5 Appendix

5.1 Proof of Theorem 1

Proof. The weak learner assumption implies that for $x_{k} \in U^{t}$

$$
\begin{equation*}
\exists q \geq 0: y_{k} \mathbf{h}\left(x_{k}\right)^{T} q>0 \text { and } y_{i} \mathbf{h}\left(x_{i}\right)^{T} q>0 \forall x_{i} \in L^{t} \tag{12}
\end{equation*}
$$

Without loss of generality assume that $y_{k}=-1$. This implies that

$$
\begin{equation*}
\mathcal{A}=\left\{q \geq 0, q \neq 0 \mid-\mathbf{h}\left(x_{k}\right)^{T} q>0 \text { and } y_{i} \mathbf{h}\left(x_{i}\right)^{T} q>0 \forall x_{i} \in L^{t}\right\} \neq \emptyset \tag{13}
\end{equation*}
$$

We are left to determine whether, there is a $q \geq 0$ such that, $\mathbf{h}\left(x_{k}\right)^{T} q>0$ and $y_{i} \mathbf{h}\left(x_{i}\right)^{T} q>0 \forall x_{i} \in L^{t}$. Suppose there is no such q, then we have that

$$
\begin{equation*}
\nexists q \geq 0: \mathbf{h}\left(x_{k}\right)^{T} q>0 \text { and } y_{i} \mathbf{h}\left(x_{i}\right)^{T} q>0 \forall x \in L^{t} \tag{14}
\end{equation*}
$$

By assumption \mathcal{H} is negation complete that is $\exists j, j^{*}: h_{j}(x)=-h_{j *}(x)$. Define vector \tilde{q} such that $\tilde{q}_{j}=q_{j}-q_{j *}$ then we can simplify the above expression to:

$$
\begin{equation*}
\nexists \tilde{q}: \mathbf{h}\left(x_{k}\right)^{T} \tilde{q}>0 \text { and } y_{i} \mathbf{h}\left(x_{i}\right)^{T} \tilde{q}>0 \forall x \in L^{t} \tag{15}
\end{equation*}
$$

Note \tilde{q} is now allowed to be negative. This means that as \tilde{q}_{i} ranges over all the real numbers the vector $\left(\mathbf{h}\left(x_{k}\right)^{T} \tilde{q}, y_{1} \mathbf{h}\left(x_{1}\right)^{T} \tilde{q}, \ldots, y_{t} \mathbf{h}\left(x_{t}\right)^{T} \tilde{q}\right)$ does not intersect the first quadrant. In addition the complement of this set contains \mathcal{A}, which is convex and non-empty. Consequently, we can invoke the separating hyperplane theorem that separates the first quadrant from all the feasible vectors $\left(\mathbf{h}\left(x_{k}\right)^{T} \tilde{q}, y_{1} \mathbf{h}\left(x_{1}\right)^{T} \tilde{q}, \ldots, y_{t} \mathbf{h}\left(x_{t}\right)^{T} \tilde{q}\right)$ as $\tilde{q}_{i}, \forall i$ ranges over all real numbers. As a consequence we have hyperplane $\lambda \geq 0$ and $\delta>0$ such that,

$$
\begin{array}{r}
\exists \lambda, \delta \geq 0: \delta \mathbf{h}\left(x_{k}\right)^{T} \tilde{q}+\sum_{i \in L^{t}} \lambda_{i} y_{i} \mathbf{h}\left(x_{i}\right)^{T} \tilde{q} \leq 0 \forall \tilde{q} \\
\exists \lambda, \delta \geq 0:\left[\delta \mathbf{h}\left(x_{k}\right)^{T}+\sum_{i \in L^{t}} \lambda_{i} y_{i} \mathbf{h}\left(x_{i}\right)^{T}\right] \tilde{q} \leq 0 \forall \tilde{q} \\
\Longrightarrow \delta \mathbf{h}\left(x_{k}\right)+\sum_{i \in L^{t}} \lambda_{i} y_{i} \mathbf{h}\left(x_{i}\right)=0 \tag{18}
\end{array}
$$

Note that λ or δ cannot be all zeros. For $\delta \neq 0$, equality in 18 implies that $\mathbf{h}\left(x_{k}\right)$ has to lie in the cone of $y_{i} \mathbf{h}\left(x_{i}\right)$'s. $\mathbf{h}(x)$ is a vertex of $+1,-1$ hypercube in N dimensions. A vertex $\mathbf{h}\left(x_{k}\right)$ of this hypercube lies in the cone of other vertices $\left\{\mathbf{h}\left(x_{i}\right)\right\}_{i \in L^{t}}$ if and only if $k \in L^{t}$.
For $\delta=0$, the equality in 18 cannot hold for $\left\{y_{i} \mathbf{h}\left(x_{i}\right)\right\}_{i \in L^{t}}$ that satisfy the weak learner assumption.

