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5 Appendix

5.1 Proof of Theorem 1

Proof. The weak learner assumption implies that for xk ∈ U t

∃q ≥ 0 : ykh(xk)T q > 0 and yih(xi)T q > 0 ∀xi ∈ Lt (12)

Without loss of generality assume that yk = −1. This implies that

A =
�
q ≥ 0, q �= 0 | −h(xk)T q > 0 and yih(xi)T q > 0 ∀xi ∈ Lt

�
�= ∅ (13)

We are left to determine whether, there is a q ≥ 0 such that, h(xk)T q > 0 and yih(xi)T q > 0 ∀xi ∈ Lt. Suppose
there is no such q, then we have that

�q ≥ 0 : h(xk)T q > 0 and yih(xi)T q > 0 ∀x ∈ Lt (14)

By assumption H is negation complete that is ∃j, j∗ : hj(x) = −hj∗(x). Define vector q̃ such that q̃j = qj − qj∗
then we can simplify the above expression to:

�q̃ : h(xk)T q̃ > 0 and yih(xi)T q̃ > 0 ∀x ∈ Lt (15)

Note q̃ is now allowed to be negative. This means that as q̃i ranges over all the real numbers the vector
(h(xk)T q̃, y1h(x1)T q̃, . . . , yth(xt)T q̃) does not intersect the first quadrant. In addition the complement of this
set contains A, which is convex and non-empty. Consequently, we can invoke the separating hyperplane theorem
that separates the first quadrant from all the feasible vectors (h(xk)T q̃, y1h(x1)T q̃, . . . , yth(xt)T q̃) as q̃i,∀i
ranges over all real numbers. As a consequence we have hyperplane λ ≥ 0 and δ > 0 such that,

∃λ, δ ≥ 0 : δh(xk)T q̃ +
�

i∈Lt

λiyih(xi)T q̃ ≤ 0 ∀q̃ (16)

∃λ, δ ≥ 0 : [δh(xk)T +
�

i∈Lt

λiyih(xi)T ]q̃ ≤ 0 ∀q̃ (17)

=⇒ δh(xk) +
�

i∈Lt

λiyih(xi) = 0 (18)

Note that λ or δ cannot be all zeros. For δ �= 0, equality in 18 implies that h(xk) has to lie in the cone of
yih(xi)’s. h(x) is a vertex of +1,−1 hypercube in N dimensions. A vertex h(xk) of this hypercube lies in the
cone of other vertices {h(xi)}i∈Lt if and only if k ∈ Lt.

For δ=0, the equality in 18 cannot hold for {yih(xi)}i∈Lt that satisfy the weak learner assumption.

5.2 Proof of Lemma 1

Proof. We provide the main outline of the proof and skip some of the messy algebra. For simpler notation, let
q(x) = sgn(

�L
j=1 qjhj(x)− .5) where hj(x) ∈ {0, 1}. We emphasize that the weak learners map to zero or one.

Any two samples x, x� are δ-neighborly if:

1
2

�

Q
|q(x)− q(x�)|dq ≤ δ (19)

The integral is the volume where q(x) and q(x�) disagree:
�

Q
[q(x) �=q(x�)]dq ≤ 2δ (20)

Let S = {j|hj(x) = hj(x�)} and Sc = {j|hj(x) �= hj(x�)}:

q(x) = sgn(
�

j∈S

qjhj(x) +
�

j∈Sc

qjhj(x)− .5) (21)
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q(x�
) = sgn(

�

j∈S

qjhj(x) +

�

j∈Sc

qjhj(x
�
)− .5) (22)

Let S1 = {j|hj(x) = 1} ∩ Sc
and S2 = {j|hj(x�

) = 1} ∩ Sc
then

q(x) = sgn(

�

j∈S

qjhj(x) +

�

j∈S1

qj − .5) (23)

q(x�
) = sgn(

�

j∈S

qjhj(x) +

�

j∈S2

qj − .5) (24)

And q(x) �= q(x�
) if and only if

�

j∈S

qjhj(x) < .5 and

�

j∈S1

qj > .5−
�

j∈S

qjhj(x) and

�

j∈S2

qj < .5−
�

j∈S

qjhj(x) (25)

