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Abstract

Traditional error-correcting output codes (E-
COCs) decompose a multi-class classification
problem into many binary problems. Al-
though it seems natural to use ECOCs for
multi-label problems as well, doing so naive-
ly creates issues related to: the validity of the
encoding, the efficiency of the decoding, the
predictability of the generated codeword, and
the exploitation of the label dependency.

Using canonical correlation analysis, we pro-
pose an error-correcting code for multi-label
classification. Label dependency is character-
ized as the most predictable directions in the
label space, which are extracted as canonical
output variates and encoded into the code-
word. Predictions for the codeword define a
graphical model of labels with both Bernoul-
li potentials (from classifiers on the labels)
and Gaussian potentials (from regression on
the canonical output variates). Decoding is
performed by mean-field approximation.

We establish connections between the pro-
posed code and research areas such as com-
pressed sensing and ensemble learning. Some
of these connections contribute to better un-
derstanding of the new code, and others lead
to practical improvements in code design.

In our empirical study, the proposed code
leads to substantial improvements compared
to various competitors in music emotion clas-
sification and outdoor scene recognition.

1 Introduction

Error-correcting output codes (ECOCs) are tradition-
ally designed to decompose a multiclass classification
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problem into many binary problems [9]. As a result,
the multiclass problem can be solved using only bina-
ry classifiers, and the binary problems also provide a
redundant representation to correct prediction errors.
Two key components of an output coding scheme are
encoding and decoding. The encoding maps each class
to a codeword, which contains the outcomes of all de-
composed binary problems on that class. Models are
learned from training examples to predict the code-
words of new examples, and the class of a new example
is obtained by decoding the predicted codeword.

1.1 From Multi-class Output Codes to
Multi-label Output Codes

Unlike classes, labels in multi-label classification are
not mutually exclusive. In a q-label problem, the car-
dinality of the output space Y = {0, 1}q is 2q instead
of q in a q-class problem. This change of output space
presents new challenges to output coding:

• Validity of the encoding. An ECOC decompos-
es the target problem into a number of binary de-
cision problems, each differentiating two subsets of
classes. In multi-label problems, however, two sub-
sets of labels can be simultaneously satisfied, which
makes the corresponding binary decision ill-defined
on certain examples. Ideally, the encoding should be
well-defined for all possible label vectors y ∈ {0, 1}q.

• Efficiency of the decoding. An ECOC usually
decodes a predicted codeword by searching over all
classes to optimize certain criteria, e.g., the Ham-
ming loss to the predicted codeword. For an q-label
problem, searching over all 2q label vectors in {0, 1}q

is inefficient. An observation is that if encoding is
nonlinear (e.g., defined upon a number of binary de-
cisions), decoding has to solve a nonlinear system.

• Predictability of the codeword. Given an E-
COC, classification is performed by predicting the
codeword and then decoding. In this sense, pre-
dictability of the codeword is an important concern
for code design. In multi-label classification, encod-
ing via decomposing into binary problems is not al-
ways well-defined, and a new encoder that produces
both valid and predictable codewords is needed.
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• Dependency among labels. A key difference be-
tween multi-label and multi-class problems is the ex-
istence of label dependency. In multiclass problems,
mutual exclusion of classes eliminates most depen-
dency structures. In multi-label problems, however,
rich dependency may exist among labels, which pro-
vides critical information for obtaining predictable
codewords and strong error-correcting output codes.

1.2 Overview: Coding with Canonical
Correlation Analysis

We propose an error-correcting output code for multi-
label classification, which offers valid encoding, effi-
cient decoding, and predictable codewords which ex-
ploit label dependency. In our coding scheme, label de-
pendency is characterized as the most predictable di-
rections in the label space and extracted as the canon-
ical output variates in canonical correlation analysis.
The codeword encodes these most predictable vari-
ates as well as the original labels. Predictions for
the codeword define a graphical model of labels with
both Bernoulli potentials (from binary classifiers on
the labels) and Gaussian potentials (from regression
on the canonical variates). The decoding is performed
by mean-field approximation, which offers a tractable
predictive distribution on labels and improves the pre-
diction performance in multi-label classification.