5.2 Proof of Lemma 1

Proof. We provide the main outline of the proof and skip some of the messy algebra. For simpler notation, let $q(x)=\operatorname{sgn}\left(\sum_{j=1}^{L} q_{j} h_{j}(x)-.5\right)$ where $h_{j}(x) \in\{0,1\}$. We emphasize that the weak learners map to zero or one. Any two samples x, x^{\prime} are δ-neighborly if:

$$
\begin{equation*}
\frac{1}{2} \int_{Q}\left|q(x)-q\left(x^{\prime}\right)\right| d q \leq \delta \tag{19}
\end{equation*}
$$

The integral is the volume where $q(x)$ and $q\left(x^{\prime}\right)$ disagree:

$$
\begin{equation*}
\int_{Q} \mathbb{1}_{\left[q(x) \neq q\left(x^{\prime}\right)\right]} d q \leq 2 \delta \tag{20}
\end{equation*}
$$

Let $S=\left\{j \mid h_{j}(x)=h_{j}\left(x^{\prime}\right)\right\}$ and $S^{c}=\left\{j \mid h_{j}(x) \neq h_{j}\left(x^{\prime}\right)\right\}:$

$$
\begin{equation*}
q(x)=\operatorname{sgn}\left(\sum_{j \in S} q_{j} h_{j}(x)+\sum_{j \in S^{c}} q_{j} h_{j}(x)-.5\right) \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
q\left(x^{\prime}\right)=\operatorname{sgn}\left(\sum_{j \in S} q_{j} h_{j}(x)+\sum_{j \in S^{c}} q_{j} h_{j}\left(x^{\prime}\right)-.5\right) \tag{22}
\end{equation*}
$$

Let $S_{1}=\left\{j \mid h_{j}(x)=1\right\} \cap S^{c}$ and $S_{2}=\left\{j \mid h_{j}\left(x^{\prime}\right)=1\right\} \cap S^{c}$ then

$$
\begin{align*}
& q(x)=\operatorname{sgn}\left(\sum_{j \in S} q_{j} h_{j}(x)+\sum_{j \in S_{1}} q_{j}-.5\right) \tag{23}\\
& q\left(x^{\prime}\right)=\operatorname{sgn}\left(\sum_{j \in S} q_{j} h_{j}(x)+\sum_{j \in S_{2}} q_{j}-.5\right) \tag{24}
\end{align*}
$$

And $q(x) \neq q\left(x^{\prime}\right)$ if and only if

$$
\begin{equation*}
\sum_{j \in S} q_{j} h_{j}(x)<.5 \text { and } \sum_{j \in S_{1}} q_{j}>.5-\sum_{j \in S} q_{j} h_{j}(x) \text { and } \sum_{j \in S_{2}} q_{j}<.5-\sum_{j \in S} q_{j} h_{j}(x) \tag{25}
\end{equation*}
$$

By the K-neighbor assumption: $\left|S_{1} \cup S_{2}\right| \leq K$. Let $\left|S_{1}\right|=K-k_{1}$ and $\left|S_{2}\right|=k_{1}$ and:

$$
\begin{equation*}
\tilde{Q}\left(k_{1}\right)=\left\{q \in Q \mid \sum_{j \in S} q_{j} h_{j}(x)<.5, \quad \sum_{j \in S_{1}} q_{j}>.5-\sum_{j \in S} q_{j} h_{j}(x), \sum_{j \in S_{2}} q_{j}<.5-\sum_{j \in S} q_{j} h_{j}(x)\right\} \tag{26}
\end{equation*}
$$

It is easy to check that the case where $\left|S_{2}\right|=0$ and $\left|S_{1}\right|=K$ will have the greatest volume:

$$
\begin{equation*}
\operatorname{Vol}\left(\tilde{Q}\left(k_{1}\right)\right) \leq \operatorname{Vol}(\tilde{Q}(0)) \text { for } 0<k_{1} \leq K \tag{27}
\end{equation*}
$$

So let,

$$
\begin{equation*}
\tilde{Q}(0)=\left\{q \in Q, \sum_{j \in S_{1}} q_{j}>.5-\sum_{j \in S} q_{j} h_{j}(x), \sum_{j \in S} q_{j} h_{j}(x)<.5\right\} \tag{28}
\end{equation*}
$$

