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5 Appendix

5.1 Proof of Theorem 1

Proof. The weak learner assumption implies that forxk ! Ut

" q # 0 : ykh(xk)T q > 0 and yih(xi)T q > 0 $xi ! L t (12)

Without loss of generality assume that yk = %1. This implies that

A =
�

q # 0, q &= 0 | %h(xk)T q > 0 and yih(xi)T q > 0 $xi ! L t
�

&= ' (13)

We are left to determine whether, there is aq # 0 such that, h(xk)T q > 0 and yih(xi)T q > 0 $xi ! L t. Suppose
there is no suchq, then we have that

�q # 0 : h(xk)T q > 0 and yih(xi)T q > 0 $x ! L t (14)

By assumption H is negation complete that is " j, j ∗ : hj(x) = %hj∗(x). DeÞne vector ÷q such that ÷qj = qj %qj∗
then we can simplify the above expression to:

�÷q : h(xk)T ÷q > 0 and yih(xi)T ÷q > 0 $x ! L t (15)

Note ÷q is now allowed to be negative. This means that as ÷qi ranges over all the real numbers the vector
(h(xk)T ÷q, y1h(x1)T ÷q, . . . , yth(xt)T ÷q) does not intersect the Þrst quadrant. In addition the complement of this
set containsA, which is convex and non-empty. Consequently, we can invoke the separating hyperplane theorem
that separates the Þrst quadrant from all the feasible vectors (h(xk)T ÷q, y1h(x1)T ÷q, . . . , yth(xt)T ÷q) as ÷qi, $i
ranges over all real numbers. As a consequence we have hyperplaneλ # 0 and δ > 0 such that,

" λ, δ # 0 : δh(xk)T ÷q +
�

i∈Lt

λiyih(xi)T ÷q ( 0 $÷q (16)

" λ, δ # 0 : [δh(xk)T +
�

i∈Lt

λiyih(xi)T ]÷q ( 0 $÷q (17)

=) δh(xk) +
�

i∈Lt

λiyih(xi) = 0 (18)

Note that λ or δ cannot be all zeros. Forδ &= 0, equality in 18 implies that h(xk) has to lie in the cone of
yih(xi)Õs.h(x) is a vertex of +1, %1 hypercube in N dimensions. A vertex h(xk) of this hypercube lies in the
cone of other vertices{h(xi)}i∈Lt if and only if k ! L t.

For δ=0, the equality in 18 cannot hold for {yih(xi)}i∈Lt that satisfy the weak learner assumption.

5.2 Proof of Lemma 1

Proof. We provide the main outline of the proof and skip some of the messy algebra. For simpler notation, let
q(x) = sgn(

�L
j=1 qjhj(x) %.5) where hj(x) ! {0, 1}. We emphasize that the weak learners map to zero or one.

Any two samples x, x � are δ-neighborly if:

1
2

�

Q
|q(x) %q(x �)|dq ( δ (19)

The integral is the volume whereq(x) and q(x �) disagree:
�

Q
[q(x) �= q(x! )] dq ( 2δ (20)

Let S = {j |hj(x) = hj(x �)} and Sc = {j |hj(x) &= hj(x �)}:

q(x) = sgn(
�

j∈S

qjhj(x) +
�

j∈Sc

qjhj(x) %.5) (21)
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q(x!
) = sgn(

!

j " S

qj hj (x) +

!

j " Sc

qj hj (x!
)− .5) (22)

Let S1 = { j |hj (x) = 1} ∩ Sc
and S2 = { j |hj (x!

) = 1} ∩ Sc
then

q(x) = sgn(

!

j " S

qj hj (x) +

!

j " S1

qj − .5) (23)

q(x!
) = sgn(

!

j " S

qj hj (x) +

!

j " S2

qj − .5) (24)

And q(x) �= q(x!
) if and only if

!

j " S

qj hj (x) < . 5 and

!

j " S1

qj > . 5−
!

j " S

qj hj (x) and

!

j " S2

qj < . 5−
!

j " S

qj hj (x) (25)

By the K -neighbor assumption: |S1 ∪ S2| ≤ K . Let |S1| = K − k1 and |S2| = k1 and:

