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5 Appendix

5.1 Proof of Theorem 1
Proof. The weak learner assumption implies that forx, ! U?
“q# 0:ysh(xx)Tq>0and y;h(x;)Tq>0%x; ! L* (12)
Without loss of generality assume thaty; = %1. This implies that
A= {q# 0,q&0 | %h(x;)"q>0andy;h(x;)"q>0%x;! L'} &" (13)

We are left to determine whether, there is ag# 0 such that, h(x;)"q > 0 andy;h(x;)"q > 0$x; ! L. Suppose
there is no suchq, then we have that

Fq# 0: h(xx)Tq>0and y;h(x;)Tqg>0%x! L? (14)

By assumption 7 is negation complete that is"j,j * : h;(x) = %h;.(x). Debne vectorg-such that g; = g; %0;.
then we can simplify the above expression to:

F&: h(xp)Tg>0and y;h(x;))Tg>0%$x! L* (15)
Note & is now allowed to be negative. This means that asg;~ranges over all the real numbers the vector
(h(xx)T&, yih(x1)Te, ..., y.h(x,)Tg) does not intersect the brst quadrant. In addition the complement of this
set contains.4, which is convex and non-empty. Consequently, we can invoke the separating hyperplane theorem
that separates the brst quadrant from all the feasible vectors li(x;)"g, yih(x1)7q, ..., y:h(x,)T&) as &, $i
ranges over all real numbers. As a consequence we have hyperplané 0 and § > 0 such that,
"M 5# 0:oh(xi)Ta+ Y Ayih(x)Te( 0% (16)
€Lt
"X 5 # 00 Ph(x)"+ > Ayih(x) e ( 0 $e (17)
€Lt
=) Sh(xe)+ D> Ayih(x:)=0 (18)
i€L?t

Note that A or § cannot be all zeros. Ford & 0O, equality in 18 implies that h(x;) has to lie in the cone of
y;h(x;)0s.h(x) is a vertex of +1, %l hypercube inN dimensions. A vertex h(x;) of this hypercube lies in the
cone of other vertices{h(x;) };cr if and only if k! L?.

For §=0, the equality in 18 cannot hold for {y;h(x;)}:cr¢ that satisfy the weak learner assumption.

5.2 Proof of Lemma 1

Proof. We provide the main outline of the proof and skip some of the messy algebra. For simpler notation, let
qx) = sgn(ZjL:l g;h;(x) %.5) whereh;(x) ! {0,1}. We emphasize that the weak learners map to zero or one.
Any two samples x, x’ are d-neighborly if:

1
3 [ 1000 %a0)lda s (19
Q
The integral is the volume whereq(x) and g(x’) disagree:
/Q Lig()7 q(=yda (20 (20)
Let S = {j|h;(x) = h;(x")} and $° = {j |h;(x) & h;(x)}:

a(x) =sgn( > gih;() + > g;h;(x) %.5) (21)

jeS jese
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gx')=sgn( qhj(x)+  gh(x')—.5) (22)

i"s j"se

Let S; = {j|h;j (x) = 1} NS¢ and S, = {j |h; (x') = 1} N S° then
! !

qx)=sgn( Ggh(x)+ g —.5) (23)
i"s i"s1
! !
ax’) =sen( qhj(x)+ g —.5) (24)
i"s i"se
And q(x) # q(x') if and only if
! ! ! ! !
g hj(x) <.5 and G >.5— qghj(x)and g <.5—  qgh(x) (25)
i"s IS i"s j" s i"s

By the K -neighbor assumption: |S; U Sp| < K. Let |S1] = K — k3 and |Sp| = k; and:
! ! ! ! !
Q1) ={aeQ| ghj(x)<.5 g >.5—  gh(x), g <.-5—  qgh(x)} (26)

i"s i"s: i"s i"s, i"s

It is easy to check that the case where |S;| = 0 and |S;| = K will have the greatest volume:

Vol(Q(ks1)) < Vol(Q(0)) for 0<k; <K (27)

So let,
[ ! !
Q~(0):{q€Q,. g>.5— qgh(x), gqhj(x)<.5} (28)

i"s: i"s i"s

V 0l(Q(0)) is an upper bound for (20).

