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Abstract

Modeling ranked data is an essential compo-
nent in a number of important applications
including recommendation systems and web-
search. In many cases, judges omit prefer-
ence among unobserved items and between
unobserved and observed items. This case
of analyzing incomplete rankings is very im-
portant from a practical perspective and yet
has not been fully studied due to consider-
able computational difficulties. We show how
to avoid such computational difficulties and
efficiently construct a non-parametric model
for rankings with missing items. We demon-
strate our approach and show how it applies
in the context of collaborative filtering.

1 Introduction

Modeling ranked data is an essential component in
a number of important applications including rec-
ommendation systems and web-search. In its sim-
plest form, ranked data is a set of permutations π :
{1, . . . , n} → {1, . . . , n} mapping abstract items to
their rankings. In other words, π(j) is the rank given
to item j and π−1(j) is the j-most preferred item.
The available sets of permutations π1, . . . , πm repre-
sent preferences issued by judges who are sampled i.i.d.
from a population of judges. A judge in this case may
be a human being, a computer program, or an abstract
hypothesis. The modeling goal is thus to analyze i.i.d.

permutations π1, . . . , πm
iid
∼ p(π) and construct an es-

timator p̂m(π ;π1, . . . , πm) for the unknown p.

Although many approaches for estimating p given
π1, . . . , πm are possible, experimental evidence points
to the fact that in cases of high n (recommendation
systems for example), the distribution p does not fol-
low a simple parametric form such as the Mallows,
Bradley-Terry, or Thurstone models [12]. Instead, the

Appearing in Proceedings of the 14th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2011, Fort Lauderdale, FL, USA. Volume 15 of JMLR:
W&CP 15. Copyright 2011 by the authors.

distribution p tends to be diffuse and multimodal with
different probability mass regions corresponding to dif-
ferent types of judges, e.g. in movie preferences proba-
bility modes may correspond to genre as fans of drama,
action, comedy, etc. may have similar preferences. For
example, Figure 1 demonstrates how parametric as-
sumptions break down with increasing n in the case of
voting and recommendation systems (see also [8]).

Several techniques for constructing a non-parametric
p̂ have been proposed. The simplest is perhaps
the relative frequency estimator p̂m(π ;π1, . . . , πm) =
m−1

∑m
i=1 I(π = πi). A more accurate non-parametric

estimator is based on kernel smoothing [10]

p̂m(π ;π1, . . . , πm) = m−1
m

∑

i=1

Kh(T (π, πi)), (1)

where T (π, σ) is a suitable distance between per-
mutations such as Kendall’s tau [2] and Kh(r) =
h−1K(r/h) is a normalized unimodal density. The
bandwidth parameter h represents the amount of
smoothing [19] with small h corresponding to narrow
kernels and large h corresponding to wide kernels.

In most cases involving large n, expecting that the
available data are complete permutations is unrealis-
tic. Typically, when a large number of items are avail-
able, different items are observed by different judges
who omit preferences among the unobserved items and
among observed and unobserved items. Extending the
modeling framework (1) to such incomplete ranking
data (with or without ties) is currently an open prob-
lem. The main difficulty is computational: both para-
metric and non-parametric models require summation
over sets that increase factorially in the number of
items n (see Sections 2-3).

Our main contributions in this paper are: (i) develop-
ing a computationally efficient scheme for extending
(1) to incomplete rankings based on generating func-
tions and combinatorics, (ii) applying it to three esti-
mation problems in recommendation systems: proba-
bility estimation, rank prediction, and rule discovery.



     735

Estimating Probabilities in Recommendation Systems

Figure 1: Heat map visualization of the density of ranked data using multidimensional scaling with expected Kendall’s
Tau distance. The datasets are APA voting (left, n = 5), Jester (middle, n = 100), and EachMovie (right, n = 1628)
datasets. None of these cases show a simple parametric form, and the complexity of the density increases with the number
of items n. This motivates non-parametric estimators for modeling preferences over a large number of items [8].

2 Incomplete and Tied Rankings

Since permutations play a central role in this pa-
per, we describe the following notations and conven-
tions, which are taken from [2] where more detail may
be found. We denote a permutation by listing the
items from most to least preferred separated by ≺
– π−1(1) ≺ π−1(2) ≺ · · · ≺ π−1(n), e.g. π(1) =
2, π(2) = 3, π(3) = 1 is 3 ≺ 1 ≺ 2.

