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Abstract

We prove that access to a prior distribution
over target functions can dramatically improve
the sample complexity of self-terminating ac-
tive learning algorithms, so that it is always bet-
ter than the known results for prior-dependent
passive learning. In particular, this is in stark
contrast to the analysis of prior-independent al-
gorithms, where there are simple known learn-
ing problems for which no self-terminating algo-
rithm can provide this guarantee for all priors.

1 Introduction and Background

Active learningis a powerful form of supervised machine
learning characterized by interaction between the learning
algorithm and supervisor during the learning process. In
this work, we consider a variant known aspool-basedac-
tive learning, in which a learning algorithm is given access
to a (typically very large) collection of unlabeled examples,
and is able to select any of those examples, request the su-
pervisor to label it (in agreement with the target concept),
then after receiving the label, selects another example from
the pool, etc. This sequential label-requesting process con-
tinues until some halting criterion is reached, at which point
the algorithm outputs a function, and the objective is for
this function to closely approximate the (unknown) target
concept in the future. The primary motivation behind pool-
based active learning is that, often, unlabeled examples are
inexpensive and available in abundance, while annotating
those examples can be costly or time-consuming; as such,
we often wish to select only the informative examples to
be labeled, thus reducing information-redundancy to some
extent, compared to the baseline of selecting the examples
to be labeled uniformly at random from the pool (passive
learning).
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There has recently been an explosion of fascinating theo-
retical results on the advantages of this type of active learn-
ing, compared to passive learning, in terms of the number
of labels required to obtain a prescribed accuracy (called
the sample complexity): e.g., [FSST97, Das04, DKM09,
Das05, Han07b, BHV10, BBL09, Wan09, Kää06, Han07a,
DHM07, Fri09, CN08, Now08, BBZ07, Han11, Kol10,
Han09, BDL09]. In particular, [BHV10] show that in
noise-free binary classifier learning, for any passive learn-
ing algorithm for a concept space of finite VC dimension,
there exists an active learning algorithm with asymptoti-
cally much smaller sample complexity for any nontrivial
target concept. In later work, [Han09] strengthens this re-
sult by removing a certain strong dependence on the dis-
tribution of the data in the learning algorithm. Thus, it
appears there are profound advantages to active learning
compared to passive learning.

However, the ability to rapidly converge to a good classifier
using only a small number of labels is only one desirable
quality of a machine learning method, and there are other
qualities that may also be important in certain scenarios. In
particular, the ability toverify the performance of a learning
method is often a crucial part of machine learning applica-
tions, as (among other things) it helps us determine whether
we have enough data to achieve a desired level of accuracy
with the given method. In passive learning, one common
practice for this verification is to hold out a random sample
of labeled examples as avalidation sampleto evaluate the
trained classifier (e.g., to determine when training is com-
plete). It turns out this technique is not feasible in active
learning, since in order to be really useful as an indicator
of whether we have seen enough labels to guarantee the
desired accuracy, the number of labeled examples in the
random validation sample would need to be much larger
than the number of labels requested by the active learning
algorithm itself, thus (to some extent) canceling the savings
obtained by performing active rather than passive learning.
Another common practice in passive learning is to exam-
ine the training error rate of the returned classifier, which
can serve as a reasonable indicator of performance (after
adjusting for model complexity). However, again this mea-
sure of performance is not necessarily reasonable for active
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learning, since the set of examples the algorithm requests
the labels of is typically distributed very differently from
the test examples the classifier will be applied to after train-
ing.

This reasoning indicates that performance verification is
(at best) a far more subtle issue in active learning than
in passive learning. Indeed, [BHV10] note that although
the number of labels required to achieve good accuracy is
significantly smaller than passive learning, it is often the
case that the number of labels required toverify that the
accuracy is good is not significantly improved. In particu-
lar, this phenomenon can dramatically increase the sample
complexity of active learning algorithms that adaptively de-
termine how many labels to request before terminating. In
short, if we require the algorithm both tolearn an accurate
concept and toknow that its concept is accurate, then the
number of labels required by active learning is often not
significantly smaller than the number required by passive
learning.