To compute the volume we recast the problem in terms of probabilities. Note that since the simplex Q is endowed
with the Lebesgue measure we can think of g as a random variable uniformly distributed over Q. However, the
components of g are now dependent. To transform the problem into an independent set of random variables we
consider exponentially distributed random variables.

Define the unnormalized IID random variable q! =G ]N 1 q' where q' are IID exponentially distributed random
variables with mean equal to 6. Then E| ]N 1 q'} = %. It is well known that such an exponentially distributed
set of random variables when normalized exactly produces a uniform distribution over the simplex.

By substitution of the unnormalized random variables we obtain,
I I I

P{QO)} =Pr{acQ. 4 >.5—  qhi(x) gh(x)<.5}

g IS i"s i"s 2
$ IN ! ! N
1 1 | 1 1
:Pr% g >.5( q)— qgh(x), ghx)<.5 q')(
j"S1 j=1 i"s i"s j=1
To simplify this expression we consider the event,
; &
1!
A TN LY

Note that the event A can be cast in the familiar form of an empirical average being close to its empirical mean.
Consequently, we expect that the probability of the complement, A, of the event A is exponentially small in N .
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We now proceed as follows:

N
Pr{Q()}! Pr{ > g > 5 Z "> g (), qihi(x) < 50 q), q # Ap + Pr(A%)
it S1 j=1 jits jt's j=1
n || N " " c
> g > 57 )" g (x),> gl (2) TA+"2), g # A b+ Pr(A°)
i!S1 ji's its
v N c
> g > 57 qu hi (x Zq] hi (x T (1+72) ¢ + Pr(A°) (29)
i'S;

where the first inequality follows from the union bound; the second inequality follows from the definition of event
A; the third inequality is a direct application of the union bound. We now ignore the second term since it is
arbitrarily small for sufficiently large N.

We are now in the familiar territory of a sum of IID random variables since S and S7 have no overlap. Note that
s qJ is independent of dirs qJ 'hj (z) and each of these random variables are I' distributed. By straighforward
condltlonmg on ZJ, s q] hy (z i we can simplify the expressions in Equation 29. It follows that,

PrO0)} ! / PrY g > o) Yo (30)

i!'S:

Let Z=3 s, qJ which has a gamma distribution: I'(K,!) and by the Chernoff bound(Section 5.2.1),

N
Pr{Z > gl—} ! It%i(r)l S YT E[? ]
t

= mine$tg!ﬂ(1" ¥ <
t#0 !

Nk k Kk _son K

(K e gh e g > =

The integral in (30):
K 5
N
= [P > i [ G ot g (31)
j!1'Sy N

The first term is upper-bounded by K/N since the integrand is positive and always less than 1. The second term
is upper-bounded by:

N - N %
(?)K 6K / gK e$gN dg I (})K eK / gK €$ gN dg
N

K

K
2 T piRe =i
_;’_

N Z\H

N

Combining the bounds on the two terms, we have the upper bound:

. 2K +1
Pr{g(e) & g(«)} ! = (32)
And the disagreement volume:
2K +1
/Q L& aexy da ! Vol(Q) (33)
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And for any Q' c Q:
2K +1

/ IL[q(x);/q(x/)]o"ilﬁ/ Lig)7qxndd < Vol(Q)
Q' Q

5.2.1 Cherno ff Bound on a Gamma distribution

N N
Sg 21 < minet9% tz
Pr{z g!}_rtrgge TE[e“]
For a Gamma Random VariableZ ~ T'(K, !) the moment generating function is
t .
E[e“]=(1 — )", ift< !

Minimize the bound over 0<t< I:
1
ey %(1 _ I@)K

B(t) =

Let t = "1 and maximize B’~1(") instead:

"k — argmaXOS’K 1 eC'yN (1 o )K

Take the derivative:

dB’~1
g -4 =) eMNI-K + (1 —")gN]
The derivative is zero only when the last product term is zero or:
wezq _ K
= oN

Note sinceK << N ,"*< 1 and ifczﬁ—then "* > 0. Plugging " * back in:
N K

rmry = ( VKKK =N i g s

BOI=()ege™ ifg> o

5.2.2 Integral of the Cherno ff Bound on a Gamma distribution

Kl

K
NK K > K ~—gN — A—%N K —p
G e [ dtedg= e S g P

o p=0

Let go

I}
z|=

K
1 K!
- WpZO:(K —pIKP

Debne a term in this series a®\, = i+ and calculate the ratio of two succeeding terms:
r= B o K >1
Ap+1 K - p
The series is decreasing and the brst termd = 1 thus
K
S A <K +1
p=0
And the integral is bounded:
K+1

(e [ gleags

o= K
» Y0 — O
Y0 N

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)
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5.3 Proof of Lemma 2

The proof closely follows [Nowak, 2009].