Q̃(k1) = { q ∈ Q |
!

j " S

qj hj (x) < . 5,
!

j " S1

qj > . 5−
!

j " S

qj hj (x),
!

j " S2

qj < . 5−
!

j " S

qj hj (x)} (26)

It is easy to check that the case where |S2| = 0 and |S1| = K will have the greatest volume:

V ol(Q̃(k1)) ≤ V ol(Q̃(0)) for 0 < k 1 ≤ K (27)

So let,

Q̃(0) = { q ∈ Q,
!

j " S1

qj > . 5−
!

j " S

qj hj (x),
!

j " S

qj hj (x) < . 5} (28)

V ol(Q̃(0)) is an upper bound for (20).

To compute the volume we recast the problem in terms of probabilities. Note that since the simplex Q is endowed

with the Lebesgue measure we can think of q as a random variable uniformly distributed over Q. However, the

components of q are now dependent. To transform the problem into an independent set of random variables we

consider exponentially distributed random variables.

Define the unnormalized IID random variable q!
j = qj

" N
j " 1 q!

j where q!
j are IID exponentially distributed random

variables with mean equal to θ. Then E [
" N

j " 1 q!
j ] =

N
θ . It is well known that such an exponentially distributed

set of random variables when normalized exactly produces a uniform distribution over the simplex.

By substitution of the unnormalized random variables we obtain,

P r{ Q̃(0)} =P r{ q ∈ Q,
!

j " S1

qj > . 5−
!

j " S

qj hj (x),
!

j " S

qj hj (x) < . 5}

= P r

#
$

%

!

j " S1

q!
j > . 5(

N!

j =1

q!
j )−

!

j " S

q!
j hj (x),

!

j " S

q!
j hj (x) < . 5(

N!

j =1

q!
j )

&
'

(

To simplify this expression we consider the event,

A =

#
$

%

)
)
)
)
)
)

1

θ
− 1

N

N!

j " 1

q!
j

)
)
)
)
)
)
≤ �2

&
'

(

Note that the event A can be cast in the familiar form of an empirical average being close to its empirical mean.

Consequently, we expect that the probability of the complement, Ac
, of the event A is exponentially small in N .
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We now proceed as follows:

Pr{Q̃(0)} ! Pr





�

j ! S1

q"
j > .5(

N�

j =1

q"
j ) "

�

j ! S

q"
j hj (x),

�

j ! S

q"
j hj (x) < .5(

N�

j =1

q"
j ), q"

j # A




 + Pr(Ac)

! Pr





�

j ! S1

q"
j > .5

N

!
(1 " "2) "

�

j ! S

q"
j hj (x),

�

j ! S

q"
j hj (x) < .5

N

!
(1 + "2), q"

j # A




 + Pr(Ac)

! Pr





�

j ! S1

q"
j > .5

N

!
(1 " "2) "

�

j ! S

q"
j hj (x),

�

j ! S

q"
j hj (x) < .5

N

!
(1 + "2)




 + Pr(Ac) (29)

where the first inequality follows from the union bound; the second inequality follows from the definition of event
A; the third inequality is a direct application of the union bound. We now ignore the second term since it is
arbitrarily small for sufficiently large N .

We are now in the familiar territory of a sum of IID random variables since S and S1 have no overlap. Note that�
j ! S1

q"
j is independent of

�
j ! S q"

j hj (x) and each of these random variables are Γ distributed. By straighforward
conditioning on

�
j ! S q"

j hj (x) we can simplify the expressions in Equation 29. It follows that,

Pr{Q̃(0)} !
� .5

0
Pr{

�

j ! S1

q"
j > g

N

!
}dg (30)

Let Z =
�

j ! S1
q"

j which has a gamma distribution: Γ(K, ! ) and by the Chernoff bound(Section 5.2.1),

Pr{Z > g
N

!
} ! min

t # 0
e$ tg N

! E[etZ ]

= min
t # 0

e$ tg N
! (1 "

t

!
)$ K , t < !

