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Abstract

Multicore computing is on the rise, but algo-
rithms such as Gibbs sampling are fundamen-
tally sequential and may require close consid-
eration to be made parallel. Existing tech-
niques either exploit sparse problem struc-
ture or make approximations to the algo-
rithm; in this work, we explore an alternative
to these ideas. We develop a parallel Gibbs
sampling algorithm for shared-memory sys-
tems that does not require any independence
structure among the variables yet does not
approximate the sampling distributions. Our
method uses a look-ahead sampler, which
uses bounds to attempt to sample variables
before the results of other threads are made
available. We demonstrate our algorithm on
Gibbs sampling in Boltzmann machines and
latent Dirichlet allocation (LDA). We show
in experiments that our algorithm achieves
near linear speed-up in the number of cores,
is faster than existing exact samplers, and is
nearly as fast as approximate samplers while
maintaining the correct stationary distribu-
tion.

1 Introduction

As new computer architectures move increasingly to-
ward parallel computing structures such as multi- and
many-core architectures, machine learning algorithms
must adapt to understand and take advantage of the
theoretical implications of parallel computing. Paral-
lel computing has garnered considerable attention in
learning (Chu et al., 2006) and in inference using mes-
sage passing algorithms (Gonzalez et al., 2009a,b) and
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Markov chain Monte Carlo techniques (Newman et al.,
2009; Ren and Orkoulas, 2007). Although in many
cases the required tasks are trivially (“embarassingly”)
parallel, in others the obvious methods of paralleliza-
tion cannot compete with a well-designed sequential
algorithm, and more carefully designed parallel algo-
rithms must be constructed (Martens and Sutskever,
2010; Whiley and Wilson, 2004).

The class of Markov chain Monte Carlo (MCMC) al-
gorithms provide many such examples. MCMC is a
fundamentally sequential set of operations; for exam-
ple, in Gibbs sampling each variable is sampled from
its conditional distribution given the previously drawn
samples. One obvious method to parallelize MCMC is
to construct multiple Markov chains, each of which
runs in parallel. After each processor has progressed
past the burn-in stage, each will provide its own se-
quence of independent samples. More samples typi-
cally provide better estimates; for P processors, we
can obtain the same quality estimates with only 1/P
samples per process, or reduce variance by a factor of√
P . Unfortunately this means every processor must

pay the same fixed cost of burn-in, which in many
problems is the most costly aspect: only a few sam-
ples are needed, but burn-in takes a long time.

Another straightforward method is to use indepen-
dence structure among variables, often encoded using
a graphical model, to decouple samples. In a Markov
random field, each variable is independent given its
neighbors in the graph. If each variable has only a
few neighbors, its sampling process will depend on
only those variables, and other variables can be sam-
pled concurrently by other processes so long as they
avoid direct interaction. This is particularly effective
in models with regular, repeated structure which en-
able large groups of variables to be scheduled concur-
rently without creating dependencies (Ren and Ork-
oulas, 2007).

However, the most difficult class of models are those
which are densely connected. Examples from the liter-
ature include Gaussian processes (Whiley and Wilson,
2004), Boltzmann machines (Martens and Sutskever,
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2010), and the latent Dirichlet allocation (LDA) model
for text mining (Blei et al., 2003). In these cases, each
sample depends on many or all of the other values,
making it difficult to find large collections of variables
which can be sampled independently. One possible
solution (Newman et al., 2009) is to define an approx-

imate sampler, which draws its samples from a proba-
bility distribution which is close to the correct distribu-
tion, but approximated in a way that enables parallel
sampling. The results of such algorithms are often ex-
cellent in practice, and achieve nearly linear speed-up
in the number of processes. One significant problem,
however, is that we have no real idea how close our
sampling distributions are to the desired model. Is
this the best we can hope for, or can we adapt our
algorithms such that we manage to fulfill both roles:
drawing samples from the desired model, while still
taking advantage of parallel computing?

In this paper, we describe a new mechanism for per-
forming Gibbs sampling in densely connected mod-
els, using two dense graphical models (Boltzmann ma-
chines and LDA) as case studies. Our method is spe-
cialized to shared memory parallel architectures such
as multicore desktop machines, in which coordination
among processes and data sharing are relatively effi-
cient. It works by constructing a look-ahead sampler
for each process. In the first part, the sampler at-
tempts to draw its value without knowing the samples
of preceeding processes; if this succeeds, it can con-
tinue without waiting. If it fails, however, it waits un-
til the samples scheduled before it are complete, then
finishes its own sampling operations.