Ranking with ties occur when judges do not provide
enough information to construct a total order. In
particular, we define tied rankings as a partition of
{1, . . . , n} to k < n disjoint subsets A1, . . . , Ak ⊂
{1, . . . , n} such that all items in Ai are preferred to
all items in Ai+1 but no information is provided con-
cerning the relative preference of the items among
the sets Ai. We denote such rankings by separat-
ing the items in Ai and Ai+1 with a ≺ notation e.g.,
A1 = {3}, A2 = {2}, A3 = {1, 4} (items 1 and 4 are
tied for last place) is denoted as 3 ≺ 2 ≺ 1, 4.

Ranking with missing items occur when judges omit
certain items from their preference information alto-
gether. For example assuming a set of items {1, . . . , 4},
a judge may report a preference 3 ≺ 2 ≺ 4, omitting
altogether item 1 which the judge did not observe or
experience. This is common in situations involving a
large number of items n. In this case judges typically
provide preference only for the l ≪ n items that they
observed or experienced. For example, in movie rec-
ommendation we may have n ∼ 103 and l ∼ 101.

From a statistical perspective, the observation of in-
complete rankings (with or without ties) represents an
unknown permutation within the set of permutations
that do not contradict the observed preference e.g.,

3 ≺ 2 ≺ 4 = {1 ≺ 3 ≺ 2 ≺ 4} ∪ {3 ≺ 1 ≺ 2 ≺ 4}

∪{3 ≺ 2 ≺ 1 ≺ 4} ∪ {3 ≺ 2 ≺ 4 ≺ 1}. (2)

Barring any additional information on which permu-
tations in S are more likely, we assume a uniform dis-
tribution resulting in

p̂(π) = m−1
m

∑

i=1

|Si|
−1

∑

σ∈Si

Kh(T (π, σ)),

p̂(R) = m−1
m

∑

i=1

|Si|
−1

∑

σ∈Si

∑

π∈R

Kh(T (π, σ)), (3)

where S1, . . . , Sm are the observed incomplete prefer-
ences. The main difficulty with the estimator above is
the intractable computation of

∑

σ∈S Kh(T (π, σ)) or
∑

π∈R

∑

σ∈S Kh(T (π, σ)) for large n.

3 Efficient Triangular Smoothing with

Missing Items

Previous work [10] developed computationally efficient
schemes to compute (3) for the Mallows kernel

Kh(T (π, σ)) = exp

(

−
T (π, σ)

h

) n
∏

j=1

1 − e−1/h

1 − e−j/h
(4)

T (π, σ) =

n−1
∑

i=1

∑

l>i

I(πσ−1(i) − πσ−1(l)) (5)

when the observed preferences are tied rankings. Un-
fortunately these simplifications do not carry over to
the case of incomplete rankings that are often found
in practice. In this paper we address this problem
by deriving computationally efficient estimators for in-
complete rankings. We do so for the non-parametric
estimator (3) but instead of the Mallows kernel (4) we
use a triangular kernel that is the direct analog of the
Euclidean triangular kernel

Kh(T (π, σ)) =
(1 − h−1T (π, σ))I(h − T (π, σ))

C(h)
. (6)
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Above, I(x) = 1 for x ≥ 0 and 0 otherwise, T is
Kendall’s Tau defined in (5) and h represent both the
support (the kernel is 0 for all larger distances) and
the inverse slope of the triangle.

It is generally agreed in the non-parametric kernel
smoothing literature that the precise shape of a uni-
modal kernel is not important (with the exception of
histogram kernels). This is motivated by statistical
theory which shows that continuous unimodal sym-
metric kernels achieve the same asymptotic rate. They
do differ in the decay constant but only by a bit and the
triangular kernel is favorable in that sense: the trian-
gular kernel achieves 98.6% efficiency (100% is the op-
timal kernel) while Gaussian achieves 95.1% (worse!),
tri-weight is 98.7% and bi-weight achieves 99.4% [19].