We should note, however, that the above results were
proven for a learning scenario in which the target concept
is considered a constant, and no information about the pro-
cess that generates this concept is known a priori. Alterna-
tively, we can consider a modification of this problem, so
that the target concept can be thought of as a random vari-
able, a sample from a known distribution (called aprior)
over the space of possible concepts. Such a setting has
been studied in detail in the context of passive learning
for noise-free binary classification. In particular, [HKS92]
found that for any concept space of finite VC dimension
d, for any prior and distribution over data points,O(d/ε)
random labeled examples are sufficient for the expected er-
ror rate of the Bayes classifier produced under the posterior
distribution to be at mostε. Furthermore, it is easy to con-
struct learning problems for which there is anΩ(1/ε) lower
bound on the number of random labeled examples required
to achieve expected error rate at mostε, by any passive
learning algorithm; for instance, the problem of learning
threshold classifiers on[0, 1] under a uniform data distribu-
tion and uniform prior is one such scenario.

In the context of active learning (again, with access to the
prior), [FSST97] analyze theQuery by Committeealgo-
rithm, and find that if a certain information gain quan-
tity for the points requested by the algorithm is lower-
bounded by a valueg, then the algorithm requires only
O((d/g) log(1/ε)) labels to achieve expected error rate at
most ε. In particular, they show that this is satisfied for
constantg for linear separators under a near-uniform prior,
and a near-uniform data distribution over the unit sphere.
This represents a marked improvement over the results of
[HKS92] for passive learning, and since the Query by Com-
mittee algorithm is self-verifying, this result is highly rele-
vant to the present discussion. However, the condition that
the information gains be lower-bounded by a constant is

quite restrictive, and many interesting learning problems
are precluded by this requirement. Furthermore, there exist
learning problems (with finite VC dimension) for which the
Query by Committee algorithm makes an expected number
of label requests exceedingΩ(1/ε). To date, there has not
been a general analysis of how the value ofg can behave
as a function ofε, though such an analysis would likely be
quite interesting.

In the present paper, we take a more general approach to
the question of active learning with access to the prior. We
are interested in the broad question of whether access to
the prior bridges the gap between the sample complexity of
learningand the sample complexity of learningwith verifi-
cation. Specifically, we ask the following question.

Can a prior-dependent self-terminating active learning al-
gorithm for a concept class of finite VC dimension always
achieve expected error rate at mostε usingo(1/ε) label
requests?

After some basic definitions in Section 2, we begin in Sec-
tion 3 with a concrete example, namely interval classifiers
under a uniform data density but arbitrary prior, to illus-
trate the general idea, and convey some of the intuition as
to why one might expect a positive answer to this question.
In Section 4, we present a general proof that the answer is
always“yes.” As the known results for the sample com-
plexity of passive learning with access to the prior are typi-
cally∝ 1/ε [HKS92], and this is sometimes tight, this rep-
resents an improvement over passive learning. The proof
is simple and accessible, yet represents an important step
in understanding the problem of self-termination in active
learning algorithms, and the general issue of the complex-
ity of verification. Also, as this is a result that doesnot
generally hold for prior-independent algorithms (even for
their “average-case” behavior induced by the prior) for cer-
tain concept spaces, this also represents a significant step
toward understanding the inherent value of having access
to the prior.