2 Motivating examples

We first describe the models and Gibbs sampling
updates for two motivating example problems with
densely structured graphs: Boltzmann machines, used
widely in machine learning, and the latent Dirichlet
allocation (LDA) model for text.

2.1 Boltzmann Machines

A Boltzmann machine is a binary-valued, pairwise
Markov random field, defined by a quadratic energy
function and its associated Boltzmann distribution,

E(z) = −z′Az p(z) ∝ exp(−E(z)) (1)

where z = [z1, . . . , zn]
′ and zi ∈ {0, 1}. We assume

that A is symmetric, so that aij = aji. (The formula-
tion often includes a bias term b′z in the energy, but
since zi is binary, bizi = zibizi and b can be absorbed
into the diagonal elements of A.) The standard Gibbs
sampler proceeds by sampling from the conditional dis-

tributions

p(zi = 1 |z¬i) = σ(aii +
∑

j 6=i

2 aijzj)

where σ(x) = 1/(1+e−x) is the logistic function. If the
matrix A is dense, zi will depend on a large number of
zj , making parallel computation difficult.

An alternative proposed by Martens and Sutskever
(2010) is to construct a partially continuous, restricted
Boltzmann machine over variables y, z whose marginal
distribution over z is the desired target:

E(y, z) =
1

2
y′y − y′Wz − η′z , W = (A− diag(η))

1

2

where y is a continuous (Gaussian) random vector and
η is chosen to make (A − diag η) positive definite. In
this system, given y all variables zi can be sampled in
parallel, and given z all variables yi can be sampled in
parallel. For consistency with the terminology of LDA
(Section 2.2), we refer to the augmented system over
y, z as the “complete” model, and the original model
over only z as a “collapsed” model.

Deviating from the original, collapsed system may
have unintended consequences. There is some addi-
tional overhead in computing W ; when the system
is large or when A is changing (for example during
learning) this can actually dominate the total execu-
tion time of the sampler. Each iteration also requires
twice as many samples, and may be slightly more ex-
pensive to sample than uniform random variables. Fi-
nally, the augmented system may mix at a different
rate than the original system. This effect was also
noted by Martens and Sutskever (2010), who showed
that the mixing rate depends on the value of η.

2.2 Latent Dirichlet Allocation (LDA)

LDA (Blei et al., 2003) is a generative probabilistic
model for representing collections of discrete-valued
data; while developed originally to model corpora of
text documents, it has since been applied to a broad
range of other problems. A graphical model represent-
ing LDA is shown in Fig.1a.

The observed data consist of D documents, where doc-
ument d is of length Nd and consists of a series of to-
kens xdi which are words chosen from a vocabulary of
size W . (We refer to the xdi, the i

th word appearing in
document d as tokens to distingish them from the val-
ues they take on, which are words in the vocabulary.)
The LDA model describes these data as arising from a
generative process in which there are T possible top-
ics, each described by a relatively sparse multinomial
distribution φt over the W words; these distributions
are not observed, but are given a Dirichlet prior with
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parameter β.1 Each document d is associated with a
hidden multinomial distribution over topics, θd, with
Dirichlet prior α. Then, for word i ∈ {1 . . . Nd}, a
topic zdi is chosen according to θd, and a word xdi is
chosen according to φzdi .

The goal of inference is to compute the posterior dis-
tribution of topics in each document, θd, and words in
each topic, φt, given the observed document corpus.
There are several Gibbs sampling possibilities. Given
samples of the {θd} and {φt}, the topic assignments
{zdi} are all independent, and vice versa, providing a
trivially parallel Gibbs sampler. In many ways, this is
similar to the parallel RBM approach. Unfortunately,
this Gibbs sampler mixes very slowly. In contrast, a
collapsed Gibbs sampler integrates out the θd and φt,
and samples only the topic assignments zdi. Define
the sufficient statistics Ndwt = |{i : xdi = w, zdi = t}|;
sampling requires the document-topic counts Ndt =∑

w Ndwt, word-topic counts Nwt =
∑

d Ndwt and
topic counts Nt =

∑
w Nwt. Additionally we use ¬di

to indicate that token i in document d is excluded (sub-
tracted) from the counts. The collapsed Gibbs sampler
simply proceeds through each token, sampling its topic
assignment zdi given all the other assignments

p(zdi = t|z¬di,x, α, β) =
1

Z

adtbwt

ct
(2)

where

adt = N¬di
dt + α bwt = N¬di

wt + β ct = N¬di
t +Wβ,

w = xdi, and Z is a constant that serves to normalize
the distribution.

