Appendix

In this appendix, we discuss the convergence rate of $\sup _{f \in \mathcal{F}}\left|\mathrm{E}_{N} f-\mathrm{E} f\right|$ for an ID empirical process satisfying the conditions $(C 1)-(C 3)$.

Given a number $\widetilde{x}>1$, consider the following equation with respect to $\gamma>0$

$$
\begin{equation*}
\widetilde{x}-(\widetilde{x}+1) \ln (\widetilde{x}+1)=-\widetilde{x}^{\gamma} \tag{44}
\end{equation*}
$$

and denote its solution as

$$
\begin{equation*}
\gamma(\widetilde{x}):=\frac{\ln ((\widetilde{x}+1) \ln (\widetilde{x}+1)-\widetilde{x})}{\ln (\widetilde{x})} \tag{45}
\end{equation*}
$$

Then, we have for any $0<\widetilde{\gamma} \leq \gamma(\widetilde{x})$,

$$
\begin{equation*}
\widetilde{x}-(\widetilde{x}+1) \ln (\widetilde{x}+1) \leq-\widetilde{x}^{\tilde{\gamma}} \tag{46}
\end{equation*}
$$

By using (46), we can represent the upper bound of $\sup _{f \in \mathcal{F}}\left|\mathrm{E}_{N} f-\mathrm{E} f\right|$ for the aforementioned ID empirical process as follows.

Theorem 6.1 Follow notations in Theorem 4.5 and assume that the conditions ($C 1)-(C 3)$ are all valid. Then, for any $\xi>0$ such that $N \xi^{2} \geq 32 \max \left\{A^{2}, B^{2}\right\}$ and $\frac{\xi \beta_{1} R}{4\left(\beta_{1}^{2} \beta_{2} K^{2}+V\right)}>1$, letting

$$
\begin{align*}
\epsilon=2 \exp \{ & \Lambda_{\mathcal{F}}(2 N)+\frac{N\left(\beta_{1}^{2} \beta_{2} K^{2}+V\right)}{\beta_{1}^{2} R^{2}} \\
& \left.\times \Gamma\left(\frac{\xi \beta_{1} R}{4\left(\beta_{1}^{2} \beta_{2} K^{2}+V\right)}\right)\right\} \tag{47}
\end{align*}
$$

we have with probability at least $1-\epsilon$,
$\sup _{f \in \mathcal{F}}\left|\mathrm{E}_{N} f-\mathrm{E} f\right| \leq\left(\frac{4 \beta_{1} R\left(\Lambda_{\mathcal{F}}(2 N)-\ln (\epsilon / 2)\right)}{N\left(\frac{\beta_{1} R}{4\left(\beta_{1}^{2} \beta_{2} K^{2}+V\right)}\right)^{\gamma-1}}\right)^{1 / \gamma}$,
where $0<\gamma \leq \gamma\left(\frac{\xi \beta_{1} R}{4\left(\beta_{1}^{2} \beta_{2} K^{2}+V\right)}\right)$.
Proof. It can be directly resulted from the combination of (19), (44), (45) and (46).

The above theorem shows that with probability at least $1-\epsilon$,

$$
\begin{equation*}
\sup _{f \in \mathcal{F}}\left|\mathrm{E}_{N} f-\mathrm{E} f\right| \leq O\left(\left(\frac{\Lambda_{\mathcal{F}}(2 N)}{N}\right)^{\frac{1}{\gamma}}\right) \tag{49}
\end{equation*}
$$

Furthermore, according to Lemma 4.2, if $V C(\mathcal{F}) \leq D$, we have for any $N>D / 2$,

$$
\begin{equation*}
\sup _{f \in \mathcal{F}}\left|\mathrm{E}_{N} f-\mathrm{E} f\right| \leq O\left(\left(\frac{\ln (2 \mathrm{e} N / D)}{N / D}\right)^{\frac{1}{\gamma}}\right) \tag{50}
\end{equation*}
$$

In order to find the convergence rate of $\sup _{f \in \mathcal{F}} \mid \mathrm{E}_{N} f-$ $\mathrm{E} f \mid$, we have to study the upper bound of the function $\gamma(x)(x>1)$. According to (45), for any $x>1$, we consider the derivative of $\gamma(x)$

$$
\begin{align*}
\gamma^{\prime}(x)= & \frac{\ln (x+1)}{\ln (x)((x+1) \ln (x+1)-x)} \\
& -\frac{\ln ((x+1) \ln (x+1)-x)}{x(\ln x)^{2}}, \tag{51}
\end{align*}
$$

and draw the function curve of $\gamma^{\prime}(x)$ in Fig. 1.

Figure 1: The Function Curve of $\gamma^{\prime}(x)$
As shown in Fig. 1, there is only one solution to the equation $\gamma^{\prime}(x)=0(x>1)$. Letting the solution be \widehat{x}, we then have $\gamma^{\prime}(x)>0(1<x<\widehat{x})$ and $\gamma^{\prime}(x)<0$ $(x>\widehat{x})$. Meanwhile, by (51), there holds that

$$
\begin{equation*}
\lim _{x \rightarrow+\infty} \gamma^{\prime}(x)=0 \tag{52}
\end{equation*}
$$

Therefore, we obtain that

$$
\begin{equation*}
\widehat{x}=\arg \max _{x>1} \gamma(x) \tag{53}
\end{equation*}
$$

Our further numerical experiment shows that the value of \widehat{x} approximately equals to 69.8517 and the maximum of $\gamma(x)(x>1)$ is not larger than 1.3 (cf. Fig. 2). Thus, according to (49) and (50), we can obtain that with probability at least $1-\epsilon$,

$$
\begin{equation*}
\sup _{f \in \mathcal{F}}\left|\mathrm{E}_{N} f-\mathrm{E} f\right| \leq O\left(\left(\frac{\Lambda_{\mathcal{F}}(2 N)}{N}\right)^{\frac{1}{1.3}}\right) \tag{54}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{f \in \mathcal{F}}\left|\mathrm{E}_{N} f-\mathrm{E} f\right| \leq O\left(\left(\frac{\ln (2 \mathrm{e} N / D)}{N / D}\right)^{\frac{1}{1.3}}\right) . \tag{55}
\end{equation*}
$$

Figure 2: The Function Curve of $\gamma(x)$
Compared with the results of the generic i.i.d. empirical process given in (Vapnik, 1999)

$$
\sup _{f \in \mathcal{F}}\left|\mathrm{E}_{N} f-\mathrm{E} f\right| \leq O\left(\left(\frac{\Lambda_{\mathcal{F}}(2 N)}{N}\right)^{\frac{1}{2}}\right)
$$

and

$$
\sup _{f \in \mathcal{F}}\left|\mathrm{E}_{N} f-\mathrm{E} f\right| \leq O\left(\left(\frac{\ln (2 \mathrm{e} N / D)}{N / D}\right)^{\frac{1}{2}}\right)
$$

ID empirical process can provide a faster convergence rate of $\sup _{f \in \mathcal{F}}\left|\mathrm{E}_{N} f-\mathrm{E} f\right|$.

