferences, and the process
of trade, and so it is dependent on the market structure. It
is perfectly possible to have market structures whereby the
cost of goods can be different for different agents. However
we will make the assumption that we have a market that
allows all traders to trade a given good at any time at a
given cost. Hence there is associated with each good k a
cost ck which is the price the good is currently trading at.

We will also make a no-arbitrage assumption regarding the
market and the agents in the market. That is, we will as-
sume that it is not possible for any agent to make profitable
risk free trades in a set of assets. For example if some set
of goods formed a jointly certain bet, but the total price for
those goods was less than one, then an agent could buy one
of each of those goods and guarantee a net positive return
when the bets are finalized. This is an arbitrage opportu-
nity. If such opportunities ever arise, traders would im-
mediately trade on those opportunities so that they quickly
disappear. Any individual or group who makes himself or
herself open to arbitrage trading will quickly lose money,
and hence will adjust his or her position.

One of the common features of prediction markets is the as-
sociation of the cost of goods in a working market with the
probabilities of the outcomes associated with those goods.
There are a number of good theoretical reasons why this as-
sociation is valid, and it is related to betting interpretations
of Bayesian inference (see e.g. [4]). For space reasons we
are not able to elaborate this here, except to note that the
no-arbitrage assumption ensures that for k = 1, 2, . . . NG

enumerating a set of goods associated with mutually exclu-
sive jointly certain events, we have

NG∑
k=1

ck = 1 (5)

matching the sum-to-1 assumption for probabilities. More
generally the no-arbitrage assumption ensures that, if the
market goods are bets on a collection of items that form
a σ-field, then the costs are a probability measure on that
σ-field. It is this association of price with probability that
makes prediction markets a useful tool for machine learn-
ing.

We will consider equilibrium markets in this paper. Here,
market equilibrium is defined by a price and an allocation
such that no trader has any incentive to trade and there is
no excess demand of any good. The problem of market
equilibria was first formulated in Economics by Walras [23]
in 1874. The existence of such a market equilibrium was
established by Arrow and Debreu [1] using analysis of the

fixed-point of the system.

5 General Formulation

Let Wi denote the current wealth of agent i. Let
the cost of goods be denoted by the cost vector c =
(c1, c2, . . . , cNG

)T . Then the rational agent will choose
a utility maximizing position si = (si1, si2, . . . , sik)T in
each of the goods he or she has an opinion about (that is
those in Si = {k|mk ∈ Fi}). However because the out-
come is uncertain the actual utility of holding the goods is
a weighted sum of the utility associated with each possible
outcome, weighted by the agent’s belief about the proba-
bility of that outcome. This is written as

s∗i = si(Wi, c)

= arg max
si

∑
j∈Ωi

Pi(j)Ui(Wi − sTi c +
∑
k

sikr(k, j))

(6)
subject to sik = 0 if k /∈ Si. Here, r(k, j) is the return of
a bet on good k in case of outcome j and is 1 if j ∈ mk

and zero otherwise. si(Wi, c) is the buying function for
agent i, and states how the agent would choose to act (given
no other constraints) in a market with costs c. There is in
general no guarantee that the maximum of this utility has
a unique argument, and hence in general there will not be
a unique buying function; additional risk free trades may
be possible resulting in different purchase quantities while
maintaining the same utility.

In an equilibrium market (if it exists), the agents are able
to jointly act optimally given the costs c. Hence the market
constraints

NA∑
i=1

si(Wi, c) = 0 (7)

are satisfied for some buying functions, and can be solved
to get the equilibrium costs. We will illustrate that for
certain utilities these equilibrium conditions mirror known
model combination procedures in machine learning.

However in a non-equilibrium situation, market or auction
dynamics can also be defined. One possible dynamic is
that each good comes up for auction at a time. Then all in-
terested agents bid for those goods by giving their buying
functions for that good given their holding of other goods.
Costs are decided that best satisfy those bidding functions.
The various bids are satisfied, and we move on to the next
good etc. We will illustrate that this market dynamics has
much in common with message passing schemes in proba-
bilistic inference.

5.1 Discrete-state Markets

Suppose we have a prediction market, consisting of the pur-
chase of bets that pay out 1 Grubnick on the future occur-
rence of one of NG mutually exclusive, jointly certain out-
comes. In this case the market goods are just bets on the
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individual events. Note that a multivariate discrete distri-
bution can be represented this way by enumerating all the
possible joint states.