$\operatorname{Vol}(\tilde{Q}(0))$ is an upper bound for (20).
To compute the volume we recast the problem in terms of probabilities. Note that since the simplex Q is endowed with the Lebesgue measure we can think of q as a random variable uniformly distributed over Q. However, the components of q are now dependent. To transform the problem into an independent set of random variables we consider exponentially distributed random variables.
Define the unnormalized IID random variable $q_{j}^{\prime}=q_{j} \sum_{j \in 1}^{N} q_{j}^{\prime}$ where q_{j}^{\prime} are IID exponentially distributed random variables with mean equal to θ. Then $\mathbf{E}\left[\sum_{j \in 1}^{N} q_{j}^{\prime}\right]=\frac{N}{\theta}$. It is well known that such an exponentially distributed set of random variables when normalized exactly produces a uniform distribution over the simplex.

By substitution of the unnormalized random variables we obtain,

$$
\begin{aligned}
\operatorname{Pr}\{\tilde{Q}(0)\}= & \operatorname{Pr}\left\{q \in Q, \sum_{j \in S_{1}} q_{j}>.5-\sum_{j \in S} q_{j} h_{j}(x), \sum_{j \in S} q_{j} h_{j}(x)<.5\right\} \\
& =\operatorname{Pr}\left\{\sum_{j \in S_{1}} q_{j}^{\prime}>.5\left(\sum_{j=1}^{N} q_{j}^{\prime}\right)-\sum_{j \in S} q_{j}^{\prime} h_{j}(x), \sum_{j \in S} q_{j}^{\prime} h_{j}(x)<.5\left(\sum_{j=1}^{N} q_{j}^{\prime}\right)\right\}
\end{aligned}
$$

To simplify this expression we consider the event,

$$
A=\left\{\left|\frac{1}{\theta}-\frac{1}{N} \sum_{j \in 1}^{N} q_{j}^{\prime}\right| \leq \epsilon_{2}\right\}
$$

Note that the event A can be cast in the familiar form of an empirical average being close to its empirical mean. Consequently, we expect that the probability of the complement, A^{c}, of the event A is exponentially small in N.

We now proceed as follows:

$$
\begin{align*}
\operatorname{Pr}\{\tilde{Q}(0)\} \leq & \operatorname{Pr}\left\{\sum_{j \in S_{1}} q_{j}^{\prime}>.5\left(\sum_{j=1}^{N} q_{j}^{\prime}\right)-\sum_{j \in S} q_{j}^{\prime} h_{j}(x), \sum_{j \in S} q_{j}^{\prime} h_{j}(x)<.5\left(\sum_{j=1}^{N} q_{j}^{\prime}\right), q_{j}^{\prime} \in A\right\}+\operatorname{Pr}\left(A^{c}\right) \\
& \leq \operatorname{Pr}\left\{\sum_{j \in S_{1}} q_{j}^{\prime}>.5 \frac{N}{\theta}\left(1-\epsilon_{2}\right)-\sum_{j \in S} q_{j}^{\prime} h_{j}(x), \sum_{j \in S} q_{j}^{\prime} h_{j}(x)<.5 \frac{N}{\theta}\left(1+\epsilon_{2}\right), q_{j}^{\prime} \in A\right\}+\operatorname{Pr}\left(A^{c}\right) \\
& \leq \operatorname{Pr}\left\{\sum_{j \in S_{1}} q_{j}^{\prime}>.5 \frac{N}{\theta}\left(1-\epsilon_{2}\right)-\sum_{j \in S} q_{j}^{\prime} h_{j}(x), \sum_{j \in S} q_{j}^{\prime} h_{j}(x)<.5 \frac{N}{\theta}\left(1+\epsilon_{2}\right)\right\}+\operatorname{Pr}\left(A^{c}\right) \tag{29}
\end{align*}
$$

where the first inequality follows from the union bound; the second inequality follows from the definition of event A; the third inequality is a direct application of the union bound. We now ignore the second term since it is arbitrarily small for sufficiently large N.
We are now in the familiar territory of a sum of IID random variables since S and S_{1} have no overlap. Note that $\sum_{j \in S_{1}} q_{j}^{\prime}$ is independent of $\sum_{j \in S} q_{j}^{\prime} h_{j}(x)$ and each of these random variables are Γ distributed. By straighforward conditioning on $\sum_{j \in S} q_{j}^{\prime} h_{j}(x)$ we can simplify the expressions in Equation 29. It follows that,

$$
\begin{equation*}
\operatorname{Pr}\{\tilde{Q}(0)\} \leq \int_{0}^{.5} \operatorname{Pr}\left\{\sum_{j \in S_{1}} q_{j}^{\prime}>g \frac{N}{\theta}\right\} d g \tag{30}
\end{equation*}
$$