Combinatorial Generating Function

Generating functions, a tool from enumerative combi-
natorics, allow the kernel estimators to be readily cal-
culated by concisely expressing the distribution of dis-
tances between permutations. Kendall’s tau T (π, σ)
is the total number of discordant pairs or inversions
between π, σ [17] and thus its computation becomes a
combinatorial counting problem. We associate the fol-
lowing generating function with the symmetric group
of permutations over n items

Gn(z) =
n−1
∏

j=1

j
∑

k=0

zk. (7)

As shown for example in [17] the coefficient of zk in
Gn(z) corresponds to the number of permutations σ
for which T (σ, π′) = k (in this case π′ is an arbitrary
fixed permutation whose precise choice does has no in-
fluence). For example, the distribution of Kendall’s
tau T (·, π′) over all permutations of 3 items is de-
scribed by G3(z) = (1 + z)(1 + z + z2) = 1z0 +
2z1 + 2z2 + 1z3 i.e., there is one permutation σ with
T (σ, π′) = 0, two permutations σ with T (σ, π′) = 1,
two with T (σ, π′) = 2 and one with T (σ, π′) = 3. We
use the standard notation of extracting the k coeffi-
cient of Gn(z) as [zk]G(z) i.e., [z2]G3(z) = 2. Another
important generating function is

Hn(z) =
Gn(z)

1 − z
= (1 + z + z2 + z3 + · · · )Gn(z),

where [zk]Hn(z) represents the number of permuta-
tions σ for which T (σ, π′) ≤ k.

Proposition 1. The normalization term C(h) is

given by C(h) = [zh]Hn(z) − h−1[zh−1]
G′

n(z)
1−z .

Proof. The proof factors the non-normalized tri-
angular kernel CKh(π, σ) to I(h − T (π, σ)) and
h−1T (π, σ)I(h−T (π, σ)) and making the following ob-
servations. First we note that summing the first factor

over all permutations may be counted by [zh]Hn(z).
The second observation is that [zk−1]G′

n(z) is the num-
ber of permutations σ for which T (σ, π′) = k, multi-
plied by k. Since we want to sum over that quantity
for all permutations whose distance is less than h we
extract the h− 1 coefficient of the generating function
G′

n(z)
∑

k≥0 zk = G′
n(z)/(1 − z). We thus have

C =
∑

σ:T (π′,σ)≤h

1 − h−1
∑

σ:T (π′,σ)≤h

T (π′, σ)

=[zh]Hn(z) − h−1[zh−1]
G′

n(z)

1 − z
.

Proposition 2.ComputingC(h) has complexityO(n4).

Proof. We describe a dynamic programming algorithm
to compute the coefficients of Gn by recursively com-
puting the coefficients of Gk from the coefficients of
Gk−1, k = 1, . . . , n. The generating function Gk(z) has
k(k+1)/2 non-zero coefficients and computing each of
them (using the coefficients of Gk−1) takes O(k). We
thus have O(k3) to compute Gk from Gk−1 which im-
plies O(n4) to compute Gk, n = 1, . . . , n. We conclude
the proof by noting that once the coefficients of Gn are
computed the coefficients of Hn(z) and Gn(z)/(1− z)
are computable in O(n2) as these are simply cumula-
tive weighted sums of the coefficients of Gn.

Note that computing C(h) for one or many h values
may be done offline prior to the arrival of the rankings
and the need to compute the estimated probabilities.

Denoting by k the number of items ranked in either
S or R or both, the computation of p̂(π) in (3) re-
quires O(k2) online and O(n4) offline complexity if
either non-zero smoothing is performed over the en-
tire data i.e., maxπ∈R maxn

i=1 maxσ∈Si
T (σ, π) < h

or alternatively, we use the modified triangular ker-
nel K∗

h(π, σ) ∝ (1 − h−1)T (π, σ) which is allowed to
take negative values for the most distant permutations
(normalization still applies though).

Proposition 3. For two sets of permutations S,R
corresponding to tied-incomplete rankings, the expected

distance d = 1
|S||R|

∑

π∈S

∑

σ∈R T (π, σ) is

d =
n(n − 1)

4
−

1

2

n−1
∑

i=1

n
∑

j=i+1

(1 − 2pij(S))(1 − 2pij(R))

pij(U) =



































1/2 i and j are tied in U

I(τU (j) − τU (i)) i and j are not tied in U

1 −
τU (i)+

φU (i)−1

2

k+1 only i is ranked in U
τU (j)+

φU (j)−1

2

k+1 only j is ranked in U

1/2 otherwise
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with τU (i) = minπ∈U π(i), and φU (i) being the number

of items that are tied to i in U .