We establish connections between our work and other
research areas such as compressed sensing [10, 20] and
ensemble learning [2, 12, 4]. Our coding scheme can
be viewed as an advanced sensing protocol, where ran-
dom projection directions in compressed sensing are
replaced by the most predictable directions in the label
space, and noninformative sparsity priors are replaced
by informative Bernoulli priors from trained classifier-
s. Also, we view ensemble learning in a prediction
system as simulating the behavior of repetition codes
in channel coding [7]. As a result, the successful use
of repetition codes in concatenated coding [6] suggests
the concatenation of ensemble learning with our cod-
ing scheme to produce more powerful output codes.

1.3 Organization

The rest of this paper is structured as follows. In Sec-
tion 2 we review related work. In Section 3 we propose
the new output code. In Section 4 we establish con-
nections between the new code and other areas. In
Section 5 we present our empirical study. In Section 6
we conclude the paper and discuss the future work.

2 Related Work

Error-correcting output codes have been studied for
more than a decade [9]. The encoding of an ECOC de-
composes the multi-class problem into a set of binary

problems, e.g., one-versus-all [9], one-versus-one [17],
random partitions [1], and partitions from problem-
dependent search [8, 26]. The decoding of an ECOC
recovers the class of an example by searching over all
classes to optimize a distance function [9], a margin-
based loss [1], a probability function [17, 25] or certain
other criteria [11] w.r.t. the predicted codeword.

Multi-label compressed sensing [20] is perhaps the first
output code defined for multi-label prediction. Our
work is fundamentally different from this prior work.
First, the goal of [20] is to reduce the number of predic-
tions by applying source coding (i.e., compression) to
labels, while our work aims to introduce additional re-
dundancy and improve prediction by applying channel
coding (error-correcting codes). Second, the encoding
in [20] uses random projections as in compressed sens-
ing [10, 5], while our encoding includes the most pre-
dictable directions in the label space for error correc-
tion. Third, the decoding in [20] recovers real-valued
signals as in compressed sensing, while our decoding
addresses the difficulty of inferring label assignments.
We will study this prior work in our empirical study.

A building block of our coding scheme is canonical cor-
relation analysis [19]. In a multi-output problem, CCA
finds the projection directions for both input and out-
put variables so that correlations between inputs and
outputs are maximized along the projection directions.
Canonical (projected) output variates are also known
asmost predictable variates [18, 19]. A recent overview
of CCA is given in [16]. Sparse CCA [32, 15], kernel-
based CCA [14], and nonparametric Bayesian CCA
[27] have been studied. A least-square formulation of
CCA is proposed in [29]. We use standard CCA in this
paper and will consider new variants in future work.

Some methods for mining multi-label data [31] trans-
form the problem into a set of subproblems and essen-
tially adapt multi-class ECOCs to multi-label classifi-
cation. Calibrated pairwise label ranking [13] is based
on one-vs-one decomposition plus an adaptive calibra-
tion technique. For the validity of the encoding, a
pairwise comparison may not be well-defined on cer-
tain examples (where the pair of labels are both true
or both false), and the solution is to ignore all such
training examples in learning, and apply the learned
pairwise model to every testing example regardless of
the issue. This may lead to ineffective use of training
examples and unavoidable errors on certain testing ex-
amples. For decoding, voting from all pairwise models
is used. We will study this method in our experiments.

Ensemble learning methods such as bagging [2], boost-
ing [12] and random forests [4] are also related to out-
put coding in the sense that they simulate the encoding
and decoding process of repetition codes [7, 6].
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3 Multi-Label Output Codes using

Canonical Correlation Analysis

In this section, we propose our error-correcting output
codes for multi-label classification. In Section 3.1 we
review canonical correlation analysis (CCA) in multi-
label settings. In Section 3.2 we introduce the CCA-
based encoding and training algorithm. In Section 3.3
we present the decoding and prediction algorithm.