Let Wi denote the current wealth of agent i. Let
the cost of goods be denoted by the cost vector c =
(c1, c2, . . . , cNG

)T . Then the rational agent will choose
a utility maximizing position si = (si1, si2, . . . , sik)T in
each of the goods. This is written as

s∗i = si(Wi, c)

= arg max
si

∑
k

Pi(k)Ui(Wi − sic + sik) (8)

where Pi(k) denotes the belief of agent i about the proba-
bility of the event k occurring (or more accurately the event
associated with good k occurring). We collect these into a
vector pi = (Pi(1), Pi(2), . . . , Pi(K))T .

Every agent has an opportunity for financially-neutral risk-
free trades, due to the arbitrage-free assumption, by buy-
ing (or selling) one unit of every stock. The utility asso-
ciate with having holding s and s + α1 is identical: there
are various equivalent positions that are produced by risk
free purchases or sales. If we also introduce an additional
neutral agent that only makes these risk free trades, buy-
ing/selling one of each item (and hence never has any dif-
ference in his/her return from the zero position), then we
only need to specify the position of each agent up to these
utility-equivalent classes. We introduce a standardization
constraint to ensures each equivalence set is now repre-
sented by a single position si that satisfies the constraint.
Note this does not mean that the agents have to obey the
standardization constraint: that is irrelevant. It just means
that any solutions we obtain that do obey the standardiza-
tion constraint will be a suitable representation for all the
other equivalent positions.

In the analysis we will use the most convenient constraint
for any given problem. If the constraint holds for s = 0
for all agents, then the market constraint (7) will also hold
at equilibrium. One useful constraint is to set sTi c to zero
for each agent (each agent could buy/sell one of each stock
with no change in utility until this constraint were satis-
fied). Another possible constraint is that we choose to set
the stock holding of all agents of stock k = NG to zero. Al-
ternatively one could require that the minimum stock hold-
ing for an agent in at least one stock was zero.

5.1.1 Case 1: Linear debt-free utility gives weighted
median model combination

In the case of a linear debt-free utility, we use the stan-
dardization constraint mink sik = 0, which is useful in that
it ensures that the active agents only make long positions
(the remaining risk free short position is held by the neutral

agent), and so we can write (8) as

s∗i = arg max
si

sTi (p− c)

s.t. min
k
sik = 0 and sTi c− sik < Wi ∀k. (9)

where the conditions are those imposed by the standard-
ization constraint and the debt free constraint. Due to the
standardization constraint, the last condition sTi c − sik <
Wi ∀k is satisfied if and only if sTi c < Wi, which simply
states that the maximum stake is the whole wealth. This
leads to

s∗i = arg max
si

sTi (p− c)

s.t. min
k
sik = 0 and sTi c < Wi. (10)

This is optimized by staking the whole wealth Wi on the
good k which maximizes

Pi(k)− ck
ck

. (11)

In the binary case with many players of equivalent wealth,
the equilibrium for the single cost c will be the median of
the agents’ Pi(1) values as that will balance the total long
and short positions in the one good; with varying wealth,
each agent’s Pi(1) value will be weighted by its wealth be-
fore computation of the median. Note that the fact that the
linear debt free utility is not strictly convex means that there
is not necessarily a unique equilibrium, which is clear from
this solution as the median is not uniquely defined for even
numbers of equally wealthy agents.

In multi-class settings this utility results in markets that
choose costs to balance agents’ purchases across all the
stocks, though the exact formalism is not as simple as in
the binary setting as it is dependent on the number of agents
involved.

5.1.2 Case 2: Logarithmic utility gives weighted
mean model combination

With logarithmic utility,

UL
i (Wi, c, si) =

∑
k

Pi(k) log(Wi − sTi c + sik), (12)

the market constraints (7) can also be solved. We use the
standardization constraint sTi c = 0 to build a Lagrangian

Li =
∑
k

Pi(k) log(Wi + sik) + λis
T
i c (13)

with Lagrange multiplier λi. By equating the derivatives of
this Lagrangian to zero we get

∂Li

∂sik
=

Pi(k)

Wi + sik
+ λick = 0 (14)

which we solve to get the buying function

s∗ik =
Wi(Pi(k)− ck)

ck
. (15)

Solving for the market constraint (7) gives the equilibrium
cost

ck =

∑
iWiPi(k)∑

iWi
(16)
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which sets the costs to be the wealth weighted mean of the
agents beliefs. Note that this is a linear aggregation of clas-
sifiers, akin to methods used in boosting algorithms [9, 20]
and model averaging approaches. If the wealth has been
achieved through past performance, then the classifiers are
effectively weighted by their performance in previous cir-
cumstances, and so this also relates to a mixture of experts
approach.

