
A Back-Propagating the Error over the Belief Propagation Run

In this appendix, we will use a version of belief propagation where the messages and beliefs are normalized at
every step. (Normalization is optional but is usually required for convergence testing and for decoding.)

In the main paper, µ (messages) and b (beliefs) refer to unnormalized probability distributions, but here they
refer to the normalized versions. We use µ̃ and b̃ to refer to the unnormalized versions, which are computed by
the update equations below. The normalized versions are then constructed via

q(x) =
q̃(x)∑

x′

q̃(x′)
(9)

A.1 Belief Propagation

The recurrence equations (2)–(5) for belief propagation are repeated below with normalization. To update a
single message, the distribution µi→α or µα→i, we compute the unnormalized distribution µ̃, using equation (A.3)
or (11) (respectively) for each value xi in the domain of random variable Xi:

µ̃i→α(xi) ←
∏

β∈F : i∈β,β 6=α

µβ→i(xi) (10)

µ̃α→i(xi) ←
∑

xα: (xα)i=xi

ψα(xα)
∏

j∈α: j 6=i

µj→α((xα)j) (11)

We then compute the normalized version µ using equation (9). Upon convergence of the normalized messages
or when another stopping criterion is reached (i.e., maximum number of iterations), beliefs are computed as:

b̃xi(xi) ←
∏

β∈F : i∈β

µ
(T )
β→i(xi) (12)

b̃α(xα) ← ψα(xα)
∏
j∈α

µ
(T )
j→α((xα)j) (13)

The normalized beliefs b are used by a decoder d to produce a decode of the output variables. Finally, a loss
function ` computes the “badness” of the decoded output as compared to the gold standard: V = `(d(b), y∗). In
this paper we work with decoders that are function of beliefs at the variables, but the method would also work
with decoders that consider beliefs at the factors (e.g., variants of the Viterbi decoder).

The only requirement is that the decoder and loss function are differentiable functions of their inputs. Hence we
replace non-differentiable functions, in particular max, with differentiable approximations such as softargmax, as
described in the main paper.

A.2 Back-propagation

Let V be the loss of the system on a given example. We will use the notation ðy to represent ∂V/∂y, called the
adjoint of y. An adjoint is defined for each intermediate quantity that was computed during evaluation of V .
If different quantities were assigned to the variable y at different times, then ðy will likewise take on different
values during the algorithm, representing the various partials of V with respect to those various quantities.

Ultimately we are able to compute the adjoint ðθj for each parameter θj , which gives us the gradient ∇θV .

We first compute V (the forward pass). This begins with belief propagation as described above. The only
difference from standard loopy belief propagation is that we record an “undo list” (known as the tape) of the
message values that are overwritten at each time step t ∈ {1, ..., T}. That is, if at time t the message µα→i was

updated, then we save the old value as µ
(t−1)
α→i

1. We then run the decoder over the resulting beliefs to obtain a
prediction y, and compute the loss V with respect to the supervised answer y∗.

1In reality, the normalized version of the message µ
(t−1)
α→i alone is not sufficient for the backward pass because the



The backward pass begins by setting ðV = 1. We then differentiate the loss function to obtain the adjoints
of the decoded output: ðd(xi) = ðV · ∂V

∂d(xi)
. (The actual formulas depend on the choice of loss function: if the

decoded output for xi were to change by an infinitesimal ε, how much would V change?) We use the chain rule

again to propagate backward through the decoder to obtain the adjoints of the beliefs: ðb(xj) =
∑
i ðd(xi)· ∂d(xi)∂b(xj)

.

(Again, the actual formula for this partial derivative depends on the decoder.)

From the belief adjoints, we can initialize the adjoints of the belief propagation messages by applying the chain
rule to equations (12)–(13):

ðµi→α(xi) ←
∑

k∈α:k 6=i

ψα((x′α)k)
∏

j∈α:j 6=i

µj→α(xj)ðb̃xi(xi) (14)

ðµα→i(xi) ←
∏

β∈F : i∈β,β 6=α

µβ→i(xi)ðb̃α(xα) (15)

ðψ(T )
α (xα) ←

∏
i∈α

µi→α((xα)i)ðb̃α(xα) (16)

Starting with these message adjoints, the algorithm proceeds to run the belief propagation computation back-
wards as follows. Loop for t← {T, T −1, ..., 1}. If the message update at time t was to a message µi→α according
to equation (A.3), we increment the adjoint for every β occurring in the right-hand side of equation (A.3), for
each value xi in the domain of Xi:

ðµβ→i(xi) ← ðµβ→i(xi) +

 ∏
i∈γ:γ 6=α,β

µγ→i(xi)

ðµ̃i→α(xi) (17)

We then undo the update, restoring the old message (and initializing the adjoints of its components to 0):

µi→α ← µ
(t−1)
i→α (18)

ðµi→α(xi) ← 0 (19)

Otherwise, the message update at time t was µα→i(xi) according to equation (11). We increment the adjoints
for all j and ψα occurring on the right-hand side of equation (11):

ðµj→α(xj) ← ðµj→α(xj) +
∑
xi

 ∑
xα: (xα)i=xi∧(xα)j=xj

ψα(xα)
∏

k∈α:k 6=i,j

µk→α(xk)

 ðµ̃α→i(xi) (20)

ðψα(xα) ← ðψα(xα) +
∑
i∈α

 ∏
j∈α:j 6=i

µj→α(xj)

 ðµ̃α→i(xi) (21)

And again, we undo the update:

µα→i ← µ
(t−1)
α→i (22)

ðµα→i(xi) ← 0 (23)

unnormalized message µ̃
(t−1)
α→i is also needed. There are two possible solutions: to save the unnormalized version of the

message µ̃
(t−1)
α→i and compute the normalized value as needed or to save the normalizing constant together with the message.