3.1 Canonical Correlation Analysis

Canonical correlation analysis [18, 19] is a classical tool
for modeling linear associations between two sets of
variables. Consider a set of p variables x ∈ X ⊆ Rp

and another set of q variables y ∈ Y ⊆ Rq. For a
multi-label classification problem, x will denote the
feature vector and y will denote the label vector. In
this case, we will have y ∈ Y = {0, 1}q. In addition,
we have a set of n training examples: D = (X,Y) =
{(x(i),y(i))}ni=1, where X and Y are matrices of size
n × p and n × q, respectively. Canonical correlation
analysis finds a pair of projection directions u ∈ Rp

and v ∈ Rq such that the correlation between the
pair of projected variables uTx and vTy (also called
canonical variates) is maximized. Given the training
examples (X,Y) = {(x(i),y(i))}ni=1, this maximiza-
tion problem can be expressed as the following1:

argmax
u∈Rp,v∈Rq

uTXTYv
√

(uTXTXu)(vTYTYv)
(1)

Since rescaling of u and v will not change the objective
value, two constraints can be added:

uTXTXu = 1 (2)

vTYTYv = 1 (3)

As a result, maximizing the correlation between the
canonical input and output variates can be rewritten
as the following constrained optimization problem:

argmax
u∈Rp,v∈Rq

uTXTYv (4)

s.t. uTXTXu = 1

vTYTYv = 1

By formulating the Lagrangian of the above convex
optimization problem, the KKT conditions lead to the
following generalized eigenproblems [16] on u and v:

XTY(YTY)−1YTXu = λXTXu (5)

YTX(XTX)−1XTYv = λYTYv (6)

The formulations (5) and (6) provide more than one
pair of projection vectors (u,v). By solving the first d

1For simplicity, one usually assumes that data have been
centralized such that columns of X and Y have zero means.

Algorithm 1 The encoding and training algorithm

Input: training data (X,Y) = {(x(i),y(i))}ni=1

Parameters: d, the number of canonical variates
Output: q classifiers and d regression models

{(uk,vk)}
d
k=1 ← CCA(X,Y)

z(i) = (y
(i)
1 , . . . , y

(i)
q ,vT

1 y
(i), . . . ,vT

d y
(i))T , ∀i

for j = 1 to q do

p̂j ← learn classifier({(x(i), z
(i)
j )}ni=1)

end for
for k = 1 to d do
m̂k ← learn regression({(x(i), z

(i)
q+k)}

n
i=1)

end for

principal eigenvectors, we can obtain d pairs of projec-
tion vectors: {(uk,vk)}

d
k=1. These projection vectors

successively maximize the correlation between the re-
sulting canonical input and output variates, with gen-
eralized orthogonality constraints satisfied:

uT
kX

TXuj = 0, ∀k 6= j

vT
k Y

TYvj = 0, ∀k 6= j

To summarize, given a set of observations (X,Y) =
{(x(i),y(i))}ni=1, canonical correlation analysis will
find pairs of projection directions {(uk,vk)}

d
k=1 to

maximize the correlation between projected inputs and
outputs. We denote this process as:

{(uk,vk)}
d
k=1 ← CCA(X,Y) (7)

3.2 Encoding

Channel coding [7, 6] studies reliable communication
through noisy channels. To reliably transmit a mes-
sage y, we encode it into a redundant codeword z,
which is sent through the channel. A randomly cor-
rupted ẑ will be received, and the encoded redundancy
will be used to correct the transmission error and re-
cover the message. In multi-label prediction, the label
vector y ∈ {0, 1}q of a new example x is the message
we want to communicate. In this sense, transmission
through a noisy channel corresponds to prediction us-
ing trained but imperfect models. Therefore, the goal
of encoding in a multi-label output code is to find a
redundant codeword z for the label vector y, such that
we can train models to predict the codeword given x
and recover the label vector y from the prediction.

It is critical to realize a key difference between a noisy
channel and a prediction system: transmission errors
of a noisy channel are usually independent of the infor-
mation being transmitted, while prediction errors of a
trained system often depend on the signal being pre-
dicted. In other words, some signals are easier to pre-
dict than others. Canonical correlation analysis plays
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Figure 1: Factor graph representation of the undirect-
ed graphical model for decoding.

an important part at this point: canonical output vari-
ates {vT

k y}
d
k=1 found by CCA as in (7) are known as

the most predictable variates [18]. To see this, we can
rewrite (4) into the following equivalent problem:

argmin
u∈Rp,v∈Rq

||Xu−Yv||2 (8)

s.t. uTXTXu = 1

vTYTYv = 1

which simply minimizes the sum of squared errors over
examples (X,Y) = {(x(i),y(i))}ni=1 when using u as a
linear model to predict the variate vTy from x.