Let $Z=\sum_{j \in S_{1}} q_{j}^{\prime}$ which has a gamma distribution: $\Gamma(K, \theta)$ and by the Chernoff bound(Section 5.2.1),

$$
\begin{aligned}
\operatorname{Pr}\left\{Z>g \frac{N}{\theta}\right\} & \leq \min _{t \geq 0} e^{-\operatorname{tg} \frac{N}{\theta}} \mathbf{E}\left[e^{t Z}\right] \\
& =\min _{t \geq 0} e^{-\operatorname{tg} \frac{N}{\theta}}\left(1-\frac{t}{\theta}\right)^{-K}, t<\theta \\
& =\left(\frac{N}{K}\right)^{K} e^{K} g^{K} e^{-g N}, g>\frac{K}{N}
\end{aligned}
$$

The integral in (30):

$$
\begin{equation*}
=\int_{0}^{\frac{K}{N}} \operatorname{Pr}\left\{\sum_{j \in S_{1}} q_{j}^{\prime}>g \frac{N}{\theta}\right\} d g+\int_{\frac{K}{N}}^{.5}\left(\frac{N}{K}\right)^{K} e^{K} g^{K} e^{-g N} d g \tag{31}
\end{equation*}
$$

The first term is upper-bounded by K / N since the integrand is positive and always less than 1 . The second term is upper-bounded by:

$$
\begin{aligned}
\left(\frac{N}{K}\right)^{K} e^{K} \int_{\frac{K}{N}}^{.5} g^{K} e^{-g N} d g & \leq\left(\frac{N}{K}\right)^{K} e^{K} \int_{\frac{K}{N}}^{\infty} g^{K} e^{-g N} d g \\
& =\frac{1}{N} \sum_{p=0}^{K} \frac{K!}{(K-p)!K^{p}} \\
& \leq \frac{K+1}{N}
\end{aligned}
$$

Combining the bounds on the two terms, we have the upper bound:

$$
\begin{equation*}
\operatorname{Pr}\left\{q(x) \neq q\left(x^{\prime}\right)\right\} \leq \frac{2 K+1}{N} \tag{32}
\end{equation*}
$$

And the disagreement volume:

$$
\begin{equation*}
\int_{Q} \mathbb{1}_{\left[q(x) \neq q\left(x^{\prime}\right)\right]} d q \leq \frac{2 K+1}{N} \operatorname{Vol}(Q) \tag{33}
\end{equation*}
$$

And for any $Q^{\prime} \subset Q$:

$$
\begin{equation*}
\int_{Q^{\prime}} \mathbb{1}_{\left[q(x) \neq q\left(x^{\prime}\right)\right]} d q \leq \int_{Q} \mathbb{1}_{\left[q(x) \neq q\left(x^{\prime}\right)\right]} d q \leq \frac{2 K+1}{N} \operatorname{Vol}(Q) \tag{34}
\end{equation*}
$$

5.2.1 Chernoff Bound on a Gamma distribution

$$
\begin{equation*}
\operatorname{Pr}\left\{Z>g \frac{N}{\theta}\right\} \leq \min _{t \geq 0} e^{-t g \frac{N}{\theta}} \mathbf{E}\left[e^{t Z}\right] \tag{35}
\end{equation*}
$$

For a Gamma Random Variable $Z \sim \Gamma(K, \theta)$ the moment generating function is

$$
\begin{equation*}
\mathbf{E}\left[e^{t Z}\right]=\left(1-\frac{t}{\theta}\right)^{-K}, \text { if } t<\theta \tag{36}
\end{equation*}
$$

Minimize the bound over $0 \leq t<\theta$:

$$
\begin{equation*}
\mathcal{B}(t)=\frac{1}{e^{\operatorname{tg} \frac{N}{\theta}}\left(1-\frac{t}{\theta}\right)^{K}} \tag{37}
\end{equation*}
$$

Let $t=\gamma \theta$ and maximize $\mathcal{B}^{\prime-1}(\gamma)$ instead:

$$
\begin{equation*}
\gamma^{*}=\operatorname{argmax}_{0 \leq \gamma<1} e^{c \gamma N}(1-\gamma)^{K} \tag{38}
\end{equation*}
$$

Take the derivative:

$$
\begin{equation*}
\frac{d \mathcal{B}^{\prime-1}}{d \gamma}=(1-\gamma)^{K-1} e^{g N \gamma}[-K+(1-\gamma) g N] \tag{39}
\end{equation*}
$$