2 Definitions and Preliminaries

First, we introduce some notation and formal definitions.
We denote byX the instance space, representing the range
of the unlabeled data points, and we suppose a distribution
D on X , which we will refer to as thedata distribution.
We also suppose the existence of a sequenceX1, X2, . . .
of i.i.d. random variables, each with distributionD, re-
ferred to as the unlabeled data sequence. Though one
could potentially analyze the achievable performance as
a function of the number of unlabeled points made avail-
able to the learning algorithm (cf. [Das05]), for simplic-
ity in the present work, we will suppose this unlabeled se-
quence is essentially inexhaustible, corresponding to the
practical fact that unlabeled data are typically availablein
abundance as they are often relatively inexpensive to ob-
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tain. Additionally, there is a setC of measurable classifiers
h : X → {−1,+1}, referred to as theconcept space. We
denote byd the VC dimension ofC, and in our present
context we will restrict ourselves to spacesC with d < ∞,
referred to as aVC class. We also have a probability dis-
tributionπ, called theprior, overC, and a random variable
h∗ ∼ π, called thetarget function; we supposeh∗ is inde-
pendent from the data sequenceX1, X2, . . .. We adopt the
usual notation for conditional expectations and probabili-
ties [ADD00]; for instance,E[A|B] can be thought of as an
expectation of the valueA, under the conditional distribu-
tion ofA given the value ofB (which itself is random), and
thus the value ofE[A|B] is essentially determined by the
value ofB. For any measurableh : X → {−1,+1}, define
theerror rateer(h) = D({x : h(x) 6= h∗(x)}). So far, this
setup is essentially identical to that of [HKS92, FSST97].

The protocol in active learning is the following. An ac-
tive learning algorithmA is given as input the priorπ, the
data distributionD (though see Section 5), and a value
ε ∈ (0, 1]. It also (implicitly) depends on the data se-
quenceX1, X2, . . ., and has an indirect dependence on the
target functionh∗ via the following type of interaction. The
algorithm may inspect the valuesXi for any initial seg-
ment of the data sequence, select an indexi ∈ N to “re-
quest” the label of; after selecting such an index, the algo-
rithm receives the valueh∗(Xi). The algorithm may then
select another index, request the label, receive the value
of h∗ on that point, etc. This happens for a number of
rounds,N(A, h∗, ε,D, π), before eventually the algorithm
halts and returns a classifierĥ. An algorithm is said to be

correct if E
[

er
(

ĥ
)]

≤ ε for every(ε,D, π); that is, given

direct access to the prior and the data distribution, and given
a specified valueε, a correct algorithm must be guaranteed
to have expected error rate at mostε. Define theexpected
sample complexityof A for (X ,C,D, π) to be the function
SC(ε,D, π) = E[N(A, h∗, ε,D, π)]: the expected number
of label requests the algorithm makes.

We will be interested in proving that certain algorithms
achieve a sample complexitySC(ε,D, π) = o(1/ε). For
some(X ,C,D), it is known that there areπ-independent
algorithms (meaning the algorithm’s behavior is indepen-
dent of theπ argument)A such that we always have
E[N(A, h∗, ε,D, π)|h∗] = o(1/ε); for instance, threshold
classifiers have this property under anyD, homogeneous
linear separators have this property under a uniformD on
the unit sphere ink dimensions, and intervals with posi-
tive width onX = [0, 1] have this property underD =
Uniform([0, 1]) (see e.g., [Das05]). It is straightforward to
show that any suchA will also haveSC(ε,D, π) = o(1/ε)
for everyπ. In particular, the law of total expectation and
the dominated convergence theorem imply

lim
ε→0

ε·SC(ε,D, π) = lim
ε→0

ε·E[E[N(A, h∗, ε,D, π)|h∗]]

= E

[

lim
ε→0

ε · E[N(A, h∗, ε,D, π)|h∗]
]

= 0.

In these cases, we can think ofSC as a kind of “average-
case” analysis of these algorithms. However, there are also
many (X ,C,D) for which no suchπ-independent algo-
rithm exists, achievingo(1/ε) sample complexity forall
priors. For instance, this is the case forC as the space
of interval classifiers (including the empty interval) on
X = [0, 1] underD = Uniform([0, 1]) (this essentially fol-
lows from a proof of [BHV10]). Thus, any general result on
o(1/ε) expected sample complexity forπ-dependent algo-
rithms would signify that there is a real advantage to having
access to the prior.