Thus, canonical output variates are ideal to be includ-
ed in the codeword z as they will invoke minimal pre-
diction errors. For a label vector y = (y1, . . . , yq)

T and
its canonical output variates {vT

k y}
d
k=1, the codeword

z ∈ Rq+d is defined by the following encoding:

z = (y1, . . . , yq,v
T
1 y, . . . ,v

T
d y)

T (9)

Note that this defines a systematic code [7], where the
codeword contains the original message (the label vec-
tor y = (y1, . . . , yq)

T in this case) as a subcomponent.
The intuition is that the message always contains high
information about itself. Given a set of training ex-
amples (X,Y) = {(x(i),y(i))}ni=1, we will learn q clas-
sifiers {p̂1, . . . , p̂q} to predict the q labels {y1, . . . , yq},
and d regression models {m̂1, . . . , m̂d} to predict the d
canonical variates {vT

1 y, . . . ,v
T
d y}. The encoding and

training procedure is summarized in Algorithm 1.

Note that the challenges discussed in Section 1.1 are
being addressed: 1) the encoding in (9) is well-defined
for any label vector y ∈ {0, 1}q; 2) the encoding is lin-
ear, which enables us to develop efficient decoding (in
the next section); 3) {vT

k y}
d
k=1 included in the code-

word z are the most (linearly) predictable variates; 4)
the label dependency in y is exploited (via projection
vectors {vk}

d
k=1) to produce predictable codewords2.

2Note that vTy represents the label combination that is
most predictable from x, so the projection vector v mainly
captures the conditional label dependency given x.

3.3 Decoding

For a testing example x, classification and regression
models learned in Algorithm 1 provide a predictive dis-
tribution on the codeword z. Each classifier p̂j predicts
a Bernoulli distribution φj(yj) for a label yj :

φj(yj) = p̂j(x)
yj (1− p̂j(x))

(1−yj), j = 1, 2, . . . , q
(10)

and each regression model m̂k predicts a Gaussian dis-
tribution ψk(y) for a canonical output variate vT

k y:

ψk(y) ∝ exp−
(vT

k y − m̂k(x))
2

2σ̂2
k

, k = 1, 2, . . . , d

(11)
where the variance σ̂2

k can be estimated by cross vali-
dation on the training examples in Algorithm 1.

For decoding, predictive distributions (10) and (11)
can be viewed as the factor graph in Figure 1, which
defines the following joint probability for the label vec-
tor y given the testing example x:

logP (y) = − logZ +

d
∑

k=1

logψk(y) + λ

q
∑

j=1

logφj(yj)

(12)
where Z is the partition function, log is the natural
logarithm, and λ balances two types of potentials.

Unfortunately, exact inference over y ∈ {0, 1}q in (12)
has a time complexity exponential in q, due to the
fact that each Gaussian potential ψk in (11) usually
involves all the q labels. We consider a mean-field
approximation to P (y) in (12), as the following:

Q(y) =

q
∏

j=1

Qj(yj) (13)

which is the class of fully factorized distributions of y
that allows tractable inference over labels. Note that
each Qj(yj) is a Bernoulli distribution on the label yj .

To find the best approximation Q(y) in the fully fac-
torized class, we need to minimize the KL divergence
KL(Q||P ), or equivalently, to maximize the energy
functional [21]. Based on the definition of P (y) in (12),
the fixed-point equation for updating each Bernoulli
factor Qj(yj) in Q can be written as [23]:

Qj(yj)←
1

Zj

exp{ λ logφj(yj)+

d
∑

k=1

Ey∼Q[logψk(y)|yj ] }

(14)
where Zj is the normalization constant that makes Qj

a valid Bernoulli distribution. Note that each term
Ey∼Q[logψk(y)|yj ] can be computed with a time com-
plexity polynomial in q (or more specifically, in O(q2)),
due to the fact that Q is fully factorized over labels and
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Algorithm 2 The decoding and prediction algorithm