This algorithm is linear in the size of the corpus, and
is not easily made parallel since the distribution of
each zdi depends on every other assignment. How-
ever, for a large corpus, we may hope that the sums
on which the distribution depends are relatively sta-
ble, and allow samples to be taken using “old” values
of other variables. Approximate distributed LDA, or
adLDA (Newman et al., 2007), uses this idea to par-
allelize LDA; it splits the collection of documents into
a number of blocks, then resamples each block in par-
allel using the previous iteration’s values for non-local
blocks, and exchanges the results before continuing to
the next iteration. This idea appears to work well in
practice and has been extended to hierarchical mod-
els and asynchronous updates (Asuncion et al., 2009),
and is particularly useful in applying LDA to massive
data sets which do not fit in a single computer’s mem-
ory (Wang et al., 2009).

1Although many applications of LDA learn asymmetric
Dirichlet parameters (Wallach et al., 2009; Minka, 2003),
we will use a symmetric prior with scalar parameter β for
simplicity; all results are easily generalized to the more
general case.
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Figure 1: (a) Graphical model for LDA. (b) adLDA
operates by allocating B blocks of documents across
multiple compute elements (here, threads); ”blocked”
adLDA-B also partitions across the vocabulary (col-
ors) and samples only same-colored blocks in parallel
before resynchronizing.

The adLDA algorithm has also been applied in shared
memory systems, including desktops (Newman et al.,
2007) and graphics processing units (Yan et al., 2009).
In shared memory systems, more rapid synchroniza-
tion is possible between processes and several improve-
ments are possible. One significant improvement is to
subdivide the data more finely, blocking both groups
of documents and words in the vocabulary, and coor-
dinate the parallel samplers such that no two samplers
are working on the same document or the same word.
This organization enables the values of adt and bwt

to reside in shared memory without risk of access con-
flicts, reducing the amount of memory required and in-
creasing the accuracy of the sampler (Yan et al., 2009;
Ihler and Newman, 2009).

3 Exact Parallel Gibbs Sampling

In this section we describe our technique for drawing
samples in (near) parallel. First, we describe the gen-
eral form of the bounds we require, then discuss how to
organize the operations across threads to easily com-
pute the required quantities.

3.1 Look-Ahead Sampling

The difficulty with parallelizing the operations of col-
lapsed Gibbs sampling in, for example, the LDA model
is that every variable zdi depends at least slighlty on
every other variable. However, the observation un-
derlying adLDA and its variants is that although all
variables are dependent, many of the dependencies are
very weak. The adLDA algorithm exploits this fact to
create an approximate sampler, while in the sequel we
explore using it to create a “nearly parallel” sampler.

Consider a system in which two threads are attempt-
ing to sample a single variable each. One thread (or
variable) can be considered to preceed the other, and
can simply sample. The issue is that we would like the
second thread to not wait until the first is finished,
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but attempt to draw its sample early, before the value
produced by the first thread is known. The picture
as seen by a single thread is shown in Figure 2 – we
would like to sample a variable, say z6, given neighbor-
ing variable’s values, only some of which are known.
(We mark unknown values by “?”.)

We can construct such a look-ahead sampler by finding
lower bounds on the probability of each possible out-
come for z6 given any configuration δ of the unknown
values. In other words, we find values p̂t such that

p̂t ≤ min
δ1,δ2,...

Pr[z6= t |z1=2, z2=1, z3=δ1, z4=δ2, . . .]

Given such a set of lower bounds, we can sample the
value of z6 without knowing δ with some probability,∑

t p̂t. With probability 1−
∑

t p̂t, our sampler fails to
complete its action, and waits until the values of δ1, δ2
are known (i.e., they have been sampled by another
thread). It is then easy to compute the remainder,

rt = Pr[z6= t |z1=2, z2=1, z3=δ1, z4=δ2, . . .]− p̂t

and complete the sample.2

Our look-ahead sampler is closely related to techniques
for drawing exact samples from Markov chain Monte
Carlo simulations, in which similar “missing” values
are included explicitly and used to check whether the
Markov chain has become independent of its initial
conditions. In application to LDA, discussed further
in Section 4.2, it also has similarities to bound-based
approaches such as shortcut sampling (Porteous et al.,
2008) and sparse LDA (Yao et al., 2009).