3 An Example: Intervals

In this section, we walk through a simple and intuitive ex-
ample, to illustrate how access to the prior makes a dif-
ference in the sample complexity. For simplicity, in this
example (only) we will suppose the algorithm may request
the label of any point inX , not just those in the sequence
{Xi}; the same ideas can easily be adapted to the setting
where queries are restricted to{Xi}. Specifically, consider
X = [0, 1], D uniform on[0, 1], and the concept space of
interval classifiers, whereC = {I±[a,b] : 0 < a ≤ b < 1},

whereI±[a,b](x) = +1 if x ∈ [a, b] and−1 otherwise. For
each classifierh ∈ C, let w(h) = P(h(x) = +1) (the
width of the intervalh).

Consider an active learning algorithm that makes
label requests at the locations (in sequence)
1/2, 1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16, 3/16, . . . until
(case 1) it encounters an examplex with h∗(x) = +1 or
until (case 2) the set of classifiersV ⊆ C consistent with
all observed labels so far satisfiesE[w(h∗)|V ] ≤ ε (which
ever comes first). In case 2, the algorithm simply halts and
returns the constant classifier that always predicts−1: call
it h−; note thater(h−) = w(h∗). In case 1, the algorithm
enters a second phase, in which it performs a binary search
(repeatedly querying the midpoint between the closest
two −1 and+1 points, taking0 and1 as known negative
points) to the left and right of the observed positive point,
halting after log2(2/ε) label requests on each side; this
results in estimates of the target’s endpoints up to±ε/2,
so that returning any classifier among the setV ⊆ C

consistent with these labels results in error rate at most
ε; in particular, if h̃ is the classifier inV returned, then
E[er(h̃)|V ] ≤ ε.

Denoting this algorithm byA[], and ĥ the classifier it re-
turns, we have

E

[

er
(

ĥ
)]

= E

[

E

[

er
(

ĥ
) ∣

∣

∣
V
]]

≤ ε,
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so that the algorithm is definitely correct.

Note that case 2 will definitely be satisfied after at most
2
ε

label requests, and case 1 will definitely be satisfied
after at most 2

w(h∗) label requests, so that the algorithm

never makes more than 2
max{w(h∗),ε} + 2 log2(2/ε) la-

bel requests. In particular, for anyh∗ with w(h∗) > 0,
N(A[], h

∗, ε,D, π) = o(1/ε). AbbreviatingN(h∗) =
N(A[], h

∗, ε,D, π), we have

E [N(h∗)] = E

[

N(h∗)
∣

∣

∣
w(h∗) = 0

]

P (w(h∗) = 0)

+ E

[

N(h∗)
∣

∣

∣
w(h∗) > 0

]

P (w(h∗) > 0) . (1)

Sincew(h∗) > 0 ⇒ N(h∗) = o(1/ε), the dominated
convergence theorem implies

lim
ε→0

εE
[

N(h∗)
∣

∣

∣
w(h∗) > 0

]

= E

[

lim
ε→0

εN(h∗)
∣

∣

∣
w(h∗) > 0

]

= 0,

so that the second term in (1) iso(1/ε). If P(w(h∗) = 0) =
0, this completes the proof. We focus the rest of the proof
on the first term in (1), in the case thatP(w(h∗) = 0) > 0:
i.e. there is nonzero probability that the targeth∗ labels
the space almost all negative. LettingV denote the subset
of C consistent with all requested labels, note that on the
eventw(h∗) = 0, after n label requests (forn a power
of 2) we havemaxh∈V w(h) ≤ 1/n. Thus, for any value
wε ∈ (0, 1), after at most 2

wε

label requests, on the event
thatw(h∗) = 0,

E

[

w(h∗)
∣

∣

∣
V
]

=

∫

w(h)I[h ∈ V ]π(dh)/π(V )

≤

∫

w(h)I[w(h) ≤ wε]π(dh)/π(V )

= E [w(h∗)I [w(h∗) ≤ wε]] /π(V )

≤
E [w(h∗)I [w(h∗) ≤ wε]]

P (w(h∗) = 0)
. (2)

Now note that, by the dominated convergence theorem,

lim
w→0

E

[

w(h∗)I [w(h∗) ≤ w]

w

]

= E

[

lim
w→0

w(h∗)I [w(h∗) ≤ w]

w

]

= 0.