Input: a testing point x, q classifiers {p̂j}
q
j=1, d regression models {(m̂k, σ̂

2
k)}

d
k=1

Parameters: λ
Output: a fully factorized predictive distribution Q(y) =

∏q

j=1Qj(yj) for y

{Qj(yj)}
q
j=1 ← mean-field-approximation(x, {p̂j}

q
j=1, {(m̂k, σ̂

2
k)}

d
k=1, λ)

Use Qj(yj) as a predictive distribution on label yj , j = 1, 2, . . . , q

the Gaussian log density logψk involves only second
order interactions between labels. Thus, the mean-
field approximation Q(y) can be obtained by iterating
the fixed-point update over j until convergence.

For each testing example x, mean-field approximation
provides a factorized distribution Q(y) =

∏q

j=1Qj(yj)

on labels, where factors {Qj(yj)}
q
j=1 can be directly

used for various prediction tasks, e.g., classification,
ranking, probabilistic inference. The decoding and
prediction procedure is summarized in Algorithm 2.

4 Connections to Other Research

In this section, we establish and analyze connections
between the proposed code and other research areas
such as compressed sensing and ensemble learning.

4.1 Multi-label Compressed Sensing

Encoding. Multi-label compressed sensing [20] is per-
haps the earliest work that formally defines an output
code for multi-label prediction. Given a label vector
y ∈ {0, 1}q, the encoding is defined as the following:

z = (vT
1 y, . . . ,v

T
d y)

T (15)

where each vk ∈ R
q, k = 1, 2, . . . , d is a random pro-

jection vector, e.g., with i.i.d. Gaussian or Bernoulli
entries. The codeword is shorter than the original label
vector, i.e., d < q, since the design goal of multi-label
compressed sensing is to reduce the number of pre-
diction models. However, this encoding can produce
highly redundant codewords by using a large number
of projections (d >> q), which we will study as an
error-correcting output code in our empirical study.

Decoding. For a test example x, its codeword is pre-
dicted as ẑ = (m̂1(x), . . . , m̂d(x))

T by trained regres-
sion models {m̂k}

d
k=1. The decoding assumes the spar-

sity of the true label vector y and reconstructs y using
sparse approximation techniques. Popular choices in-
clude ℓ-1 penalized convex optimization [30] and itera-
tive methods such as CoSaMP [24]. To analyze the link
between compressed sensing and our coding scheme,
we focus on ℓ-1 penalized convex relaxation [30]:

argmin
y∈Rq

1

2

d
∑

k=1

(vT
k y − m̂k(x))

2 + λ

q
∑

j=1

|yj| (16)

which minimizes approximation errors on the d pro-
jection (i.e., “sensing”) measurements plus a sparsity-
inducing ℓ-1 penalty

∑q

j=1 |yj | = ||y||1 on labels. Note
that the optimization is performed over the continuous
domain y ∈ Rq for computational tractability.

Connection. To see the connection between our pro-
posed code and the compressed sensing above, we con-
sider optimization of the joint probability in (12) over
labels y ∈ {0, 1}q. Plugging Bernoulli potentials (10)
and Gaussian potentials (11) into the joint probability
and ignoring the log partition term, maximizing (12)
is equivalent to the following minimization problem:

argmin
y∈{0,1}q

1

2

d
∑

k=1

(vT
k y − m̂k(x))

2

σ̂2
k

+λ

q
∑

j=1

yj log(
1− p̂j(x)

p̂j(x)
)

(17)
where the objective contains d squared error terms and
q linear terms, from the d Gaussian potentials and q
Bernoulli potentials in (12), respectively. We can see
that optimizing the joint label probability as in (17) is
similar to reconstructing signals in compressed sensing
as in (16), but with the following key differences:

• Projection vectors {vk}
d
k=1 are canonical output di-

rections from CCA instead of random projections.

• Each error term (vT
k y−m̂k(x))

2 is weighted by 1/σ̂2
k.

• An informative penalty
∑q

j=1 yj log(
1−p̂j(x)
p̂j(x)

) (de-

rived from the trained classifiers {p̂j}
q
j=1 on q labels)

replaces the noninformative ℓ-1 penalty
∑q

j=1 |yj |.