3.2 Data Structures

A natural question is then how to coordinate among
multiple threads, each trying to access and change the
variables on which the others depend? In particular,
we need access to the implicit order in which the sam-
ples are scheduled to take place: when a thread com-
putes p̂, it needs to know which variables zi have been
scheduled for update earlier to bound their influence
and potentially wait for them to be updated. The
thread must also maintain access to the old values of
variables scheduled for later updates, despite the fact
that they may be updated by another thread before
our sample has been finished.

We resolve these difficulties with a shared two-row
queue structure, with one row (“old”) indicating vari-
ables scheduled for resampling and their values, and

2We consider only discrete-valued probability distribu-
tions, in which these bounds are relatively easy to ob-
tain; whether look-ahead sampling can be easily applied
to continuous-valued variables is an open question for fur-
ther research.

z1=2

z2=1

z3=?

z4=?

z5=3

z6

p̂1 p̂2 p̂3 . . . r1 r2 r3 . . .

Figure 2: Look-ahead sampling of z6. Although the
values of z3, z4 are unknown (“?”), we can lower bound
the probabilities of each outcome for z6 as p̂1 . . . and
draw a sample. With some probability (shown in
green) this sampling succeeds; otherwise we wait until
observing the values of z3, z4 to compute r1 . . . (red),
at which point we can determine the new value of z6.

the other row (“new”) indicating the new values which
have been drawn for them. The ordering of the queue
represents the sequential ordering of variables which
the parallel sampler will preserve. An example queue
structure is shown in Figure 3.

Each thread maintains a local copy of whatever suffi-
cient statistics are required for sampling, and uses the
queue to update and bound these statistics in order.
Threads each use two local pointers to manage the
sequence of variable updates. Local pointer current

indicates the variable currently being sampled by this
thread, while pointer back indicates those variables
which have already been sampled before our attempt
begins. Although it may be the case that many of the
variables between back and current have been sam-
pled already, it is difficult to maintain an instantaneous
snapshot of drawn versus missing values; therefore, we
treat all values between back and current as missing.

To begin sampling a block, our thread locks the queue
and allocates a new set of K variables to sample using
a shared head pointer, filling in the old values and “?”
for new values. Then, we simply advance current, re-
moving each value in old from our sufficient statistics
and keeping track of bound information. We also ad-
vance back, adding each value in new to our sufficient
statistics and removing its bound influence, until we
reach the first “?”. We attempt to sample each of our
variables; if any fail, we wait until the entire region be-
tween our back and current pointers has been filled,
at which point we can calculate the remainder prob-
abilities ri and finish our sample. Between drawing
samples, we can advance back if desired. The size K
is a parameter of the algorithm; we shall see in exper-
iments how changing K can affect performance.

Our sampler is predicated on the idea that many of
the variables we encounter in the queue have little or
no influence on our outcome probabilities, so that the
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z1=2

z2=1

z3=?

z4=?

z5=3

z6 =?

Variables z1 z2 z3 z4 z5 z6 · · ·
old z 1 3 2 1 1 2 · · ·
new z 2 1 ? ? 3 ? · · ·

thread 2 thread 1

Figure 3: Queue used for coordination among sampling threads. The first row indicates the variable referred to
for that column, the second its value prior to this sampling pass, and the third its newly updated value if drawn,
or “?” if not. Each thread allocates a small block (here, 2 variables) to be sampled before re-acquiring a lock on
the queue to allocate the next block. Each thread also maintains two local pointers: current, indicating which
sample it is currently drawing, and back, indicating through which sample it has incorporated all new values.

probability of a successful sample,
∑

p̂t, will be close
to 1. Our data structure can be used regardless of the
independence structure of the model; in the case of
independent or weakly dependent samples it can reach
near linear speed-up, while if the variables currently
being sampled are tightly coupled it will slow down
but maintain a correct sampling distribution.

4 Developing Bounds

The main component of our algorithm is to define what
statistics each thread will need to maintain locally, and
how bounds p̂t on each probability can be computed
easily. In this section, we describe the creation of such
bounds for both Boltzmann machines and LDA.

4.1 Bounds for Boltzmann Machines

The conditional distribution required for Gibbs sam-
pling in the Boltzmann model is given by

p(zi = 1|z¬i) = σ(aii +
∑

j 6=i

2 aijzj).