By the K-neighbor assumption: |S1 ∪ S2| ≤ K. Let |S1| = K − k1 and |S2| = k1 and:

Q̃(k1) = {q ∈ Q |
�

j∈S

qjhj(x) < .5,
�

j∈S1

qj > .5−
�

j∈S

qjhj(x),
�

j∈S2

qj < .5−
�

j∈S

qjhj(x)} (26)

It is easy to check that the case where |S2| = 0 and |S1| = K will have the greatest volume:

V ol(Q̃(k1)) ≤ V ol(Q̃(0)) for 0 < k1 ≤ K (27)

So let,

Q̃(0) = {q ∈ Q,
�

j∈S1

qj > .5−
�

j∈S

qjhj(x),
�

j∈S

qjhj(x) < .5} (28)

V ol(Q̃(0)) is an upper bound for (20).

To compute the volume we recast the problem in terms of probabilities. Note that since the simplex Q is endowed

with the Lebesgue measure we can think of q as a random variable uniformly distributed over Q. However, the

components of q are now dependent. To transform the problem into an independent set of random variables we

consider exponentially distributed random variables.

Define the unnormalized IID random variable q�j = qj
�N

j∈1 q�j where q�j are IID exponentially distributed random

variables with mean equal to θ. Then E[
�N

j∈1 q�j ] =
N
θ . It is well known that such an exponentially distributed

set of random variables when normalized exactly produces a uniform distribution over the simplex.

By substitution of the unnormalized random variables we obtain,

Pr{Q̃(0)} =Pr{q ∈ Q,
�

j∈S1

qj > .5−
�

j∈S

qjhj(x),
�

j∈S

qjhj(x) < .5}

= Pr





�

j∈S1

q�j > .5(

N�

j=1

q�j)−
�

j∈S

q�jhj(x),
�

j∈S

q�jhj(x) < .5(

N�

j=1

q�j)






To simplify this expression we consider the event,

A =






������
1

θ
− 1

N

N�

j∈1

q�j

������
≤ �2






Note that the event A can be cast in the familiar form of an empirical average being close to its empirical mean.

Consequently, we expect that the probability of the complement, Ac
, of the event A is exponentially small in N .
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We now proceed as follows:

Pr{Q̃(0)} ≤Pr





�

j∈S1

q�j > .5(
N�

j=1

q�j)−
�

j∈S

q�jhj(x),
�

j∈S

q�jhj(x) < .5(
N�

j=1

q�j), q�j ∈ A




 + Pr(Ac)

≤ Pr





�

j∈S1

q�j > .5
N

θ
(1− �2)−

�

j∈S

q�jhj(x),
�

j∈S

q�jhj(x) < .5
N

θ
(1 + �2), q�j ∈ A




 + Pr(Ac)

≤ Pr





�

j∈S1

q�j > .5
N

θ
(1− �2)−

�

j∈S

q�jhj(x),
�

j∈S

q�jhj(x) < .5
N

θ
(1 + �2)




 + Pr(Ac) (29)

where the first inequality follows from the union bound; the second inequality follows from the definition of event
A; the third inequality is a direct application of the union bound. We now ignore the second term since it is
arbitrarily small for sufficiently large N .

We are now in the familiar territory of a sum of IID random variables since S and S1 have no overlap. Note that�
j∈S1

q�j is independent of
�

j∈S q�jhj(x) and each of these random variables are Γ distributed. By straighforward
conditioning on

�
j∈S q�jhj(x) we can simplify the expressions in Equation 29. It follows that,

Pr{Q̃(0)} ≤
� .5

0
Pr{

�

j∈S1

q�j > g
N

θ
}dg (30)

Let Z =
�

j∈S1
q�j which has a gamma distribution: Γ(K, θ) and by the Chernoff bound(Section 5.2.1),

Pr{Z > g
N

θ
} ≤ min

t≥0
e−tg N

θ E[etZ ]

= min
t≥0

e−tg N
θ (1− t

θ
)−K , t < θ

= (
N

K
)KeKgKe−gN , g >

K

N

The integral in (30):

=
� K

N

0
Pr{

�

j∈S1

q�j > g
N

θ
}dg +

� .5

K
N

(
N

K
)KeKgKe−gNdg (31)