Proof. 3 p' such that

B
1> a(zi)pi| < p Vg (47)
i=1
Integrate both sides over ¢ € Q'
B
/Q 1 alepllda < p Vol(Q) (18)
=

Integral of the absolute value is greater than the absolute value of the integral and interchange integration with
addition:

B
Z/Q! q(zi)dg pi| < p Vol(Q') (49)

Ifx € X st. |fQ. x)dg | <p Vol( Y| does not exist then |fQ. x)dq | > p Vol(Q') for all z € X. Since (49)
is a convex combination of fQ! xj)dg, if one term is negative there has to exist a positive term in order for the
sum to be less than or equal to p Vol(Q'). Therefore 3 z, x' such that:

/Q aladda > p Vol(Q) and | a(e')dg < ~p Vol(Q)) (50)

If the pair @, X is §-neighborly, there exists a sequence of z;’s starting at # and ending in z'. The sign will have
to switch somewhere in the sequence. Let us redefine the pair z,z' to be where the sign switcheb From before

Jor a(2)dg — [ a(z')dg > 2p Vol(Q'). By d-neighborly assumption' | Jor a(x)da — [o a(z)dg| < [o lala
q(x!)\dq < 25VOZ(Q) Combining the two inequalities: Vol(Q') < +Vol(Q).

5.4 Proof of Theorem 2

Proof. Let p > p' {X,Q} and at this stage we want to find an ' to reduce version space Q* by 1% at stage 7.
Lemma 2 states that if that is not possible then

Vol(Q) < %vOm) (51)

For simplicity of notation call this the termination of stage 1 and let 7 be the time stage 1 is terminated, namely,
the condition above is realized.

To proceed we now restart the entire process by exchanging @ with @#. We call this start of stage 2. To
avoid confusion we denote the iterations in this stage by t. Let py > p {X,Q'}. Observe that since Q' C @,
p (X,QY) <p (X,Q) and we can set p {X,Q} < pr < 1.

By following the proof of Lemma 2, at some time ¢ if an x such that | th z)dg | < pt Vol(Q') does not exist
than there must exist  and x' such that:

L, o@rda— [ ata'da > 2 volQ) (52)

Let Va(Q') = [o Ligeymade- Let Q¢ = Q\ Q" and Vol(QL) > (1 - #)Vol(Q).

Va(Q") + Va(Qe) = Va(Q) (53)
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By the regularity assumption (9), Vi(QL) ! ! V4(Q) and
Va(@) " (1# 1)Va(Q) (54)

And by "-neighborly assumption, V4(Q) " "Vol(Q) and
Va(@) " (1# 1)" Vol(Q) (55)

Combining this expression with inequality 52 we obtain:

Vol(Qh) " %vm(@) (56)

The brst statement of Lemma 2 states that for any two consecutive version spac&’ and Q'*! the following
reduction is possible for#* " # < 1 (# = #{X ,Q})

1+ #
Vol(Q™1) " %Vol(Qt) (57)
If this condition is not satisped then the volume bound of Eq. 56 must hold. Now note that the ratio of the
volume bound at the termination of the previous stage$ (see Eq. 51) and at the termination of the current stage
t (see Eqg. 56) is a constant equal to (¥ ! ). Furthermore, we are guaranteed an exponential rate (1 +#;)/2 of
decay while going from termination of stage 1 to termination of stage 2. Consequently, we can reduce the volume
at the previous stage$ to the current stage ¢ with at most a constant number of queries. For simplicity we assume
that this is equal to one since the order-wise scaling of the number of queries does not change. Consequently, we
can obtain:
@a#1)"

Vol(Q'*) = g Val(@") (58)

To obtain the worst case rate for each iteration we need:

1;#,(1#!)"} (59)

0 = I
% !!ng?gmax{ #
This expression simpliPes to the situation when the two arguments are equal. This turns out to be# =
1 1+8(1# )" #1)

P
1+# 1+ .5( 1+8(1#!)'#1)

5 . ) (60)

% = max {

$_
where" = 25£L \We now note that ~ T+ z" 1+ z/2. Consequently, we get,

1+ #
2

2K +1
N

% " %= max{ ,%(1+(1#!) )}

We can repeat this argument for Stage 3, Stage 4 and so on in an identical fashion. The volume of our bnal
version space is required to bé/ol(Q™) = &/ 0l(Q).