Note that in [15], the formula (16) was obtain via presum-
ing constant ‘betting functions’ (the proportion of wealth
bet as a function of cost). In reality constant betting func-
tions are unrealistic in utility terms as they would imply
always betting the same amount on the same goods irre-
spective of price. Here we show that a constant betting
function is not necessary for a weighted mixture pricing
scenario. Instead we have derived a utility consistent buy-
ing function that has the same pricing properties.

5.1.3 Exponential decaying negative utility gives
product model combination

We can also consider the multi-class market with the expo-
nential decaying negative utility UE The utility for agent i
is written as

UE
i (Wi, c, si) = −

∑
k

Pi(k) exp(−Wi + sTi c− sik)

(17)
Once again, we use the standardization constraint sTi c = 0
to build a Lagrangian for this of the form

Li = −
∑
k

Pi(k) exp(−Wi − sik)− λi exp(−Wi)s
T
i c

(18)
with Lagrange multiplier expressed as −λi exp(−Wi) for
convenience. By equating the derivatives of this La-
grangian to zero we get
∂Li

∂sik
= exp(−Wi)Pi(k) exp(−sik)−λi exp(−Wi)ck = 0

(19)
which we solve to get the buying function

s∗ik = logPi(k)− log ck − log λi (20)
where λi is set to ensure sTi c = 0. We can now solve for
(7) giving

ck ∝
NA∏
i=1

Pi(k)1/NA (21)

which sets the costs to be the geometric mean of the
agents beliefs, and is a product model with the poten-
tials for each product scaled according to the number of
agents. Hence the exponential decaying negative utility
implements a product combination. By writing Φi(k) =
(1/NA) logPi(k) we have

ck =
1

Z
exp

(∑
i

Φi(k)

)
(22)

where Z is a normalization constant. We can see that each
agent implements a separate contributing potential to the

overall market distribution.

5.2 Interim Summary

We have shown how, in a market for a single multiclass
outcome, many of the standard aggregation methods used
for constructing componential machine learning models are
reproducible as a result of different agent utility functions.
Weighted median of experts, weighted mixture of experts,
and product of expert models can all occur, simply by
changing the utility functions involved. Furthermore, as
each agent acts independently, the market mechanism pro-
vides a well defined approach for mixing agents with differ-
ent utility functions together. As a result we can obtain in-
termediates between product distributions and mixture dis-
tributions.

In the rest of this paper we generalize the methods for mul-
tivariate settings: here there are J different variables, and
the goods are bets on the joint state of all these variables.
Hence NG is exponential in J . First we consider the case
of local agents, and show how this relates to factor graphs,
and using a different form, for methods of combining mul-
tiple marginal beliefs. Finally we show that, when only a
limited number of goods are available, market dynamics
can implement message passing mechanisms to obtain the
equilibrium.

6 Niche Agents

In economic markets, agents do not usually try to compre-
hend the complete joint system. Rather, individual agents
establish niches that they attempt to exploit. In general,
given some market pricing, an agent may believe that the
real value differs, in some limited way, from the overall
market price decided collectively by all the agents, and
each agent, learns and represents his or her beliefs relative
to the market, and enters the market to exploit (in his or her
opinion) that difference.

There may also still be agents with direct opinion (not ex-
pressed relative to the market price) in that marketplace.
We consider, for purposes of illustration, a market consist-
ing of a single agent with a direct opinion, and a number of
agents with opinions relative to the market price. The belief
of each of these agents can now be represented as probabil-
ity distribution that is a factorial deviation from that market
price:

Pi(k) =
1

Z
Fi(k)ck. (23)

In a multivariate setting those deviations will generally oc-
cur in only a few random variables that the agents are
knowledgeable about: the relative beliefs of an agent due
to variations in other variables will match the distribution
established by the market as a whole. For example sup-
pose y = (y1, y2, . . . , yJ)T denotes the final outcome of a
multivariate occurrence, where each element yj is, for the
sake of notational simplicity, assumed to be binary. There
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are then NG = 2J possible goods, each a bet on some out-
come y.