The derivative is zero only when the last product term is zero or:

$$
\begin{equation*}
\gamma^{*}=1-\frac{K}{g N} \tag{40}
\end{equation*}
$$

Note since $K \ll N, \gamma^{*}<1$ and if $c \geq \frac{K}{N}$ then $\gamma^{*} \geq 0$. Plugging γ^{*} back in:

$$
\begin{equation*}
\mathcal{B}^{\prime}\left(\gamma^{*}\right)=\left(\frac{N}{K}\right)^{K} e^{K} g^{K} e^{-g N}, \text { if } g>\frac{K}{N} \tag{41}
\end{equation*}
$$

5.2.2 Integral of the Chernoff Bound on a Gamma distribution

$$
\begin{equation*}
\left(\frac{N}{K}\right)^{K} e^{K} \int_{g_{0}}^{\infty} g^{K} e^{-g N} d g=e^{-g_{0} N} \sum_{p=0}^{K} g_{0}^{K-p} \frac{K!}{(K-p)!N^{p+1}} \tag{42}
\end{equation*}
$$

Let $g_{0}=\frac{K}{N}$,

$$
\begin{equation*}
=\frac{1}{N} \sum_{p=0}^{K} \frac{K!}{(K-p)!K^{p}} \tag{43}
\end{equation*}
$$

Define a term in this series as $A_{p}=\frac{K!}{(K-p)!K^{p}}$ and calculate the ratio of two succeeding terms:

$$
\begin{equation*}
r=\frac{A_{p}}{A_{p+1}}=\frac{K}{K-p} \geq 1 \tag{44}
\end{equation*}
$$

The series is decreasing and the first term $A_{0}=1$ thus

$$
\begin{equation*}
\sum_{p=0}^{K} A_{p} \leq K+1 \tag{45}
\end{equation*}
$$

And the integral is bounded:

$$
\begin{equation*}
\left(\frac{N}{K}\right)^{K} e^{K} \int_{g_{0}}^{\infty} g^{K} e^{-g N} d g \leq \frac{K+1}{N}, g_{0}=\frac{K}{N} \tag{46}
\end{equation*}
$$

5.3 Proof of Lemma 2

The proof closely follows [Nowak, 2009].

Proof. $\exists p^{\prime}$ such that

$$
\begin{equation*}
\left|\sum_{i=1}^{B} q\left(x_{i}\right) p_{i}^{\prime}\right| \leq \rho \forall q \tag{47}
\end{equation*}
$$

Integrate both sides over $q \in Q^{\prime}$

$$
\begin{equation*}
\int_{Q^{\prime}}\left|\sum_{i=1}^{B} q\left(x_{i}\right) p_{i}^{\prime}\right| d q \leq \rho \operatorname{Vol}\left(Q^{\prime}\right) \tag{48}
\end{equation*}
$$

Integral of the absolute value is greater than the absolute value of the integral and interchange integration with addition:

$$
\begin{equation*}
\left|\sum_{i=1}^{B} \int_{Q^{\prime}} q\left(x_{i}\right) d q p_{i}^{\prime}\right| \leq \rho \operatorname{Vol}\left(Q^{\prime}\right) \tag{49}
\end{equation*}
$$

If $x \in \mathcal{X}$ s.t. $\left|\int_{Q^{\prime}} q(x) d q\right| \leq \rho \operatorname{Vol}\left(Q^{\prime}\right) \mid$ does not exist then $\left|\int_{Q^{\prime}} q(x) d q\right|>\rho \operatorname{Vol}\left(Q^{\prime}\right)$ for all $x \in \mathcal{X}$. Since (49) is a convex combination of $\int_{Q^{\prime}} q\left(x_{i}\right) d q$, if one term is negative there has to exist a positive term in order for the sum to be less than or equal to $\rho \operatorname{Vol}\left(Q^{\prime}\right)$. Therefore $\exists x, x^{\prime}$ such that:

$$
\begin{equation*}
\int_{Q^{\prime}} q(x) d q>\rho \operatorname{Vol}\left(Q^{\prime}\right) \text { and } \int_{Q^{\prime}} q\left(x^{\prime}\right) d q<-\rho \operatorname{Vol}\left(Q^{\prime}\right) \tag{50}
\end{equation*}
$$

If the pair Q, \mathcal{X} is δ-neighborly, there exists a sequence of x_{i} 's starting at x and ending in x^{\prime}. The sign will have to switch somewhere in the sequence. Let us redefine the pair x, x^{\prime} to be where the sign switches. From before: $\int_{Q^{\prime}} q(x) d q-\int_{Q^{\prime}} q\left(x^{\prime}\right) d q>2 \rho \operatorname{Vol}\left(Q^{\prime}\right)$. By δ-neighborly assumption: $\left|\int_{Q^{\prime}} q(x) d q-\int_{Q^{\prime}} q\left(x^{\prime}\right) d q\right|<\int_{Q^{\prime}} \mid q(x)-$ $q\left(x^{\prime}\right) \mid d q<2 \delta \operatorname{Vol}(Q)$. Combining the two inequalities: $\operatorname{Vol}\left(Q^{\prime}\right)<\frac{\delta}{\rho} \operatorname{Vol}(Q)$.