= (
N

K
)K eK gK e$ gN , g >

K

N

The integral in (30):

=
� K

N

0
Pr{

�

j ! S1

q"
j > g

N

!
}dg +

� .5

K
N

(
N

K
)K eK gK e$ gN dg (31)

The first term is upper-bounded by K/N since the integrand is positive and always less than 1. The second term
is upper-bounded by:

(
N

K
)K eK

� .5

K
N

gK e$ gN dg ! (
N

K
)K eK

� %

K
N

gK e$ gN dg

=
1
N

K�

p=0

K!
(K " p)!Kp

!
K + 1

N

Combining the bounds on the two terms, we have the upper bound:

Pr{q(x) $= q(x")} !
2K + 1

N
(32)

And the disagreement volume:
�

Q
[q(x )&= q(x ! )] dq !

2K + 1
N

V ol(Q) (33)
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And for any Q� ⊂ Q:
�

Q �
[q(x ) �= q(x �)] dq≤

�

Q
[q(x ) �= q(x �)] dq≤ 2K + 1

N
V ol(Q) (34)

5.2.1 Cherno ff Bound on a Gamma distribution

P r { Z > g
N
!

} ≤ min
t≥0

e−tg N
θ E[etZ ] (35)

For a Gamma Random Variable Z ∼ Γ(K, ! ) the moment generating function is

E[etZ ] = (1 − t
!

)−K , if t < ! (36)

Minimize the bound over 0≤ t < ! :

B(t) =
1

etg N
θ (1− t

θ )K
(37)

Let t = "! and maximize B�−1(" ) instead:

" ∗ = argmax0≤γ< 1 ecγN (1− " )K (38)

Take the derivative:

dB�−1

d"
= (1 − " )K −1egN γ [−K + (1 − " )gN] (39)

The derivative is zero only when the last product term is zero or:

" ∗ = 1 − K
gN

(40)

Note sinceK << N , " ∗ < 1 and if c≥ K
N then " ∗ ≥ 0. Plugging " ∗ back in:

B�(" ∗) = (
N
K

)K eK gK e−gN , if g >
K
N

(41)

5.2.2 Integral of the Cherno ff Bound on a Gamma distribution

(
N
K

)K eK
� ∞

g0

gK e−gN dg = e−g0 N
K�

p=0

gK −p
0

K !
(K − p)!N p+1 (42)

Let g0 = K
N ,

=
1
N

K�

p=0

K !
(K − p)!K p (43)

DeÞne a term in this series asAp = K !
(K −p)! K p and calculate the ratio of two succeeding terms:

r =
Ap

Ap+1
=

K
K − p

≥ 1 (44)

The series is decreasing and the Þrst termA0 = 1 thus

K�

p=0

Ap ≤ K + 1 (45)

And the integral is bounded:

(
N
K

)K eK
� ∞

g0

gK e−gN dg≤ K + 1
N

, g0 =
K
N

(46)
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5.3 Proof of Lemma 2

The proof closely follows [Nowak, 2009].

Proof. ∃ p! such that

|
B�

i =1

q(xi )p
!
i | ≤ ρ ∀q (47)

Integrate both sides over q ∈ Q!

�

Q !
|

B�

i =1

q(xi )p
!
i |dq ≤ ρ V ol(Q!

) (48)

Integral of the absolute value is greater than the absolute value of the integral and interchange integration with

addition:

|
B�

i =1

�

Q !
q(xi )dq p!

i | ≤ ρ V ol(Q!
) (49)

If x ∈ X s.t. |
�

Q ! q(x)dq | ≤ ρ V ol(Q!)| does not exist then |
�

Q ! q(x)dq | > ρ V ol(Q!) for all x ∈ X . Since (49)

is a convex combination of
�

Q ! q(xi )dq, if one term is negative there has to exist a positive term in order for the

sum to be less than or equal to ρ V ol(Q!). Therefore ∃ x, x! such that:

�

Q !
q(x)dq > ρ V ol(Q!

) and

�

Q !
q(x!