If agent i only had deviant opinions from the general
consensus regarding variables in set Si, we would write
Fi(y) = Fi(y

Si), where we use the superscript notation
yS to denote the vector derived from restricting the vector
y to just the elements with index in S. The set Si would
be called a clique. Colloquially speaking agent i is happy
to agree with the consensus opinion regarding the variables
(s)he has no knowledge about. Let k = 1, 2, . . . , NG enu-
merate all the different y: y1,y2, . . . ,yNG

. Then we use
Fi(k) to represent F (yk) etc.

Once again, let c represent the cost vector (now of length
NG = 2J , one term for each good). We can write out the
utility for such a set of agents as

Ui(Wi, c, si) =

NG∑
k=1

Fi(k)ckUi(Wi − sTi c + sik) (24)

(the utility only needs to be defined up to a constant for
optimization purposes). The utility for the single agent with
a direct opinion can be written

U0(Wi, c, si) =

NG∑
k=1

P0(k)U0(W0 − sT0 c + s0k) (25)

In this case an exponential decay negative utility results in
buying functions

s∗ik = logFi(k)− log λi (26)
with Lagrange multiplier λi and

s∗0k = logP0(k)− log ck − log λ0 (27)

The market constraint then gives an equilibrium price equa-
tion of

ck ∝ P0(k)
∏
i

Fi(k) (28)

which is a product of local clique factors, along with a
global factor, which represents some base distribution and
could be uniform. Hence the use of agents that declare their
beliefs relative to the market produces models of the form
of a various local clique potentials.

The equilibrium pricing for this market represents a joint
probability distribution for a the standard factor model,
with each agent representing a factor over a clique of the
variables. We have shown that for a certain market struc-
ture and certain utility representation, the market precisely
implements a very common form of probabilistic graphical
model. Any factor graph can be represented as a market of
this form, and the equilibrium pricing of the market repre-
sents the probabilities associated with that factor graph.

6.1 Marginal Agents

The niche agents described above are interesting in terms of
the model they implement. However, the majority of agent
models will not result in equilibrium costs that can be sim-
ply expressed. Nevertheless, such agents could still be very

valuable, as market dynamics will establish equilibria that
are valid probability distributions and may satisfy desirable
criteria.

One of the problems with the niche agents is that they rely
on the consensus opinion of the other agents, and express
their beliefs as perturbations from that opinion. That can
open the agent up to taking risks entirely on the basis of the
opinion of others.

Another approach is that agents may wish to purchase bets
that are risk free in the variables they have no opinion
about. In large systems any agent may only have knowl-
edge about a small subsection of that system e.g. a few
variables. The agent does not wish to make assumptions
about the other variables. Different agents may well want
to purchase bets on different subsets of those variables, due
to their indifference regarding the others. We start the anal-
ysis by considering goods covering all possible multivariate
states, and note that in order to make a bet on a restricted
number of states, an agent need only purchase multiple
equal bets covering all the options of the remaining states.

Let y = (y1, y2, . . . , yJ) denote the final outcome of a mul-
tivariate occurrence, where each yj is, for the sake of nota-
tional simplicity, assumed to be binary. Let SJ denote the
collection {1, 2, . . . , J} of all the variable indices.

The market goods consist of bets on a payout for each y,
and hence we use the y to label the goods, and write c(y)
for the cost of a bet on outcome y, and si(y) for the amount
of good y agent i has.

Each agent also has a belief, but now the beliefs can be
restricted to a subset Si of the variables. Once again we
call the sets Si cliques. We will use the shorthand yi to
denote ySi where that does not cause confusion.

The rational agent will choose a utility maximizing position
s∗i (ySi) written as

s∗i (yi) = arg max
si(yi)

∑
yi

Pi(yi)

Ui(Wi −
∑
y′i

si(y
′
i)c(y

′
i) + s(yi)) (29)

where c(yi) =
∑

y′|(y′)Si=yi
c(y) is the sum of the costs

of all the goods needed to produce a bet on the marginal
outcome yi. Once again we will consider an exponential
decaying negative utility.