• Optimization is performed in the label space y ∈
{0, 1}q instead of a relaxed continuous domain Rq.

Recall that our decoding uses mean-field approxima-
tion to solve this intractable optimization problem.

4.2 Ensemble Learning as Repetition Codes

Repetition codes are a class of error-correcting codes
where the message is simply encoded by repetition,
e.g., y = (y1, y2, . . . , yq)

T ∈ {0, 1}q will be encoded as:

z = (y11 . . . y
r
1 , y

1
2 . . . y

r
2 , . . . , y

1
q . . . y

r
q)

T ∈ {0, 1}rq

(18)
where r is the number of repetitions. If the channel
randomly flips each bit in z with a probability p < 0.5,
decoding for yj can take a majority voting from re-
ceived bits {y1j . . . y

r
j}. If the channel is making inde-
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pendent flipping errors (with p < 0.5), we can achieve
error-free communication using a sufficiently large r.

Ensemble learning imitates repetition codes in a
prediction system by learning multiple models for the
same label. However, if we simply repeat a label, pre-
dictions from repeatedly trained models will be identi-
cal. If the “channel” makes identical (instead of inde-
pendent) errors, majority voting will not correct any
of them. Therefore, ensemble learning aims to create a
diverse set of models whose prediction errors are as in-
dependent as possible [22] via perturbation on training
samples [2], sample weights [12], features [4], etc3.

Concatenated coding. Repetition codes, although
not efficient when used alone due to their high redun-
dancy, play an active role in concatenated coding. A
concatenated code involves the cascade of an outer
code and an inner code. The message is first encod-
ed by the outer encoder and the resulting codeword
is further encoded by the inner encoder. An efficient
(although suboptimal) decoding can be performed by
sequentially applying the inner and outer decoder. Us-
ing two simpler codes, concatenated coding provides a
longer, more powerful code with efficient encoding and
decoding and has produced high performance code in
practice, e.g., the code in NASA standards in 1970s [6].

In our experiments, we will also study a concatenated
coding scheme, where our proposed code serves as the
outer code and ensemble learning is the inner code.
The intuition is that ensemble learning, as a repeti-
tion code, improves the prediction on each individual
output; our code, on the other hand, contributes by
exploiting the dependency among different outputs.

5 Experiments

Data. We conduct our experiments on two multi-label
data sets: Emotions and Scene4. Emotions is a mu-
sic classification data set containing 391 songs in the
training set and 202 songs in the testing set. Songs
are labeled with six emotions: amazed, happy, relaxed,
quiet, sad and angry. Each song is represented by 72
rhythmic and timbre features. Scene is an image col-
lection for outdoor scene recognition, with 1211 train-
ing images and 1196 testing images tagged with six
scenes: beach, sunset, fall foliage, field, mountain and
urban. Features are 294 dimensional color statistics.

Methods. We study the following methods:

• One-vs-All(LGR/SVM): one-vs-all decomposition
with ℓ-2 penalized logistic regression or SVMs.

• Pairwise(LGR/SVM): calibrated pairwise label

3Bagging and random forests fit this view better than
boosting, as boosting is not a simple random repetition.

4http://mulan.sourceforge.net/datasets.html.

ranking [13] with ℓ-2 logistic regression or SVMs.

• CCA-Reduce(LGR/SVM): supervised dimension re-
duction by CCA and one-vs-all in reduced feature
space. We report results with optimal dimensions.

• CompressSensing: multi-label compressed sensing
(CS) [20], with 300 projections to produce highly re-
dundant codewords, ridge regression to predict, and
CoSaMP [24] to decode. CS recovers real values, and
we use 0.5 as the threshold. We report results with
the optimal CoSaMP parameter (sparsity level).

• One-vs-All(Tree/Forest): one-vs-all decomposition
with classification trees [3] or random forests [4] (50
trees per label). Comparing these two models shows
the power of ensemble learning as a repetition code.

• CCA-OC : our proposed coding with ℓ-2 logistic re-
gression and ridge regression as classifiers and re-
gression models. We simply use the maximal d from
CCA in Algorithm 1, and the parameter λ in Algo-
rithm 2 is chosen from { 14 , 1, 4}.