We develop a simple upper and lower bound on the
sum in terms of the pointers back and current.

We can split the sum over j into three components:
j <back, j ≥current, and j ∈ [back,current-1] = J .
The first of these involves only values in new which are
not equal to “?”, while the second involves only values
in old; for each of these we compute directly:

hnew =
∑

j<back

2 aijz
new

j hold = aii +
∑

j>current

2 aijz
old

j

The last term requires new values which may not yet
be available, and we create upper and lower bounds:

h+ =
∑

j∈J

max(2 aij , 0) h− =
∑

j∈J

min(2 aij , 0)

We then have

p̂0 = σ(−(hold + hnew + h+)) ≤ p(zi = 0|z¬i)

p̂1 = σ(hold + hnew + h−) ≤ p(zi = 1|z¬i)

4.2 Bounds for LDA

We next show how to construct similar bounds that
lead to an efficient parallel sampler for LDA. As in
adLDA-B, we break the set of documents and words
(vocabulary) into smaller sub-blocks, assigned to dif-
ferent threads. Each thread samples the topic assign-
ments within a single sub-block, ensuring that any
given region of the document-topic (adt) and word-
topic (bwt) count matrices are accessed by only one
thread and can reside in shared memory. Thus, from
Eq. 2 the only sufficient statistic that must be main-
tained locally is the overall topic-count vector ct.
Within this vector, each variable in the model has
equal “influence”, so the identity of the variables will
not be required when updating.

Now consider constructing a bound on the probability
given a collection of unknown assignments. Define the
variables δ = {δ1, δ2, ...δT }, and ∆ =

∑
t δt to be the

number of variables currently marked as missing which
will eventually be assigned to each of the T topics.
When advancing current, we subtract each old topic
assignment from our local copy of ct, and eventually
will re-add the entries of δ. The true probability of
sampling a topic t if the entries of δ were known is

pt(δ) =
qt(δ)

Z(δ)
=

1

Z(δ)

adtbwt

ct + δt
(3)

with qt(δ) = adtbwt

ct+δt
and the normalizing constant

Z(δ) =
∑

t qt(δ). Unfortunately, we cannot know the
assignments δt, but it is easy for us to compute the to-
tal number of variables which are treated as missing,
∆ =

∑
t δt, since this is simply the distance between

pointers back and current.

We derive a lower bound p̂ of the true probability mass
(Eq.3) which depends only on ∆. It is easy to verify
that at any point in our algorithm,

q̂t =
adtbwt

ct +∆
≤ qt(δ) Z+ =

∑

t

adtbwt

ct
≥ Z(δ)

ensuring that we can define a valid lower bound on pt
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Figure 4: Speedup analysis for Boltzmann machines.
(a) Speedup factor for several model sizes N ; as N
increases our sampler becomes more efficient. (b)
Speedup as a function of K, the number of variables
per lock; the decline suggests that delays are due to
the conflict rate, rather than the lock time.

as

p̂t =
q̂t
Z+

≤ min
δ :

∑
t
δt=∆

pt(δ) (4)

As discussed previously, our sampler will succeed with
probability

∑
p̂t, and fail (forcing the thread to wait)

with probability
∑

rt. We refer to the latter quantity
as the conflict rate, denoted Rc. In our experiments,
the conflict rate is often very small (between 4× 10−5

and 2 × 10−2). Thus, more than 98% of the time our
thread does not need to wait on the previous threads’
unavailable samples, so that the samples are taken very
nearly in parallel without compromising the accuracy
of their distribution.

5 Experiments

We assessed our look-ahead sampler experimentally on
both Boltzmann machines and LDA. All experiments
were performed on an 8-core Intel Xeon 2.33GHz ma-
chine with 16GB memory, and used wall clock time to
assess speed-up performance.

5.1 Boltzmann machines

We first compare our sampler on Boltzmann machines
using synthetically generated binary Markov random
fields. We constructed random, 50% dense graphs of
size N = 5000, 8000, and 10000 whose parameters
are i.i.d. Gaussian samples, θij ∼ N(0, .1). We then
compared the performance of our look-ahead sampler
against the parallel RBM sampler of Martens and
Sutskever (2010). For the RBM-based sampler, to en-
sure A−η is positive definite we set η as the minimum
of zero or 1.01 times the minimum eigenvalue of A.