5.4 Proof of Theorem 2

Proof. Let $\rho \geq \rho^{*}\{\mathcal{X}, Q\}$ and at this stage we want to find an x^{\prime} to reduce version space Q^{τ} by $\frac{1+\rho}{2}$ at stage τ. Lemma 2 states that if that is not possible then

$$
\begin{equation*}
\operatorname{Vol}\left(Q^{\tau}\right) \leq \frac{\delta}{\rho} \operatorname{Vol}(Q) \tag{51}
\end{equation*}
$$

For simplicity of notation call this the termination of stage 1 and let τ be the time stage 1 is terminated, namely, the condition above is realized.

To proceed we now restart the entire process by exchanging Q with Q^{τ}. We call this start of stage 2. To avoid confusion we denote the iterations in this stage by t. Let $\rho_{t} \geq \rho^{*}\left\{\mathcal{X}, Q^{t}\right\}$. Observe that since $Q^{t} \subset Q$, $\rho^{*}\left(\mathcal{X}, Q^{t}\right) \leq \rho^{*}(\mathcal{X}, Q)$ and we can set $\rho^{*}\{\mathcal{X}, Q\} \leq \rho_{t}<1$.

By following the proof of Lemma 2, at some time t if an x such that $\left|\int_{Q^{t}} q(x) d q\right|<\rho_{t} \operatorname{Vol}\left(Q^{t}\right)$ does not exist than there must exist x and x^{\prime} such that:

$$
\begin{equation*}
\int_{Q^{t}} q(x) d q-\int_{Q^{t}} q\left(x^{\prime}\right) d q>2 \rho_{t} \operatorname{Vol}\left(Q^{t}\right) \tag{52}
\end{equation*}
$$

Let $V_{d}\left(Q^{\prime}\right)=\int_{Q^{\prime}} \mathbb{1}_{\left[q(x) \neq q\left(x^{\prime}\right)\right]} d q$. Let $Q_{C}^{t}=Q \backslash Q^{t}$ and $\operatorname{Vol}\left(Q_{C}^{t}\right) \geq\left(1-\frac{\delta}{\rho}\right) \operatorname{Vol}(Q)$.

$$
\begin{equation*}
V_{d}\left(Q^{t}\right)+V_{d}\left(Q_{C}^{t}\right)=V_{d}(Q) \tag{53}
\end{equation*}
$$

By the regularity assumption $(9), V_{d}\left(Q_{C}^{t}\right) \geq \alpha V_{d}(Q)$ and

$$
\begin{equation*}
V_{d}\left(Q^{t}\right) \leq(1-\alpha) V_{d}(Q) \tag{54}
\end{equation*}
$$

And by δ-neighborly assumption, $V_{d}(Q) \leq \delta \operatorname{Vol}(Q)$ and

$$
\begin{equation*}
V_{d}\left(Q^{t}\right) \leq(1-\alpha) \delta \operatorname{Vol}(Q) \tag{55}
\end{equation*}
$$

Combining this expression with inequality 52 we obtain:

$$
\begin{equation*}
\operatorname{Vol}\left(Q^{t}\right) \leq \frac{(1-\alpha) \delta}{\rho_{t}} \operatorname{Vol}(Q) \tag{56}
\end{equation*}
$$

The first statement of Lemma 2 states that for any two consecutive version space Q^{t} and Q^{t+1} the following reduction is possible for $\rho^{*} \leq \rho<1\left(\rho^{*}:=\rho^{*}\{\mathcal{X}, Q\}\right)$

$$
\begin{equation*}
\operatorname{Vol}\left(Q^{t+1}\right) \leq \frac{(1+\rho)}{2} \operatorname{Vol}\left(Q^{t}\right) \tag{57}
\end{equation*}
$$

If this condition is not satisfied then the volume bound of Eq. 56 must hold. Now note that the ratio of the volume bound at the termination of the previous stage τ (see Eq. 51) and at the termination of the current stage t (see Eq. 56) is a constant equal to $(1-\alpha)$. Furthermore, we are guaranteed an exponential rate $\left(1+\rho_{t}\right) / 2$ of decay while going from termination of stage 1 to termination of stage 2 . Consequently, we can reduce the volume at the previous stage τ to the current stage t with at most a constant number of queries. For simplicity we assume that this is equal to one since the order-wise scaling of the number of queries does not change. Consequently, we can obtain:

$$
\begin{equation*}
\operatorname{Vol}\left(Q^{t+1}\right)=\frac{(1-\alpha) \delta}{\rho} \operatorname{Vol}\left(Q^{t}\right) \tag{58}
\end{equation*}
$$