)dq < −ρ V ol(Q!
) (50)

If the pair Q,X is δ-neighborly, there exists a sequence of xi ’s starting at x and ending in x! . The sign will have

to switch somewhere in the sequence. Let us redefine the pair x, x! to be where the sign switches. From before:�
Q ! q(x)dq −

�
Q ! q(x!)dq > 2ρ V ol(Q!). By δ-neighborly assumption: |

�
Q ! q(x)dq −

�
Q ! q(x!)dq| <

�
Q ! |q(x) −

q(x!)|dq < 2δV ol(Q). Combining the two inequalities: V ol(Q!) < !
" V ol(Q).

5.4 Proof of Theorem 2

Proof. Let ρ ≥ ρ" {X , Q} and at this stage we want to find an x! to reduce version space Q# by
1+"
2 at stage τ .

Lemma 2 states that if that is not possible then

V ol(Q#
) ≤ δ

ρ
V ol(Q) (51)

For simplicity of notation call this the termination of stage 1 and let τ be the time stage 1 is terminated, namely,

the condition above is realized.

To proceed we now restart the entire process by exchanging Q with Q# . We call this start of stage 2. To

avoid confusion we denote the iterations in this stage by t. Let ρt ≥ ρ" {X , Qt }. Observe that since Qt ⊂ Q,

ρ" (X , Qt ) ≤ ρ" (X , Q) and we can set ρ" {X , Q} ≤ ρt < 1.

By following the proof of Lemma 2, at some time t if an x such that |
�

Q t q(x)dq | < ρt V ol(Qt ) does not exist

than there must exist x and x! such that:

�

Q t

q(x)dq −
�

Q t

q(x!
)dq > 2ρt V ol(Qt

) (52)

Let Vd(Q!) =
�

Q ! [q(x )#=q(x ! )]dq. Let Qt
C = Q \ Qt and V ol(Qt

C ) ≥ (1− !
" )V ol(Q).

Vd(Qt
) + Vd(Qt

C ) = Vd(Q) (53)
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By the regularity assumption (9), Vd(Qt
C) ! ! Vd(Q) and

Vd(Qt) " (1 # ! )Vd(Q) (54)

And by " -neighborly assumption,Vd(Q) " "V ol(Q) and

Vd(Qt) " (1 # ! )" V ol(Q) (55)

Combining this expression with inequality 52 we obtain:

V ol(Qt) "
(1 # ! )"

#t
V ol(Q) (56)

The Þrst statement of Lemma 2 states that for any two consecutive version spaceQt and Qt+1 the following
reduction is possible for#∗ " # < 1 (#∗ := #∗{X , Q} )

V ol(Qt+1) "
(1 + #)

2
V ol(Qt) (57)

If this condition is not satisÞed then the volume bound of Eq. 56 must hold. Now note that the ratio of the
volume bound at the termination of the previous stage$ (see Eq. 51) and at the termination of the current stage
t (see Eq. 56) is a constant equal to (1# ! ). Furthermore, we are guaranteed an exponential rate (1 +#t)/2 of
decay while going from termination of stage 1 to termination of stage 2. Consequently, we can reduce the volume
at the previous stage$ to the current stage t with at most a constant number of queries. For simplicity we assume
that this is equal to one since the order-wise scaling of the number of queries does not change. Consequently, we
can obtain:

V ol(Qt+1) =
(1 # ! )"

#
V ol(Qt) (58)

To obtain the worst case rate for each iteration we need:

%0 = min
! ! ≤c≤1

max{
1 + #

2
,

(1 # ! )"
#

} (59)

This expression simpliÞes to the situation when the two arguments are equal. This turns out to be# =
1
2 (

!
1 + 8(1 # ! )" # 1)

%0 = max {
1 + #∗

2
,

1 + .5(
!

1 + 8(1 # ! )" # 1)
2

} (60)

where " = 2K+1
N . We now note that

$
1 + z " 1 + z/2. Consequently, we get,

%0 " %= max {
1 + #∗

2
,

1
2

(1 + (1 # ! )
2K + 1

N
)}

We can repeat this argument for Stage 3, Stage 4 and so on in an identical fashion. The volume of our Þnal
version space is required to beV ol(Qn) = &V ol(Q).