Vol(Q™) = WVol(Q)

log &

&= W =% =
on log %
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5.5 Proof of Theorem 3

Proof. In the proof, all volume is taken with respect to the lebesgue measure on the p sparse subspace. If we
can reduce the volume of sparse version space at each stage by ! then after n stages:

Vol(S™) =1"Vol(S) (61)
[
There are ];, p-sparse disjoint segments: {Sll’ CPIRRS s(w)} = 5. Without loss of generality, we define the volume
Vol(.) such that Vol(s,) =1forr=1,..., 'I;{ therefore
#_ $
Vol(S™)=1" N
P

By assumption from Section 3.2, we defne

IN

2 (62

fC.p)=Vollg e Slla—asll < 5} (63)

If Vol(S™) < f(",p) then S™ C {g € S| |lg —gsl]1 < g} and Vg € S™ (by the margin bound [Schapire et al.,
1997))

qs = arg inf Vol{qg € S||lg—q"|[1
q' €S

IN

# $.
log|X|logp  log(1/#) >

Prob(q(z) #y) <O "2 x| B (64)
So we require:

Volsy < f(".p) (63
nlog! + log ]1\7[ < logf(",p) (66)

| w

‘N
n > log l:);lgg@ (67)
O

5.6 Proof of Lemma 3

Proof. If $* < 1 then ! ¢ € Q s.t. ¢"'h(z;) > 0 Vi. Let us define a vector f(q) € R® with f(¢q); = ¢"h(z;) and a
set F'={f(q)|lq € Q}. Since every component of f cannot be positive, the set F' cannot lie in the first (positive)
orthant. The set F' is also convex, so there must exist a separating hyperplane with a normal vector ! > 0. This
implies the following inequality:
o %w A
Lif()i= Vi gqihi(2:) <0 (68)
i=1 =1 =1

At least one element of ! must be non-zero to define a hyperplane. Let us interchange the summation:

%W %
g lihj(z) <0 (69)
j=1 =1
From earlier, we assume that for every weak hypothesis there exists a compliment: s.t. hj(z) = —h; (z) and

hj,hj € H. For any weight vector g, we can reassign the weight of h; to its compliment h; and make the left
side in (69) greater than zero. But the inequality in (69) has to hold for all ¢ € Q. This can only be true if every
term in the summation is zero:
%R
i=1
O
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5.7 Miscellaneous Figures
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Figure 7: Accuracy vs # labeled examples as a function of Hit and Run iterations (HT): changing HT does not

change performance 7(a). Two dimensional dataset: Gaussian Clusters 7(b).Box Dataset 7(c). Banana Dataset
7(d).



Active Boosted Learning (ActBoost)

5.8 Sampling with Hit and Run in the boosting framework

Algorithm 2 sample

INPUT: L! {labeled set of examplek, T, { number of iterations}, ¢° {initial feasible point}
Q' —{q:qeQ,mlq>uvVilz; € L'}, Q —{q:q>0,1T¢g=1}, dy — +1 — ¢° {initial direction } w =
for s=1to T, do

2+ N(0,1), 2 —[I —wwTz, d ﬁ

{Generate a normal random variable, project it onto a hyperplane parallel to the simplex, and normalize to

form a random direction }

o (O ot o ot

I+ min{min,.1>q r} ,MiN250 r2}, 1 =« max{ maz, <o r} ,MATy2 r2}
qF —qs+ ! Td, q; <« qs+ ! ~d {Pnd two endpoints}
I s — UNIFORMIO,1] {generate a uniform random variable on [Q1]}
gs+1 < qF! s+ q; (1 —! ) compute new interior point
end for
OUTPUT: gsampte — ¢r, {uniform random sample from Q*}

1
s