• CCA-OC-Forest : our proposed coding with random
forests, where random forests provide both accurate
classification and regression. This is a concatenated
coding scheme with our code as the outer code and
a repetition code as the inner code.

The regularization parameter of ℓ-2 penalized logistic
regression, SVMs and ridge regression is set by cross
validation within each individual learning task.

Evaluation measures. We report on three measures:

• Exact matching rates: rates of correctly classifying
all the labels of an example. This is a difficult mea-
sure, and exploiting the label dependency is helpful.

• Micro-averaged F-measures: aggregate true posi-
tives/negatives and false positives/negatives over la-
bels, and then calculate an F-measure from them.

• Macro-averaged F-measures: calculate F-measure
for each label and then take the average over labels.

Experimental settings. For the Emotions data, we
sampled 200, 250, 300, 350 as well as all the 391 ex-
amples from the training set. For the Scene data, we
sampled 400, 600, 800, 1000 as well as all the 1211
training examples. For each training size, we perform
30 random runs and report means and standard errors
of each evaluation measure over 30 runs.

Experimental results on three measures are shown
in Table 1 - Table 3 for Emotions data and Table 4 -
Table 6 for Scene data. The proposed methods are in
bold. We briefly highlight the results as follows:

• CCA-OC significantly outperforms other method-
s and CCA-OC-Forests further enhances CCA-OC
with concatenated coding. Improvements are most
evident on exact matching rates (Table 1 and 4),
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Table 1: Exact matching rates on Emotions data: means (and standard errors) over 30 random runs.

Method: #models 200 samples 250 samples 300 samples 350 samples 391 (all) samples

One-vs-All(LGR):6 0.2058(0.0037) 0.2185(0.0036) 0.2213(0.0034) 0.2239(0.0027) 0.2206(0.0013)
One-vs-All(SVM):6 0.2167(0.0062) 0.2190(0.0045) 0.2195(0.0065) 0.2381(0.0054) 0.2386(0.0052)
Pairwise(LGR):21 0.2086(0.0036) 0.2208(0.0043) 0.2264(0.0030) 0.2322(0.0035) 0.2331(0.0020)
Pairwise(SVM):21 0.2190(0.0045) 0.2239(0.0040) 0.2328(0.0040) 0.2381(0.0044) 0.2512(0.0039)

CCA-Reduce(LGR):6 0.2079(0.0054) 0.2259(0.0040) 0.2251(0.0041) 0.2451(0.0035) 0.2594(0.0006)
CCA-Reduce(SVM):6 0.2059(0.0060) 0.2190(0.0074) 0.2289(0.0045) 0.2408(0.0082) 0.2551(0.0060)
CompressSensing:300 0.2096(0.0049) 0.2116(0.0026) 0.2195(0.0021) 0.2226(0.0022) 0.2221(0.0007)
One-vs-All(Tree):6 0.1343(0.0043) 0.1376(0.0043) 0.1452(0.0039) 0.1469(0.0043) 0.1436(0)

One-vs-All(Forest):300 0.2426(0.0041) 0.2540(0.0026) 0.2571(0.0032) 0.2649(0.0035) 0.2667(0.0034)
CCA-OC:12 0.2944(0.0051) 0.3153(0.0037) 0.3322(0.0033) 0.3366(0.0024) 0.3472(0.0016)

CCA-OC-Forest:600 0.3318(0.0033) 0.3411(0.0029) 0.3419(0.0024) 0.3432(0.0026) 0.3480(0.0023)

Table 2: Micro-averaged F-measures on Emotions data: means (and standard errors) over 30 random runs.