We use the latter option in our implementation for efficiency. Given the normalization constants, and µ
(t−1)
α→i , it is trivial

to reconstruct the values for µ̃
(t−1)
α→i in the backward pass, so this computation is omitted from the rest of the discussion

for brevity.



In either case, for each normalized distribution q whose adjoint was updated on the left-hand side of the above
rules, we then update the adjoint of the corresponding normalized distribution q̃:

ðq̃(x) =
1∑

x′ q̃(x′)

(
ðq(x)−

∑
x′

q(x′)ðq(x′)

)
(24)

Finally, we compute the adjoints of the parameters θ (i.e., the desired gradient for optimization). Remember
that each real-valued potential ψα(xα) (where xα represents a specific assigment to variables Xα) is derived from
θ by some function: ψα(xα) = f(θ). Adjoints of θ are computed from the final ψ adjoints as:

ðθi =
∑
α,xα

ðψα(xα) · ∂f(ψα(xα))

ðθi
(25)

A.3 Complexity

For nodes of high degree in the factor graph, the computations in the forward pass can be sped up using the
“division trick.” For example, the various messages

∏
β∈F : i∈β,β 6=α µβ→i(xi) in (10) for different α can be found

by found by first computing the belief (12) and then dividing out the respective factors µα→i(xi).

To perform the backward pass, we must save all updated values during the forward pass, requiring space of
O(runtime).

The runtime of the backward pass is asymptotically the same as that of the forward pass (about three to four
times as long). This is not the case for a straightforward implementation, since a single update µ̃i→α in the
forward pass results in ni updates in the backward pass, where ni is the number of functions (features) in which
node i participates (see equation (17)). Similarly, a single update µ̃α→i in the forward pass results in 2nα updates,
where nα is the number of nodes in the domain of ψα (from the updates in equations (20) and (21)). However, the

computations can again be sped up using the division trick—for example,
∏

i∈γ:γ 6=α,β

µγ→i(xi) can be computed

as

 ∏
i∈γ:γ 6=α

µγ→i(xi)

 /µβ→i(xi). Note from equation (10) that µ̃i→α(xi)←
∏

i∈β,β 6=α

µβ→i(xi), so this quantity

is already available and the whole product can be computed using a single division as µ̃i→α(xi)/µβ→i(xi). This
optimization saves considerable amount of computation when nodes participate in many functions. The same
optimization trick can be used for the updates in equations (20) and (21) and will lead to savings when domains
of potential functions contain multiple nodes. This is not the case for the experiments in this paper as we work
only with potential functions defined over pairs of nodes. In general, running inference in MRFs with functions
over domains with large cardinalities is computationally expensive. Thus, MRFs used in practice can be expected
to either have limited size potential function domains or use specialized computations for the µα→i messages.
Therefore, speeding up the computation in equations (20) and (21) is less of a concern. Our implementation
runs approximately three times slower than the forward pass.



A.4 Hessian-Vector Product

Section 4.2 of the main paper notes that for our Stochastic Meta-Descent optimization, we must repeatedly
compute not only the gradient of the loss (with respect to the current parameters θ), but also the product of the
Hessian of the loss (again computed with respect to the current θ) with a given vector v.

This requires a small adjustment to the algorithms above, using “dual numbers.” Every quantity x computed
by the forward or backward pass above should be replaced by an ordered pair of scalars (x,R{x}), where R{x}
measures the instantaneous rate of change of x as θ is moved along the direction v.

As the base case, each θi is replaced by (θi, vi). For other quantities, if x is computed from y and z by some
differentiable function, then it is possible to compute R{x} from y, z, R{y}, and R{z}. Thus, operations such
as addition and multiplication can be defined on the dual numbers.

In practice, therefore, code for the forward and backward passes can be left nearly unchanged, using operator
overloading to make them run on dual numbers. See Pearlmutter (1994) for details.

B Supplementary Results

test setting train setting
frac-MSE int-F int-L1 appr-logl

frac-MSE .00057 .00122 .00115 .0071
int-F .00109 .00081 .00106 .0117
int-L1 .00069 .00096 .00079 .00751

appr-logl .11141 .16153 .1508 -0.31618

Table 6: Results for all pairs of settings

As suggested by an anonymous reviewer, Table 6 lists the results (the ∆loss as in all previous tables) for all pairs
of train and test settings. More specifically, the training loss is the option including staged training and hybrid
loss where applicable (i.e., the -in and -hyb settings).

The results show that matching training and test conditions (the bolded diagonal of the table) leads to the
best results in all settings. Only the last column was achievable with previously published algorithms, so our
contribution is to provide the diagonal elements, which in each row do better than the last column.