Proof. We note that d is an expectation with respect
to the uniform measure. We thus start by computing
the probability pij(U) that i is preferred to j for U = S
and U = R under the uniform measure. Five scenarios
exist for each of pij(U) corresponding to whether each
of i and j are ranked by S and R. Starting with the
case that i is not ranked j is ranked we note that i
is equally likely to be preferred to any item preferred
to and including j and that there are k + 1 possible
rankings for i. Given the uniform distribution over
compatible rankings item j is equally likely to appear
in positions τU (j), . . . , τU (j) + φU (j) − 1. Thus

pij =
1

φU (j)

τU (j)

k + 1
+ · · · +

1

φU (j)

τU (j) + φU (j) − 1

k + 1

=
τU (j) + φU (j)−1

2

k + 1
.

Similarly, if j is unknown and i is known, then pij +
pji = 1. If both i and j are unknown either order-
ing must be equally likely given the uniform distribu-
tion making pij = 1/2. Finally, if both i and j are
known pij = 1, 1/2, 0 depending on their preference.
Given pij , linearity of expectation, and the indepen-
dence between rankings, the change in the expected
number of inversions relative to the uniform expecta-
tion n(n− 1)/4 can be found by considering each pair

Ed(i, j) =
1

2
P (i and j disagree) −

1

2
P (i and j agree)

=
1

2
(pij(σ)(1 − pij(π)) + (1 − pij(σ))pij(π))

−pij(σ)pij(π) − (1 − pij(σ))(1 − pij(π)))

=
−1

2
(1 − 2pij(σ)) (1 − 2pij(π))

Summing over all pairs completes the proof.

Corollary 1. Denoting the number of items ranked
by either S or R or both as k, and assuming either
h > maxπ∈R maxn

i=1 maxσ∈Si
T (σ, π) or that the mod-

ified triangular kernel K∗
h(π, σ) ∝ (1 − h−1)T (π, σ) is

used, the complexity of computing p̂(R) in (3) is O(k2)
online and O(n4) offline.

Proof. Computing (3) reduces to O(n4) offline com-
putation of the normalization term and O(k2) online
computation in Proposition 3.

In many cases including all of the experiments in this
paper it is not necessary to compute C(h) using the
generating function approach (however, see Table 1 for
comptuational cost of computing C(h)). One reason is
that in many cases we care mostly about the ordering
of probabilities of competing events rather than precise

item n 1000 1500 2000 2500 3000
time (hr) 0.02 0.09 0.27 0.75 1.72

Table 1: Computational cost of C(h) in (6) with respect to
the number of items n with bandwidth h = 0.5∗Tmax(π, σ).

values and thus we can compute the probabilities up to
a constant multiple. Another reason is that we are es-
timating probabilities of a set of L disjoint events and
the normalization term may be computed by summing
over the non-normalized probability estimates (this is
feasible when L is not too large which happens in most
practical cases involving recommendation systems). In
these cases the complexity is O(k2) which is bounded
from above by O(n2).

4 Three Applications

We examine the estimation framework on three movie
recommendation datasets: Movielens1M (6040 users
over 3952 movies), EachMovie and Netflix (10k users
over 1k most rated movies).

Task 1: Estimating Probabilities. We consider
here the task of estimating p̂(R) where R is a set of per-
mutations corresponding to a tied incomplete ranking.
Such estimates may be used to compute conditional es-
timates P̂ (R|S) which are used to predict which aug-
mentations R of S are highly probable. For example,
given an observed preference 3 ≺ 2 ≺ 5 we may want
to compute p̂(8 ≺ 3 ≺ 2 ≺ 5|3 ≺ 2 ≺ 5) = p̂(8 ≺ 3 ≺
2 ≺ 5)/p̂(3 ≺ 2 ≺ 5) to see whether item 8 should be
recommended to the user. For simplicity we focus in
this section on probabilities of simple events such as
i ≺ j or i ≺ j ≺ k. The next section deals with more
complex events.