The first term is upper-bounded by K/N since the integrand is positive and always less than 1. The second term
is upper-bounded by:

(
N

K
)KeK

� .5

K
N

gKe−gNdg ≤ (
N

K
)KeK

� ∞

K
N

gKe−gNdg

=
1
N

K�

p=0

K!
(K − p)!Kp

≤ K + 1
N

Combining the bounds on the two terms, we have the upper bound:

Pr{q(x) �= q(x�)} ≤ 2K + 1
N

(32)

And the disagreement volume:
�

Q
[q(x) �=q(x�)]dq ≤ 2K + 1

N
V ol(Q) (33)
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And for any Q� ⊂ Q:
�

Q�
[q(x) �=q(x�)]dq ≤

�

Q
[q(x) �=q(x�)]dq ≤ 2K + 1

N
V ol(Q) (34)

5.2.1 Chernoff Bound on a Gamma distribution

Pr{Z > g
N

θ
} ≤ min

t≥0
e−tg N

θ E[etZ ] (35)

For a Gamma Random Variable Z ∼ Γ(K, θ) the moment generating function is

E[etZ ] = (1− t

θ
)−K , if t < θ (36)

Minimize the bound over 0 ≤ t < θ:

B(t) =
1

etg N
θ (1− t

θ )K
(37)

Let t = γθ and maximize B�−1(γ) instead:

γ∗ = argmax0≤γ<1 ecγN (1− γ)K (38)

Take the derivative:
dB�−1

dγ
= (1− γ)K−1egNγ [−K + (1− γ)gN ] (39)

The derivative is zero only when the last product term is zero or:

γ∗ = 1− K

gN
(40)

Note since K << N , γ∗ < 1 and if c ≥ K
N then γ∗ ≥ 0. Plugging γ∗ back in:

B�(γ∗) = (
N

K
)KeKgKe−gN , if g >

K

N
(41)

5.2.2 Integral of the Chernoff Bound on a Gamma distribution

(
N

K
)KeK

� ∞

g0

gKe−gNdg = e−g0N
K�

p=0

gK−p
0

K!
(K − p)!Np+1

(42)

Let g0 = K
N ,

=
1
N

K�

p=0

K!
(K − p)!Kp

(43)

Define a term in this series as Ap = K!
(K−p)!Kp and calculate the ratio of two succeeding terms:

r =
Ap

Ap+1
=

K

K − p
≥ 1 (44)

The series is decreasing and the first term A0 = 1 thus
K�

p=0

Ap ≤ K + 1 (45)

And the integral is bounded:

(
N

K
)KeK

� ∞

g0

gKe−gNdg ≤ K + 1
N

, g0 =
K

N
(46)



Active Boosted Learning (ActBoost)

5.3 Proof of Lemma 2

The proof closely follows [Nowak, 2009].

Proof. ∃ p� such that

|
B�

i=1

q(xi)p
�
i| ≤ ρ ∀q (47)

Integrate both sides over q ∈ Q�

�

Q�
|

B�

i=1

q(xi)p
�
i|dq ≤ ρ V ol(Q�

) (48)

Integral of the absolute value is greater than the absolute value of the integral and interchange integration with

addition:

|
B�

i=1

�

Q�
q(xi)dq p�

i| ≤ ρ V ol(Q�
) (49)

If x ∈ X s.t. |
�

Q� q(x)dq | ≤ ρ V ol(Q�)| does not exist then |
�

Q� q(x)dq | > ρ V ol(Q�) for all x ∈ X . Since (49)

is a convex combination of
�

Q� q(xi)dq, if one term is negative there has to exist a positive term in order for the

sum to be less than or equal to ρ V ol(Q�). Therefore ∃ x, x� such that:

�

Q�
q(x)dq > ρ V ol(Q�

) and

�

Q�
q(x�

)dq < −ρ V ol(Q�
) (50)

If the pair Q,X is δ-neighborly, there exists a sequence of xi’s starting at x and ending in x�. The sign will have

to switch somewhere in the sequence. Let us redefine the pair x, x� to be where the sign switches. From before:�
Q� q(x)dq −

�
Q� q(x�)dq > 2ρ V ol(Q�). By δ-neighborly assumption: |

�
Q� q(x)dq −

�
Q� q(x�)dq| <

�
Q� |q(x) −

q(x�)|dq < 2δV ol(Q). Combining the two inequalities: V ol(Q�) < δ
ρV ol(Q).