Therefore, E [w(h∗)I [w(h∗) ≤ w]] = o(w). If
we define wε as the largest value ofw for which
E [w(h∗)I [w(h∗) ≤ w]] ≤ εP(w(h∗) = 0) (or, say, half
the supremum if the maximum is not achieved), then we
havewε = ω(ε). Combined with (2), this implies

E

[

N(h∗)
∣

∣

∣
w(h∗) = 0

]

≤
2

wε

= o(1/ε).

Thus, all of the terms in (1) areo(1/ε), so that in total
E[N(h∗)] = o(1/ε).

In conclusion, for this concept spaceC and data distribu-
tionD, we have a correct active learning algorithm achiev-
ing a sample complexitySC(ε,D, π) = o(1/ε) for all pri-
orsπ onC.

4 Main Result

In this section, we present our main result: a general re-
sult stating thato(1/ε) expected sample complexity is al-
ways achievable by some correct active learning algorithm,
for any(X ,C,D, π) for whichC has finite VC dimension.
Since the known results for the sample complexity of pas-
sive learning with access to the prior are typicallyΘ(1/ε),
and since there are known learning problems(X ,C,D, π)
for which every passive learning algorithm requiresΩ(1/ε)
samples, thiso(1/ε) result for active learning represents
an improvement over passive learning. Additionally, as
mentioned, this type of result is often not possible for al-
gorithms lacking access to the priorπ, as there are well-
known problems(X ,C,D) for which no prior-independent
correct algorithm (of the self-terminating type studied here)
can achieveo(1/ε) sample complexity for every priorπ
[BHV10]; in particular, the intervals problem studied above
is one such example.

First, we have a small lemma.

Lemma 1. For any sequence of functionsφn : C → [0,∞)
such that,∀f ∈ C, φn(f) = o(1/n) and ∀n ∈ N,
φn(f) ≤ c/n (for an f -independent constantc ∈ (0,∞)),
there exists a sequencēφn in [0,∞) such that

φ̄n = o(1/n) and lim
n→∞

P
(

φn(h
∗) > φ̄n

)

= 0.

Proof. For any constantδ ∈ (0,∞), we have (by Markov’s
inequality and the dominated convergence theorem)

lim
n→∞

P (nφn(h
∗) > δ) ≤

1

δ
lim
n→∞

E [nφn(h
∗)]

=
1

δ
E

[

lim
n→∞

nφn(h
∗)
]

= 0.

Therefore (by induction), there exists a diverging sequence
ni in N such thatlimi→∞ supn≥ni

P
(

nφn(h
∗) > 2−i

)

=
0. Inverting this, letin = max{i ∈ N : ni ≤ n},
and defineφ̄n(h

∗) = (1/n) · 2−in . By construction,
P
(

φn(h
∗) > φ̄n

)

→ 0. Furthermore,ni → ∞ =⇒
in → ∞, so that we have

lim
n→∞

nφ̄n = lim
n→∞

2−in = 0,

implying φ̄n = o(1/n).

Theorem 1. For any VC classC, there is a correct ac-
tive learning algorithm that, for every data distributionD
and prior π, achieves expected sample complexitySC for
(X ,C,D, π) such that

SC(ε,D, π) = o(1/ε).
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Our approach to proving Theorem 1 is via a reduction to
established results about active learning algorithms thatare
not self-verifying. Specifically, consider a slightly dif-
ferent type of active learning algorithm than that defined
above: namely, an algorithmAa that takes as input a
budgetn ∈ N on the number of label requests it is al-
lowed to make, and that after making at mostn label re-
quests returns as output a classifierĥn. Let us refer to
any such algorithm as abudget-basedactive learning al-
gorithm. Note that budget-based active learning algorithms
are prior-independent (have no direct access to the prior).
The following result was proven by [Han09] (see also the
related earlier work of [BHV10]).