In Figure 2 we plot the values of p̂(i ≺ j) for i corre-
sponding to three movies: Shrek (family), Catch Me If
You Can (drama) and Napoleon Dynamite (comedy)
(j varies over the remaining movies). Comparing the
three stem plots we observe that Shrek is preferred
to almost all other movies, Napoleon Dynamite is less
preferred than most other movies, and Catch Me If
You Can is preferred to some other movies but less
preferred than others. Also interesting is the linear
increase of the stem plots for Catch Me If You Can
and Napoleon Dynamite and the non-linear increase
of the stem plot for Shrek. This is likely a result of
the fact that for very popular movies there are only a
few comparable movies with the rest being very likely
to be less preferred movies (p̂(i ≺ j) close to 1). Ex-
amining the genre (colors in right panels of Figure 2)
we see that family and science fiction are generally
preferred to others movies while comedy and romance
generally receive lower preferences. The drama, ac-
tion genres are somewhere in the middle. This is in
agreement with the three highest movies in terms of
r(i) =

∑

j p̂(i ≺ j): Lord of the Rings: The Return
of the King, Finding Nemo, and Lord of the Rings:
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The Two Towers and the three lowest movies: Maid
in Manhattan, Anger Management, and The Royal
Tenenbaums.

In a second experiment (see Figure 3) we compare the
predictive behavior of the kernel smoothing estimator
with that of a parametric model (Mallows model) and
the empirical measure (frequency of event occurring
in the m samples). We evaluate the performance of
a probability estimator via its test set loglikelihood.
Since the Mallows model is intractable for large n we
use in this experiment n = 3, 4, 5.

We observe that the kernel estimator consistently
achieves higher test set loglikelihood than the Mallows
model and the empirical measure. The former is due to
the breakdown of parametric assumptions as indicated
by Figure 1 (note that this happens even for n as low
as 3). The latter is due to the superior asymptotics of
the kernel estimator over the empirical measure.

Task 2: Rank Prediction. Our task here is to pre-
dict the ranking of a new unseen item which is pre-
sented to the user. We follow the standard procedure
in collaborative filtering: the set of users is partitioned
to two sets, a training set and a testing set. For each
of the test set users we further split the observed items
into two sets: one set used for estimating preferences
(together with the preferences of the training set users)
and the second set to evaluate the performance of the
prediction [14].

Given a loss function L(i, j) which measures the loss of
predicting rank i when true rank is j (rank here refers
to the number of sets of equivalent items that are more
or less preferred than the current item) we evaluate a
prediction rule by the expected loss. We focus on three
loss functions: L0(i, j) = 0 if i = j and 1 otherwise,
L1(i, j) = |i−j| which reduces to the standard CF eval-
uation technique described in [14], and an asymmetric
loss function (rows are estimated number of stars (0-5)
and columns are actual number of stars (0-5)

Le =















0 0 0 3 4 5
0 0 0 2 3 4
0 0 0 1 2 3
9 6 3 0 0 0
12 9 6 0 0 0
15 12 9 0 0 0















. (8)

In contrast to the L0 and L1 loss, Le captures the
fact that recommending bad movies as good movies is
worse than recommending good movies as bad.

For example, consider a test user whose observed pref-
erence is 3 ≺ 4, 5, 6 ≺ 10, 11, 12 ≺ 23 ≺ 40, 50, 60 ≺
100, 101. We may withhold the preferences of items
4, 11 for evaluation purposes. The recommendation
systems then predict a rank of 1 for item 4 and a rank
of 4 for item 11. Since the true ranking of these items

are 2 and 3 the L1 loss is |1 − 2| = 1 and |3 − 4| = 1.

In our experiment, we use the kernel estimator p̂ to
predict ranks that minimize the posterior loss and thus
adapts to customized loss functions such as Le. This
is an advantage of a probabilistic modeling approach
over more ad-hoc rule based recommendation systems.
Figure 4 compares the performance of our estimator to
several standard baselines in the collaborative filtering
literature: two older memory based methods vector
similarity (sim1), correlation (sim2) e.g., [1], and a re-
cent state-of-the-art non-negative matrix (NMF) fac-
torization (gnmf) [9]. The kernel smoothing estimate
performed similarly to the NMF approach. We note
that kernel smoothing is essentially a memory based
method whose functional form is similar to the two
other memory based methods (correlation and vector
similarity) that performed much worse.

Task 3: Rule Discovery. In the third task, we used
the estimator p̂ to detect noteworthy association rules
of the type i ≺ j ⇒ k ≺ l (if i is preferred to j then
it is probably the case that k is preferred to l). Such
association rules are important for both business an-
alytics (devising marketing and manufacturing strate-
gies) and recommendation system engineering. Specif-
ically, we used p̂ to select sets of four items i, j, k, l for
which the mutual information I(i ≺ j ; k ≺ l) is maxi-
mized. We detected the precise shape of the rule (i.e.,
i ≺ j ⇒ k ≺ l rather than j ≺ i ⇒ k ≺ l by examining
the summands in the mutual information expectation).