5.4 Proof of Theorem 2

Proof. Let ρ ≥ ρ∗{X , Q} and at this stage we want to find an x� to reduce version space Qτ by
1+ρ
2 at stage τ .

Lemma 2 states that if that is not possible then

V ol(Qτ
) ≤ δ

ρ
V ol(Q) (51)

For simplicity of notation call this the termination of stage 1 and let τ be the time stage 1 is terminated, namely,

the condition above is realized.

To proceed we now restart the entire process by exchanging Q with Qτ . We call this start of stage 2. To

avoid confusion we denote the iterations in this stage by t. Let ρt ≥ ρ∗{X , Qt}. Observe that since Qt ⊂ Q,

ρ∗(X , Qt) ≤ ρ∗(X , Q) and we can set ρ∗{X , Q} ≤ ρt < 1.

By following the proof of Lemma 2, at some time t if an x such that |
�

Qt q(x)dq | < ρt V ol(Qt) does not exist

than there must exist x and x� such that:

�

Qt

q(x)dq −
�

Qt

q(x�
)dq > 2ρt V ol(Qt

) (52)

Let Vd(Q�) =
�

Q� [q(x) �=q(x�)]dq. Let Qt
C = Q \ Qt and V ol(Qt

C) ≥ (1− δ
ρ )V ol(Q).

Vd(Q
t
) + Vd(Q

t
C) = Vd(Q) (53)
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By the regularity assumption (9), Vd(Qt
C) ≥ αVd(Q) and

Vd(Qt) ≤ (1− α)Vd(Q) (54)

And by δ-neighborly assumption, Vd(Q) ≤ δV ol(Q) and

Vd(Qt) ≤ (1− α)δ V ol(Q) (55)

Combining this expression with inequality 52 we obtain:

V ol(Qt) ≤ (1− α)δ
ρt

V ol(Q) (56)

The first statement of Lemma 2 states that for any two consecutive version space Qt and Qt+1 the following
reduction is possible for ρ∗ ≤ ρ < 1 (ρ∗ := ρ∗{X , Q})

V ol(Qt+1) ≤ (1 + ρ)
2

V ol(Qt) (57)

If this condition is not satisfied then the volume bound of Eq. 56 must hold. Now note that the ratio of the
volume bound at the termination of the previous stage τ (see Eq. 51) and at the termination of the current stage
t (see Eq. 56) is a constant equal to (1− α). Furthermore, we are guaranteed an exponential rate (1 + ρt)/2 of
decay while going from termination of stage 1 to termination of stage 2. Consequently, we can reduce the volume
at the previous stage τ to the current stage t with at most a constant number of queries. For simplicity we assume
that this is equal to one since the order-wise scaling of the number of queries does not change. Consequently, we
can obtain:

V ol(Qt+1) =
(1− α)δ

ρ
V ol(Qt) (58)

To obtain the worst case rate for each iteration we need:

λ0 = min
ρ∗≤c≤1

max{1 + ρ

2
,
(1− α)δ

ρ
} (59)

This expression simplifies to the situation when the two arguments are equal. This turns out to be ρ =
1
2 (

�
1 + 8(1− α)δ − 1)

λ0 = max{1 + ρ∗

2
,
1 + .5(

�
1 + 8(1− α)δ − 1)

2
} (60)

where δ = 2K+1
N . We now note that

√
1 + z ≤ 1 + z/2. Consequently, we get,

λ0 ≤ λ = max{1 + ρ∗

2
,
1
2
(1 + (1− α)

2K + 1
N

)}

We can repeat this argument for Stage 3, Stage 4 and so on in an identical fashion. The volume of our final
version space is required to be V ol(Qn) = �V ol(Q).