Figure 4 shows the performance of the look-ahead sam-
pler as a function of model size N , and as a function of
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Figure 5: Convergence over time for Boltzmann ma-
chines. (a) Estimated energy vs. running time; (b)
absolute error vs. running time. On 8 cores, our look-
ahead sampler is faster than either the sequential or
parallel RBM-based samplers.
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Figure 6: Convergence versus iteration for Boltzmann
machines. (a) Estimated energy; (b) absolute error vs.
iterations. Our look-ahead sampler converges at the
same rate as the sequential sampler, while the RBM-
based method is slightly slower.

the block size K for N = 105. As can be seen, speed-
up is approximately linear with the number of cores
up to a point, after which coordination issues among
the processors (due to locking or an inability to sample
without access to other processors’ results) begins to
dominate. Performance decreases with K, suggesting
that it is the conflict rate (failure to draw a sample
using the bounds) that is responsible.

Figure 5 illustrates the convergence of the look-ahead
sampler compared to the sequential and the RBM-
based parallel samplers as a function of time. To gauge
convergence, we monitor the sample-based estimate of
the expected energy of the system, Ep(z)[−z′Az], a
weighted average of second-order statistics. We ran
a sequential sampler to 10,000 iterations to obtain an
estimate of the true value, and show both the conver-
gence toward this value (Figure 5a) and the error (dif-
ference in estimated energies) as a function of time. In
our implementation, the RBM approach with 8 cores
was approximately the same speed as the sequential
sampler, while the look-ahead sampler was about 7.5×
faster. This appears to be due to a combination of the
slower sampling and slower mixing. For comparison,
Figure 6 shows the same energy estimates for each of
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the three algorithms, but plotted against the number
of iterations; here we can see that both the original
and parallel look-ahead collapsed samplers have identi-
cal behavior, while the RBM converges slightly slower
due to its different mixing rate. In fairness of course,
as the number of cores increase the look-ahead sampler
will reach some maximum speed, while the RBM-based
sampler may continue to improve, making it possibly
better suited to GPUs and other massively parallel
platforms.

5.2 Latent Dirichlet allocation

In the following experiments for LDA, we used three
data sets from the UCI machine learning reposi-
tory (Asuncion and Newman, 2007), to which LDA
is commonly applied. The relative sizes of the data
sets are listed in Table 1. In all cases, we fixed the
hyperparameters to α = .1, β = .01.

Parameter Choices. A critical component of the
algorithm in practice is the balance between conflicts
caused by being unable to sample a variable and the
time spent interacting with the shared queue head
pointer, to allocate space for subsequent variables.
This balance is controlled in part by the parameter
K, the size of each allocated region of the queue. It
also depends on, for example, the time required to
perform a single sample and the relative influence of a
small number of missing values, and thus depends on
parameters of the model and data such as the number
of topics T and data set size, as well as the number
of threads competing for the shared resources. In this
section, we experimentally analyze the behavior of our
algorithm under various conditions.

We first show the overall speed-up of the algorithm for
various settings of K and T , and additionally the total
number of blocks B into which the data are initially
partitioned (see Figure 1). These results are shown in
Figure 7 for the New York Times data set. There is a
wide range of values of K in which the algorithm per-
forms well; too small K means insufficient work per
lock operation, while too large K means a high proba-
bility of a conflict and high wait ratio. The algorithm
also performs better for sufficiently large numbers of
topics, since this too affects the relative time spent
on computation between lock operations. We found
the number of blocks B also has relatively little effect
over a broad range of values, except at the extrema.
Speedup for different data sizes. In order to il-
lustrate our multicore LDA is able to achieve good
speedup, we test it on three different data sets with
parameters set to T = 500, B = 100 and K = 10
for the NYTimes and K = 3 for ENRON and NIPS
data sets. Fig. 8a shows the comparison of speedup
for all three data sets as we vary the number of cores

Dataset NYTimes ENRON NIPS

N 100M 6.4M 1.9M
W 102K 28K 12K
D 300K 40K 1.5K

Table 1: Data sets used in the experiments and their
relative sizes, from (Asuncion and Newman, 2007).

used, P , from 1 to 8 in an 8-node shared memory ma-
chine. Smaller data sets such as NIPS do not increase
beyond a certain point, when a sufficient number of
sampling conflicts are occurring to offset the advan-
tages of more cores. As the size of the data set grows,
the coupling between assignments becomes weaker and
the algorithm can take more advantage of the available
parallelism.