Figure 7 shows the top 10 rules that were discovered.
These rules isolate viewer preferences for genres such
as fantasy, romantic comedies, animation, and action
(note however that genre information was not used
in the rule discovery). To quantitatively evaluate the
rule discovery process we judge a rule i ≺ j ⇒ k ≺ l
to be good if i, k are of the same genre and j, l are
of the same genre. This evaluation appears in Figure
6 where it is contrasted with the same rule discovery
process (maximizing mutual information) based on the
empirical measure. The superior performance of p̂ as
compared to the empirical nature is evident in that the
kernel estimator p̂ consistently outperforms the empir-
ical measure.

In another rule discovery experiment, we used p̂ to de-
tect association rules of the form i ranked highest ⇒
j ranked second highest by selecting i, j that max-

imize the score p(π(i)=1,π(j)=2)
p(π(i)=1)p(π(j)=2) between pairs of

movies in the Netflix data. We similarly detected
rules of the form i ranked highest ⇒ j ranked lowest

by maximizing the scores p(π(i)=1,π(j)=last)
p(π(i)=1)p(π(j)=last) between

pairs of movies. Figure 8 (top) shows the top 9 rules
of 100 most rated movies which clearly capture movie
preference of similar genre, e.g. romance, comedies,
and action. Figure 8 (bottom) shows the top 9 rules
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Figure 2: The value p̂(i ≺ j) where i is fixed for three movies Shrek (left), Catch Me If You Can (middle) and Napoleon
Dynamite (right) and j ranges over the most ranked 53 Netflix movies.
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Figure 3: The test-set log-likelihood for kernel smoothing, Mallows model, and the empirical measure with respect to
training size m for a small number of items n = 3, 4, 5 (top, middle, bottom rows) on three datasets. Both Mallows model
(intractable for large n which is why n ≤ 5 in the experiment) and the empirical measure perform worse than the kernel
estimator p̂.
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Figure 4: The prediction loss with respect to training size on three datasets. The kernel smoothing estimator performs
similar to the state of the art gnmf (matrix factorization) and better than other similarity based approaches.
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Movie Titles

1 American Beauty, Lost in Translation, Pulp Fiction, Kill Bill I,II,

Memento, The Royal Tenenbaums, Napoleon Dynamite,..

2 Spider-Man, Spider-Man II

3 Lord of the Rings I,II,III

4 The Bourne Identity, The Bourne Supremacy

5 Shrek, Shrek II

6 Meet the parents, American Pie

7 Indiana Jones and the Last Crusade, Raiders of the Lost Ark

8 The Patriot, Pearl Harbor, Men of Honor, John Q, The General’s

Daughter, National Treasure, Troy, The Italian Job,..

9 Miss Congeniality, Sweet Home Alabama,Two Weeks Notice,

50 First Dates, The Wedding Planner,Maid in Manhattan,Titanic,..

10 Men in Black I,II, Bruce Almighty, Anger Management,

Mr. Deeds, Tomb Raider, The Fast and the Furious

11 Independence Day, Con Air, Twister, Armageddon, The Rock,

Lethal Weapon 4, The Fugitive, Air Force One

Figure 5: A graph corresponding to the 100 most rated Netflix movies where edges represent high affinity as determined
by the rule discovery process (see text for more details).
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Figure 6: A quantitative evaluation of rule discovery. The
x axis represents the number of rules discovered and the y
axis represents the frequency of good rules in the discovered
rules. A rule i ≺ j ⇒ k ≺ l is considered good if i, k are of
the same genre and j, l are of the same genre.