Lemma 2. [Han09] For any VC classC, there exists a
constantc ∈ (0,∞), a functionR(n; f,D), and a (prior-
independent) budget-based active learning algorithmAa

such that

∀D, ∀f ∈ C, R(n; f,D) ≤ c/n andR(n; f,D) = o(1/n),

andE
[

er
(

ĥn

) ∣

∣

∣
h∗

]

≤ R(n;h∗,D) (always), wherêhn is

the classifier returned byAa.1

That is, equivalently, for any fixed value for the target
function, the expected error rate iso(1/n), where the ran-
dom variable in the expectation is only the data sequence
X1, X2, . . .. Our task in the proof of Theorem 1 is to
convert such a budget-based algorithm into one of the
form defined in Section 1: that is, a self-terminating prior-
dependent algorithm, takingε as input.

Proof of Theorem 1.ConsiderAa, ĥn, R, and c as in
Lemma 2, and define

nε = min
{

n ∈ N : E
[

er
(

ĥn

)]

≤ ε
}

.

This value is accessible based purely on access toπ
and D. Furthermore, we clearly have (by construction)

E

[

er
(

ĥnε

)]

≤ ε. Thus, denoting byA′
a the active learn-

ing algorithm, taking(D, π, ε) as input, which runsAa(nε)

and then returnŝhnε
, we have thatA′

a is acorrectalgorithm
(i.e., its expected error rate is at mostε).

As for the expected sample complexitySC(ε,D, π)
achieved byA′

a, we haveSC(ε,D, π) ≤ nε, so that it
remains only to boundnε. By Lemma 1, there is aπ-
dependent functionR(n;π,D) such that

∀π, π ({f ∈ C : R(n; f,D) > R(n;π,D)}) → 0

andR(n;π,D) = o(1/n).

1Furthermore, it is not difficult to see that we can take thisR

to be measurable in theh∗ argument.

Therefore, by the law of total expectation,

E

[

er
(

ĥn

)]

= E

[

E

[

er
(

ĥn

) ∣

∣

∣
h∗

]]

≤ E [R(n;h∗,D)]

≤
c

n
π({f ∈C : R(n; f,D)>R(n;π,D)})+R(n;π,D)

= o(1/n).

If nε = O(1), then clearlynε = o(1/ε) as needed. Other-
wise, sincenε is monotonic inε, we must havenε ↑ ∞ as
ε ↓ 0. In particular, in this latter case we have

lim
ε→0

ε · nε

≤ lim
ε→0

ε ·
(

1 + max
{

n ≥ nε−1 : E
[

er
(

ĥn

)]

> ε
})

= lim
ε→0

ε · max
n≥nε−1

nI
[

E

[

er
(

ĥn

)]

/ε > 1
]

≤ lim
ε→0

ε · max
n≥nε−1

nE
[

er
(

ĥn

)]

/ε

= lim
ε→0

max
n≥nε−1

nE
[

er
(

ĥn

)]

= lim sup
n→∞

nE
[

er
(

ĥn

)]

= 0,

so thatnε = o(1/ε), as required.

5 Dependence onD in the Learning
Algorithm

The dependence onD in the algorithm described in the
proof is fairly weak, and we can eliminate any direct de-

pendence onD by replacinger
(

ĥn

)

by a1 − ε/2 confi-

dence upper bound based onmε = Ω
(

1
ε2

log 1
ε

)

i.i.d. un-
labeled examplesX ′

1, X
′
2, . . . , X

′
mε

independent from the
examples used by the algorithm: for instance, set aside in
a pre-processing step, where the bound is derived based on
Hoeffding’s inequality and a union bound over the values
of n that we check, of which there are at mostO(1/ε).
Then we simply increase the value ofn (starting at some
constant, such as1) until

1

mε

mε
∑

i=1

P

(

h∗ (X ′
i) 6= ĥn (X

′
i)
∣

∣

∣
{Xj}j , {X

′
j}j

)

≤ ε/2.