To obtain the worst case rate for each iteration we need:

$$
\begin{equation*}
\lambda_{0}=\min _{\rho^{*} \leq c \leq 1} \max \left\{\frac{1+\rho}{2}, \frac{(1-\alpha) \delta}{\rho}\right\} \tag{59}
\end{equation*}
$$

This expression simplifies to the situation when the two arguments are equal. This turns out to be $\rho=$ $\frac{1}{2}(\sqrt{1+8(1-\alpha) \delta}-1)$

$$
\begin{equation*}
\lambda_{0}=\max \left\{\frac{1+\rho^{*}}{2}, \frac{1+.5(\sqrt{1+8(1-\alpha) \delta}-1)}{2}\right\} \tag{60}
\end{equation*}
$$

where $\delta=\frac{2 K+1}{N}$. We now note that $\sqrt{1+z} \leq 1+z / 2$. Consequently, we get,

$$
\lambda_{0} \leq \lambda=\max \left\{\frac{1+\rho^{*}}{2}, \frac{1}{2}\left(1+(1-\alpha) \frac{2 K+1}{N}\right)\right\}
$$

We can repeat this argument for Stage 3, Stage 4 and so on in an identical fashion. The volume of our final version space is required to be $\operatorname{Vol}\left(Q^{n}\right)=\epsilon \operatorname{Vol}(Q)$.

$$
\begin{aligned}
& \operatorname{Vol}\left(Q^{n}\right)=\lambda^{n} \operatorname{Vol}(Q) \\
& \epsilon=\lambda^{n} \Longrightarrow n=\frac{\log \epsilon}{\log \lambda}
\end{aligned}
$$

5.5 Proof of Theorem 3

Proof. In the proof, all volume is taken with respect to the lebesgue measure on the p sparse subspace. If we can reduce the volume of sparse version space at each stage by λ then after n stages:

$$
\begin{equation*}
\operatorname{Vol}\left(S^{n}\right)=\lambda^{n} \operatorname{Vol}(S) \tag{61}
\end{equation*}
$$

There are $\binom{N}{p}$ p-sparse disjoint segments: $\left\{s_{1}, s_{2}, \ldots, s_{\binom{N}{p}}\right\}=S$. Without loss of generality, we define the volume $\operatorname{Vol}($.$) such that \operatorname{Vol}\left(s_{r}\right)=1$ for $r=1, \ldots,\binom{N}{p}$ therefore

$$
\operatorname{Vol}\left(S^{n}\right)=\lambda^{n}\binom{N}{p}
$$

By assumption from Section 3.2, we defne

$$
\begin{array}{r}
q_{s}=\arg \inf _{q^{*} \in S} \operatorname{Vol}\left\{q \in S \left\lvert\,\left\|q-q^{*}\right\|_{1} \leq \frac{\theta}{2}\right.\right\} \\
f(\theta, p)=\operatorname{Vol}\left\{q \in S \left\lvert\,\left\|q-q_{s}\right\|_{1} \leq \frac{\theta}{2}\right.\right\} \tag{63}
\end{array}
$$

If $\operatorname{Vol}\left(S^{n}\right) \leq f(\theta, p)$ then $S^{n} \subset\left\{q \in S \left\lvert\,\left\|q-q_{s}\right\|_{1} \leq \frac{\theta}{2}\right.\right\}$ and $\forall q \in S^{n}$ (by the margin bound [Schapire et al., 1997])

$$
\begin{equation*}
\operatorname{Prob}(q(x) \neq y) \leq O\left(\frac{\log |\mathcal{X}| \log p}{\theta^{2}|\mathcal{X}|}+\frac{\log (1 / \delta)}{|\mathcal{X}|}\right)^{\frac{1}{2}} \tag{64}
\end{equation*}
$$

So we require:

$$
\begin{align*}
\operatorname{Vol}\left(S^{n}\right) & \leq f(\theta, p) \tag{65}\\
n \log \lambda+\log \binom{N}{p} & \leq \log f(\theta, p) \tag{66}\\
n & \geq \frac{\log \binom{N}{p}+\log \frac{1}{f(\theta, p)}}{\log \frac{1}{\lambda}} \tag{67}
\end{align*}
$$