Shrek ≺ LOTR 1 ⇒ Shrek 2≺ LOTR 3

Shrek ≺ LOTR 1 ⇒ Shrek 2≺ LOTR 2

Shrek 2 ≺ LOTR 1 ⇒ Shrek≺ LOTR 3

Kill Bill 2 ≺ National Treasure ⇒ Kill Bill 1 ≺ I. Robot

Shrek 2 ≺ LOTR 1 ⇒ Shrek 2≺ LOTR 2

LOTR 1 ≺ Monsters, Inc. ⇒ LOTR 2≺ Shrek

National Treasure ≺ Kill Bill 2 ⇒ Pearl Harbor ≺ Kill Bill 1

LOTR 1 ≺ Monsters, Inc. ⇒ LOTR 3≺ Shrek

Lose a Guy in 10 days ≺ Kill Bill 2 ⇒ 50 First Dates≺ Kill Bill 1

Figure 7: Top 10 rules discovered by p̂ on Netflix.

which represents like and dislike of different movie
types, e.g. like of romance leads to dislike of action.

In a third experiment, we used p̂ to construct an
undirected graph whose vertices are items (Net-
flix movies) and two nodes i,j are connected
by an edge if the average score of the rule
i ranked highest ⇒ j ranked second highest and the
rule j ranked highest ⇒ i ranked second highest is
higher than a certain threshold. Figure 5 shows the
graph for the 100 most rated movies in Netflix (only
movies with vertex degree greater than 0 are shown).
The clusters in the graph corresponding to vertex color
and numbering were obtained using a graph partition-
ing algorithm and the graph is embedded in a 2-D
plane using standard graph visualization technique.
Within each of the identified clusters movies are clearly
similar with respect to genre, while an even finer sep-
aration can be observed when looking at specific clus-
ters. For example, clusters 6 and 9 both contain com-
edy movies, where as cluster 6 tends toward slapstick
humor and cluster 9 contains romantic comedies.

5 Related Work

Collaborative filtering or recommendation system has
been an active research area in computer science since
the 1990s. The earliest efforts made a prediction for
the rating of items based on the similarity of the test
user and the training users [15, 1, 5]. Specifically,
these attempts used similarity measures such as Pear-
son correlation [15] and Vector cosine similarity [1, 5]

Kill Bill 1 ⇒ Kill Bill 2

Maid in Manhattan ⇒ The Wedding Planner

Two Weeks Notice ⇒ Miss Congeniality

The Royal Tenenbaums ⇒ Lost in Translation

The Royal Tenenbaums ⇒ American Beauty

The Fast and the Furious ⇒ Gone in 60 Seconds

Spider-Man ⇒ Spider-Man 2

Anger Management ⇒ Bruce Almighty

Memento ⇒ Pulp Fiction

Maid in Manhattan ⇒ Pulp Fiction

Maid in Manhattan ⇒ Kill Bill: 1

How to Lose a Guy in 10 Days ⇒ Pulp Fiction

The Royal Tenenbaums ⇒ Pearl Harbor

The Wedding Planner ⇒ The Matrix

Peal Harbor ⇒ Memento

Lost in Translation ⇒ Pearl Harbor

The Day After Tomorrow ⇒ American Beauty

The Wedding Planner ⇒ Raiders of the Lost Ark

Figure 8: Top (like A)⇒(like B) (top) and top (like A)⇒
(dislike B) (bottom) rules discovered by p̂ on Netflix.

to evaluate the similarity level between different users.
More recent work includes user and movie clustering
[1, 18, 20], item-item similarities [16], Bayesian net-
works [1], dependence network [4] and probabilistic la-
tent variable models [14, 6, 13].

Parametric alternatives to our non-parametric estima-
tor include MLE for the Mallows model [11, 3], the
Bradley Terry model, and the Thurstone model [12]. A
different class of estimators are based on Fourier anal-
ysis on the symmetric group [2, 7]. These techniques
vary in their statistical accuracy and computational
efficiency with the latter becoming crucial for large n.

6 Discussion

Estimating distributions from tied and incomplete
data is a central task in many applications with per-
haps the most obvious one being collaborative filter-
ing. An accurate estimator p̂ enables going beyond the
traditional item-rank prediction task. It can be used
to compute probabilities of interest, find association
rules, and a wide range of additional analysis tasks.

We demonstrate the first non-parametric estimator for
such data that is computationally tractable i.e., poly-
nomial rather than exponential in n. The computa-
tion is made possible using generating function and
dynamic programming techniques. We show experi-
mentally that it performs similar to a state-of-the-art
matrix factorization method and substantially outper-
forms other memory based methods (to which it is sim-
ilar functionally). An advantage of our method is that
its probabilistic nature makes it naturally suited for
tasks that go beyond rank prediction such as finding
association rules, optimizing prediction for customized
loss functions, and deriving confidence bounds.
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