Speedup for different models. We also compare
the speedup of our multicore LDA and two different
implementations of adLDA, adLDA (Newman et al.,
2007) and adLDA-B (Ihler and Newman, 2009), on
the same multicore machine. We use the NYTimes
data set and the same parameter values as before. All
three algorithms are nearly identical in speed-up, with
the original adLDA slightly slower than adLDA-B due
to its lack of shared resources for the word-topic ma-
trix. Our multicore LDA is only slightly slower than
either adLDA, caused by the overhead of frequent com-
munication and lock exchange. However, unlike either
version of adLDA, our algorithm makes no approxima-
tions to the sampling distributions and thus adapts au-
tomatically to data sets or parameter values in which
the sampling steps must be more tightly coupled.

Perplexity Comparisons. Finally, we evaluate the
performance of LDA, adLDA, and our multicore LDA
using perplexity, evaluated on the Enron dataset. We
held out 10% of documents as test data and used
the remaining 90% for training. For each model, we
run 100 Markov chains starting from different random
seeds, and plot error bars of perplexity for each model
(indicating ±2 standard deviations) across runs. Pa-
rameters are set for all these models to T = 500, B =
100 and K = 10.

Figure 9a shows the perplexity from iterations 100 to
200 (after most burn-in has occurred). The resulting
perplexities are comparable, and in fact the original
adLDA has slightly lower average perplexity, which is
consistent with (Newman et al., 2007, 2009). Our algo-
rithm is closest in mean to sequential LDA, to which it
should be equivalent and blocked adLDA (adLDA-B)
is also very close, well within two standard deviations.

To assess the significance of this difference in accuracy,
we perform a Kolmogorov-Smirnov (KS) two-sample
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Figure 7: Speed-up of multicore LDA on the NYTimes dataset with (a) varying K and T = 500, 100; (b) varying
topics T and K = 10; (c) number of block partitions B, with T = 500, 100.
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Figure 8: Speed-up analysis. (a) Speedup for three
datasets; (b) comparing speed-up for multicore vs.
adLDA methods.
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Figure 9: Perplexity comparisions: (a) perplexity con-
vergence for different models; (b) perplexity CDFs of
4 models, used for a KS test of equal distributions.

test between the 100 perplexities found by each ini-
tialization of sequential LDA, against those for each
of adLDA, adLDA-B, and our multicore sampler. Fig-
ure 9b shows the cumulative distribution functions of
perplexity for each set of 100 samples, which form the
KS test statistic. Both multicore and adLDA-B are
not statistically significantly different, with p-values of
0.794 and 0.140, respectively; adLDA is significantly
different, with p-value 10−5. It is difficult to assess
the differences in stationary distributions for sampling
methods, but this provides empirical evidence that our
sampler is correct, and is consistent with adLDA-B
providing a more accurate approximation.

6 Discussion and Conclusion

Previous work on parallelizing Gibbs sampling has fo-
cused on using extended variable sets that decouple
(Martens and Sutskever, 2010), or making approxi-
mations to the true transition probabilities (Newman
et al., 2007). The former may introduce changes in
the mixing rate, while the latter introduces additional
unknown approximations.

This work asks whether it is possible to take advan-
tage of shared-memory parallel architectures in Gibbs
sampling without compromising the theoretical prop-
erties of the method. To this end, we developed a look-
ahead sampler which is capable of drawing a sample in
parallel with some probability, and defaulting back to
sequential sampling in the case of failure. We showed
how operations can be organized among threads to en-
sure that each thread is able to keep track of the values
required for its own probability distributions, and com-
pute the bounds required by the sampler. We showed
the form of these operations and bounds on two mod-
els studied for parallel sampling: Boltzmann machines
and LDA. In both cases, we found that our algorithm
provides competitive speed on a multicore machine,
without fundamentally changing the sampling process.

The advantage of our method is primarily theoretical,
in that it preserves all the properties of the original
Gibbs sampler at the potential risk of not gaining full
advantage of the parallel architecture. As multicore
architectures become increasingly common, it is im-
portant that we understand the variety of trade-offs at
our disposal. Open questions include how these tech-
niques can fit into alternate computational models and
hardware, such as GPUs and data storage hierarchies.
We also plan to explore extending the approach to non-
parametric Bayesian models (Asuncion et al., 2009) by
developing bounds that can be used in these cases.
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