5.6 Proof of Lemma 3

Proof. If $\rho^{*}<1$ then $\nexists q \in Q$ s.t. $q^{T} \mathbf{h}\left(x_{i}\right)>0 \forall i$. Let us define a vector $f(q) \in R^{B}$ with $f(q)_{i}=q^{T} \mathbf{h}\left(x_{i}\right)$ and a set $F=\{f(q) \mid q \in Q\}$. Since every component of f cannot be positive, the set F cannot lie in the first (positive) orthant. The set F is also convex, so there must exist a separating hyperplane with a normal vector $\lambda \geq 0$. This implies the following inequality:

$$
\begin{equation*}
\sum_{i=1}^{B} \lambda_{i} f(q)_{i}=\sum_{i=1}^{B} \lambda_{i} \sum_{j=1}^{N} q_{j} h_{j}\left(x_{i}\right) \leq 0 \tag{68}
\end{equation*}
$$

At least one element of λ must be non-zero to define a hyperplane. Let us interchange the summation:

$$
\begin{equation*}
\sum_{j=1}^{N} q_{j} \sum_{i=1}^{B} \lambda_{i} h_{j}\left(x_{i}\right) \leq 0 \tag{69}
\end{equation*}
$$

From earlier, we assume that for every weak hypothesis there exists a compliment: s.t. $h_{j}(x)=-h_{j^{*}}(x)$ and $h_{j}, h_{j^{*}} \in \mathcal{H}$. For any weight vector q, we can reassign the weight of h_{j} to its compliment $h_{j^{*}}$ and make the left side in (69) greater than zero. But the inequality in (69) has to hold for all $q \in Q$. This can only be true if every term in the summation is zero:

$$
\begin{equation*}
\sum_{i=1}^{M} \lambda_{i} h_{j}\left(x_{i}\right)=0 \forall j \tag{70}
\end{equation*}
$$

5.7 Miscellaneous Figures

Figure 7: Accuracy vs \# labeled examples as a function of Hit and Run iterations (HT): changing HT does not change performance 7(a). Two dimensional dataset: Gaussian Clusters 7(b).Box Dataset 7(c). Banana Dataset 7 (d).

5.8 Sampling with Hit and Run in the boosting framework

```
Algorithm 2 sample
    INPUT: \(L^{t}\) \{labeled set of examples\}, \(T_{s}\) \{ number of iterations\}, \(q^{0}\) \{initial feasible point\}
    \(Q^{t} \leftarrow\left\{q: q \in Q, m_{i}^{T} q \geq v_{0} \forall i \mid x_{i} \in L^{t}\right\}, Q \leftarrow\left\{q: q \geq 0, \mathbf{1}^{T} q=1\right\}, d_{0} \leftarrow \frac{1}{N} \mathbf{1}-q^{0}\{\) initial direction \(\} w=\frac{1}{\sqrt{N}} \mathbf{1}\)
    for \(s=1\) to \(T_{s}\) do
        \(z \leftarrow \mathcal{N}(0, I), z^{\prime} \leftarrow\left[I-w w^{T}\right] z, d \leftarrow \frac{z}{\|z\|_{2}}\)
        \{Generate a normal random variable, project it onto a hyperplane parallel to the simplex, and normalize to
        form a random direction \}
        \(r_{i}^{1} \leftarrow \frac{\left(q_{s}\right)_{i}}{(-d)_{i}}, r_{i}^{2} \leftarrow \frac{\left(M^{t} q_{s}-v_{0}\right)_{i}}{\left(-M^{t} d\right)_{i}}\)
        \(\alpha^{+} \leftarrow \min \left\{\min _{r_{i}^{1} \geq 0} r_{i}^{1}, \min _{r_{i}^{2} \geq 0} r_{i}^{2}\right\}, \alpha^{-} \leftarrow \max \left\{\max _{r_{i}^{1}<0} r_{i}^{1}, \max _{r_{i}^{2}<0} r_{i}^{2}\right\}\)
        \(q_{s}^{+} \leftarrow q_{s}+\alpha^{+} d, q_{s}^{-} \leftarrow q_{s}+\alpha^{-} d\) \{find two endpoints\}
        \(\alpha_{s} \leftarrow U N \operatorname{IFORM}[0,1]\) \{generate a uniform random variable on \(\left.[0,1]\right\}\)
        \(q_{s+1} \leftarrow q_{s}^{+} \alpha_{s}+q_{s}^{-}\left(1-\alpha_{s}\right)\) compute new interior point
    end for
    OUTPUT: \(q_{\text {sample }} \leftarrow q_{T_{s}}\) \{uniform random sample from \(\left.Q^{t}\right\}\)
```