The expected value of the smallest value ofn for which this
occurs iso(1/ε). Note that the probability only requires ac-
cess to the priorπ, not the data distributionD (the budget-
based algorithmAa of [Han09] has no direct dependence
on D); if desired for computational efficiency, this proba-
bility may also be estimated by a1 − ε/4 confidence up-
per bound based onΩ

(

1
ε2

log 1
ε

)

independent samples of
h∗ values with distributionπ, where for each sample we
simulate the execution ofAa(n) for that (simulated) target
function in order to obtain the returned classifier. In par-
ticular, note that no actual label requests to the oracle are
required during this process of estimating the appropriate
label budgetnε, as all executions ofAa aresimulated.
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6 Inherent Dependence onπ in the Sample
Complexity

We have shown that for every priorπ, the sample complex-
ity is bounded by a function that iso(1/ε). One might won-
der whether it is possible that the asymptotic dependence
on ε in the sample complexity can be prior-independent,
while still beingo(1/ε). That is, we can ask whether there
exists a (π-independent) functions(ε) = o(1/ε) such that,
for all priors π, there is a correctπ-dependent algorithm
achieving a sample complexitySC(ε,D, π) = O(s(ε)),
possibly involvingπ-dependent constants. Certainly in
some cases, such as threshold classifiers, this is true. How-
ever, it seems this is not generally the case, and in particular
it fails to hold for the space of interval classifiers.

For instance, consider a priorπ on the spaceC of in-
terval classifiers, constructed as follows. We are given
an arbitrary monotonicg(ε) = o(1/ε); since g(ε) =
o(1/ε), there must exist (nonzero) functionsq1(i) and
q2(i) such thatlimi→∞ q1(i) = limi→∞ q2(i) = 0 and
∀i ∈ N, g(q1(i)/2

i+1) ≤ q2(i) · 2
i; furthermore, letting

q(i) = max{q1(i), q2(i)}, by monotonicity ofg we also
have∀i ∈ N, g(q(i)/2i+1) ≤ q(i) · 2i, andlimi→∞ q(i) =
0. Then define a functionp(i) with

∑

i∈N
p(i) = 1 such

that p(i) ≥ q(i) for infinitely many i ∈ N; for instance,
this can be done inductively as follows. Letα0 = 1/2; for
eachi ∈ N, if q(i) > αi−1, setp(i) = 0 andαi = αi−1;
otherwise, setp(i) = αi−1 andαi = αi−1/2. Finally,
for eachi ∈ N, and eachj ∈ {0, 1, . . . , 2i − 1}, define

π
({

I
±
[j·2−i,(j+1)·2−i]

})

= p(i)/2i.

We letD be uniform onX = [0, 1]. Then for eachi ∈ N

s.t.p(i) ≥ q(i), there is ap(i) probability the target interval
has width2−i, and given this any algorithm requires∝ 2i

expected number of requests to determine which of these
2i intervals is the target, failing which the error rate is at
least2−i. In particular, lettingεi = p(i)/2i+1, any correct
algorithm has sample complexity at least∝ p(i) · 2i for
ε = εi. Notingp(i)·2i ≥ q(i)·2i ≥ g(q(i)/2i+1) ≥ g(εi),
this implies there exist arbitrarily small values ofε > 0 for
which the optimal sample complexity is at least∝ g(ε), so
that the sample complexity isnot o(g(ε)).

For anys(ε) = o(1/ε), there exists a monotonicg(ε) =
o(1/ε) such thats(ε) = o(g(ε)). Thus, constructingπ
as above for thisg, we have that the sample complexity is
not o(g(ε)), and therefore notO(s(ε)). So at least for the
space of interval classifiers, the specifico(1/ε) asymptotic
dependence onε is inherentlyπ-dependent.
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