V ol(Qn) = λnV ol(Q)

� = λn =⇒ n =
log �

log λ
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5.5 Proof of Theorem 3

Proof. In the proof, all volume is taken with respect to the lebesgue measure on the p sparse subspace. If we
can reduce the volume of sparse version space at each stage by λ then after n stages:

V ol(Sn) = λ
n
V ol(S) (61)

There are
�N

p

�
p-sparse disjoint segments: {s1, s2, . . . , s(N

p)} = S. Without loss of generality, we define the volume

V ol(.) such that V ol(sr) = 1 for r = 1, . . . ,
�N

p

�
therefore

V ol(Sn) = λ
n

�
N

p

�

By assumption from Section 3.2, we defne

qs = arg inf
q∗∈S

V ol{q ∈ S | ||q − q
∗
||1 ≤

θ

2
} (62)

f(θ, p) = V ol{q ∈ S | ||q − qs||1 ≤
θ

2
} (63)

If V ol(Sn) ≤ f(θ, p) then Sn ⊂ {q ∈ S | ||q − qs||1 ≤
θ
2} and ∀q ∈ Sn (by the margin bound [Schapire et al.,

1997])

Prob(q(x) �= y) ≤ O

�
log |X | log p

θ2|X |
+

log(1/δ)
|X |

� 1
2

(64)

So we require:

V ol(Sn) ≤ f(θ, p) (65)

n log λ + log
�

N

p

�
≤ log f(θ, p) (66)

n ≥
log

�N
p

�
+ log 1

f(θ,p)

log 1
λ

(67)

5.6 Proof of Lemma 3

Proof. If ρ∗ < 1 then �q ∈ Q s.t. qT h(xi) > 0 ∀i. Let us define a vector f(q) ∈ RB with f(q)i = qT h(xi) and a
set F = {f(q)|q ∈ Q}. Since every component of f cannot be positive, the set F cannot lie in the first (positive)
orthant. The set F is also convex, so there must exist a separating hyperplane with a normal vector λ ≥ 0. This
implies the following inequality:

B�

i=1

λif(q)i =
B�

i=1

λi

N�

j=1

qjhj(xi) ≤ 0 (68)

At least one element of λ must be non-zero to define a hyperplane. Let us interchange the summation:
N�

j=1

qj

B�

i=1

λihj(xi) ≤ 0 (69)

From earlier, we assume that for every weak hypothesis there exists a compliment: s.t. hj(x) = −hj∗(x) and
hj , hj∗ ∈ H. For any weight vector q, we can reassign the weight of hj to its compliment hj∗ and make the left
side in (69) greater than zero. But the inequality in (69) has to hold for all q ∈ Q. This can only be true if every
term in the summation is zero:

M�

i=1

λihj(xi) = 0 ∀j (70)
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5.7 Miscellaneous Figures
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Figure 7: Accuracy vs # labeled examples as a function of Hit and Run iterations (HT): changing HT does not

change performance 7(a). Two dimensional dataset: Gaussian Clusters 7(b).Box Dataset 7(c). Banana Dataset

7(d).
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5.8 Sampling with Hit and Run in the boosting framework

Algorithm 2 sample

INPUT: Lt {labeled set of examples}, Ts { number of iterations}, q0 {initial feasible point}
Qt ← {q : q ∈ Q, mT

i q ≥ v0 ∀i|xi ∈ Lt}, Q ← {q : q ≥ 0,1T q = 1}, d0 ← 1
N 1− q0 {initial direction} w =

1√
N

1

for s = 1 to Ts do

z ← N (0, I), z� ← [I − wwT ]z, d ← z
||z||2

{Generate a normal random variable, project it onto a hyperplane parallel to the simplex, and normalize to

form a random direction }
r1
i ←

(qs)i

(−d)i
, r2

i ←
(Mtqs−v0)i

(−Mtd)i

α+ ← min{minr1
i≥0 r1

i , minr2
i≥0 r2

i }, α− ← max{maxr1
i <0 r1

i , maxr2
i <0 r2

i }
q+
s ← qs + α+d, q−s ← qs + α−d {find two endpoints}

αs ← UNIFORM [0, 1] {generate a uniform random variable on [0, 1]}
qs+1 ← q+

s αs + q−s (1− αs) compute new interior point

end for

OUTPUT: qsample ← qTs {uniform random sample from Qt}