We introduce the standardization constraint∑
yi
si(yi)c(yi) = 0 and optimise the agents utility

with respect to this constraint to get the agent’s buying
function. Equating the derivative of the Lagrangian with
respect to si(yi) to zero, we get the buying function

s(yi) = logPi(yi)− log c(yi)− λi (30)
where a purchase of goods yi consists of an equal purchase
of all goods y consistent with yi on set Si. We have no
simple representation for the costs of all the goods in an
equilibrium market of agents with these buying functions
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(the number of goods is now exponential in the number of
variables, and the buying functions depend on the costs for
many different goods). However the market will still im-
plement this distribution as an equilibrium of the dynamical
system that defines a particular choice of market dynamics.
The market will then provide a mechanism for combining
a number of marginal beliefs about a system.

6.2 Message passing

Markets consisting of an exponential number of goods are
practically infeasible. It will become impossible to keep
track of or even represent the price of such a large number
of goods. As a result the market is likely to consist only of
a reduced set of the possible goods. Just as it is likely that
agents will only have opinions on a small set of goods, so
the market as a whole will only involve trades on a smaller
set of goods than all those that are possible.

Again let y = (y1, y2, . . . , yJ) denote the final outcome of
a multivariate occurrence, where each yj is, for the sake of
notational simplicity, assumed to be binary. Let SJ denote
the collection {1, 2, . . . , J} of all the variable indices. The
market goods are bets on the outcome yj = 1 for each j.
The total number of goods is NG = J , and so SJ = SNG

.
Each good is indexed by some k chosen from the set SNG

.

An agent will, once again, have the probabilistic belief
Pi(y). Given some market cost c(y), and an exponential
decaying negative utility, the agent will have an expected
utility of

Ui(Wi, c, si) = −
∑
y

Pi(y) exp(−Wi + sTi (c− y)).

(31)

Suppose agent i has been communicated all the costs for
all the goods (for a marginal/niche agent this would only
need to be all the costs in the clique). Then that agent is
able to optimize its position in those goods to obtain a price
conditional optimal value s∗i . We can then communicate
that position in the following way:

Consider a trade in a single good k. Given the agents opti-
mized position, and given the current prices ck, we define
Aik(yk) by

Aik(yk) =
∑
y−k

Pi(y
−k|yk) exp((s∗−ki )T (c−k − y−k))

(32)
where the superscript −k notation denotes the vector with
the kth term removed. Then we can write Ui(Wi, c, s

∗
i ) as

−
∑
yk

Aik(yk)Pi(yk) exp(−Wi + sik(ck − yk)) (33)

where sik is the holding in stock k.

Taking derivatives of this expected utility with respect to
sk, and equating to zero, we get∑

yk

(ck−yk) exp(sik(ck−yk))Aik(yk)Pik(yk) = 0 (34)

where Pik is the marginal belief about yk. Hence we can

write the optimized position in good k, sik as

sik(ck) = log
1− ck
ck

+ log
Aik(1)Pik(1)

Aik(0)Pik(0)
(35)

conditioned on the knowledge of the positions in the other
goods.

Given this buying function, the equilibrium constraint gives

ck(yk) ∝
∏
i

Aik(yk)1/NPik(yk)1/N (36)

This means we can compute the price for a bet on variable
k given the price of everything else, so long as we have
computed the messages Aik for all the agents. The new
cost then gets passed to all the agents so they can update
their messages Aik resulting in new buying functions.

Though this applies generally, it is not useful unless theAik

are straightforward to compute. This is only the case for
niche or marginal agents. In those situations (32) involves
only a sum over the local clique and hence is computable
in time exponential in the clique size.

7 Discussion
In this paper we establish the flexibility of machine learn-
ing markets for representing, through market prices, differ-
ent forms of compositional machine learning model. We
show that many of the compositional structures typically
used in machine learning, the localized representations,
and the inferential mechanisms such as message passing
schemes can be interpreted in terms of machine learning
markets. Put simply, certain probabilistic machine learn-
ing models can be redefined as sets of independent agents
with particular utility functions. Any choice of convergent
market dynamics can then be viewed as an inference ap-
proach. In this way the propagation of cost information
and purchase information can be seen as messages that
are passed between independent agents, much as message
passing schemes work between nodes in a graph.

The benefit of this approach is that is allows for consid-
erably more versatile models to be set up, by using mul-
tiple agents with different utility functions. These agents
can function independently and need no information about
what other agents are doing save for the prices they are
willing to sell market goods for. This approach has signif-
icant long term appeal: it allows for immediate integration
of multiple different types of agents as well as a natural,
large scale parallel process for inference.
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