V ol(Qn) = %nV ol(Q)

&= %n =% n =
log&
log%
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5.5 Proof of Theorem 3

Proof. In the proof, all volume is taken with respect to the lebesgue measure on the p sparse subspace. If we
can reduce the volume of sparse version space at each stage by ! then after n stages:

V ol(Sn) = ! n
V ol(S) (61)

There are
! N

p

"
p-sparse disjoint segments: {s1, s2, . . . , s(N

p)} = S. Without loss of generality, we define the volume

V ol(.) such that V ol(sr) = 1 for r = 1, . . . ,
! N

p

"
therefore

V ol(Sn) = ! n

#
N

p

$

By assumption from Section 3.2, we defne

qs = arg inf
q! ∈S

V ol{q ∈ S | ||q − q
∗
||1 ≤

"
2
} (62)

f(" , p) = V ol{q ∈ S | ||q − qs||1 ≤
"
2
} (63)

If V ol(Sn) ≤ f(" , p) then Sn ⊂ {q ∈ S | ||q − qs||1 ≤
θ
2} and ∀q ∈ Sn (by the margin bound [Schapire et al.,

1997])

Prob(q(x) �= y) ≤ O

#
log |X | log p

" 2|X |
+

log(1/#)
|X |

$ 1
2

(64)

So we require:

V ol(Sn) ≤ f(" , p) (65)

n log ! + log
#

N

p

$
≤ log f(" , p) (66)

n ≥
log

! N
p

"
+ log 1

f (θ,p)

log 1
λ

(67)

5.6 Proof of Lemma 3

Proof. If $∗ < 1 then ! q ∈ Q s.t. qT h(xi) > 0 ∀i. Let us define a vector f(q) ∈ RB with f(q)i = qT h(xi) and a
set F = {f(q)|q ∈ Q}. Since every component of f cannot be positive, the set F cannot lie in the first (positive)
orthant. The set F is also convex, so there must exist a separating hyperplane with a normal vector ! ≥ 0. This
implies the following inequality:

B%

i=1

! if(q)i =
B%

i=1

! i

N%

j=1

qjhj(xi) ≤ 0 (68)

At least one element of ! must be non-zero to define a hyperplane. Let us interchange the summation:
N%

j=1

qj

B%

i=1

! ihj(xi) ≤ 0 (69)

From earlier, we assume that for every weak hypothesis there exists a compliment: s.t. hj(x) = −hj! (x) and
hj , hj! ∈ H. For any weight vector q, we can reassign the weight of hj to its compliment hj! and make the left
side in (69) greater than zero. But the inequality in (69) has to hold for all q ∈ Q. This can only be true if every
term in the summation is zero:

M%

i=1

! ihj(xi) = 0 ∀j (70)
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5.7 Miscellaneous Figures
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Figure 7: Accuracy vs # labeled examples as a function of Hit and Run iterations (HT): changing HT does not
change performance 7(a). Two dimensional dataset: Gaussian Clusters 7(b).Box Dataset 7(c). Banana Dataset
7(d).
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5.8 Sampling with Hit and Run in the boosting framework

Algorithm 2 sample

INPUT: Lt { labeled set of examples} , Ts { number of iterations} , q0 { initial feasible point }
Qt ← { q : q ∈ Q, mT

i q ≥ v0 ∀i|xi ∈ Lt} , Q ← { q : q ≥ 0, 1T q = 1 } , d0 ← 1
N 1− q0 { initial direction } w = 1√

N
1

for s = 1 to Ts do
z ← N (0, I), z� ← [I − wwT ]z, d ← z

||z||2
{ Generate a normal random variable, project it onto a hyperplane parallel to the simplex, and normalize to
form a random direction }
r1
i ←

(qs )i

(−d)i
, r2

i ←
(M t qs−v0)i

(−M t d)i

! + ← min{ minr1
i ≥0 r1

i , minr2
i ≥0 r2

i } , ! − ← max{ maxr1
i <0 r1

i , maxr2
i <0 r2

i }
q+
s ← qs + ! +d, q−s ← qs + ! −d { Þnd two endpoints}

! s ← UNIFORM [0, 1] { generate a uniform random variable on [0, 1]}
qs+1 ← q+

s ! s + q−s (1− ! s) compute new interior point
end for
OUTPUT: qsample ← qTs { uniform random sample from Qt}