Method: #models 200 samples 250 samples 300 samples 350 samples 391 (all) samples

One-vs-All(LGR):6 0.6181(0.0034) 0.6301(0.0027) 0.6338(0.0026) 0.6416(0.0019) 0.6433(0.0005)
One-vs-All(SVM):6 0.6258(0.0040) 0.6322(0.0029) 0.6404(0.0040) 0.6505(0.0023) 0.6498(0.0036)
Pairwise(LGR):21 0.6219(0.0029) 0.6315(0.0025) 0.6350(0.0024) 0.6414(0.0020) 0.6421(0.0011)
Pairwise(SVM):21 0.6286(0.0042) 0.6295(0.0040) 0.6373(0.0033) 0.6458(0.0020) 0.6518(0.0022)

CCA-Reduce(LGR):6 0.6045(0.0033) 0.6214(0.0027) 0.6285(0.0032) 0.6338(0.0020) 0.6366(0.0008)
CCA-Reduce(SVM):6 0.6006(0.0040) 0.6200(0.0042) 0.6332(0.0034) 0.6372(0.0023) 0.6445(0.0030)
CompressSensing:300 0.5729(0.0050) 0.5795(0.0033) 0.5820(0.0026) 0.5849(0.0019) 0.5890(0.0008)
One-vs-All(Tree):6 0.5550(0.0043) 0.5603(0.0038) 0.5677(0.0030) 0.5778(0.0038) 0.5540(0)

One-vs-All(Forest):300 0.6247(0.0030) 0.6389(0.0022) 0.6413(0.0024) 0.6499(0.0024) 0.6518(0.0021)
CCA-OC:12 0.6499(0.0047) 0.6646(0.0031) 0.6792(0.0032) 0.6813(0.0020) 0.6828(0.0015)

CCA-OC-Forest:600 0.6828(0.0026) 0.6887(0.0021) 0.6888(0.0023) 0.6935(0.0018) 0.6959(0.0015)

Table 3: Macro-averaged F-measures on Emotions data: means (and standard errors) over 30 random runs.

Method: #models 200 samples 250 samples 300 samples 350 samples 391 (all) samples

One-vs-All(LGR):6 0.6081(0.0038) 0.6198(0.0029) 0.6220(0.0029) 0.6304(0.0023) 0.6290(0.0009)
One-vs-All(SVM):6 0.6124(0.0045) 0.6179(0.0035) 0.6297(0.0049) 0.6378(0.0040) 0.6355(0.0055)
Pairwise(LGR):21 0.6102(0.0031) 0.6187(0.0025) 0.6216(0.0026) 0.6284(0.0023) 0.6293(0.0015)
Pairwise(SVM):21 0.6145(0.0043) 0.6159(0.0042) 0.6198(0.0047) 0.6339(0.0032) 0.6349(0.0041)

CCA-Reduce(LGR):6 0.5954(0.0033) 0.6112(0.0031) 0.6178(0.0032) 0.6229(0.0023) 0.6202(0.0004)
CCA-Reduce(SVM):6 0.5894(0.0047) 0.6085(0.0043) 0.6202(0.0036) 0.6228(0.0030) 0.6282(0.0053)
CompressSensing:300 0.5263(0.0046) 0.5343(0.0036) 0.5354(0.0029) 0.5370(0.0022) 0.5417(0.0009)
One-vs-All(Tree):6 0.5467(0.0043) 0.5528(0.0040) 0.5603(0.0032) 0.5585(0.0039) 0.5426(0)

One-vs-All(Forest):300 0.5973(0.0040) 0.6124(0.0030) 0.6172(0.0032) 0.6286(0.0026) 0.6326(0.0025)
CCA-OC:12 0.6392(0.0047) 0.6558(0.0029) 0.6715(0.0031) 0.6740(0.0021) 0.6767(0.0015)

CCA-OC-Forest:600 0.6712(0.0026) 0.6771(0.0023) 0.6782(0.0024) 0.6846(0.0019) 0.6856(0.0017)

which require capturing the label dependency. We
also note that two proposed methods with 200 train-
ing samples on Emotions and 400 on Scene achieve
similar or better performance than baselines trained
with 391 samples on Emotions and 1211 on Scene.

• One-vs-All decomposition is a strong baseline. This
is consistent with other known results [28].

• Calibrated pairwise label ranking (Pairwise) shows

slight improvements over one-vs-all decomposition.

• Dimension reduction via CCA (CCA-Reduce) is not
effective: the canonical input directions may not be
predictive for the original output variables (labels).

• Multi-label compressed sensing is not a capable
error-correcting code even with highly redundant
codewords, mainly due to its non-adaptive encoding
with random projections and real-valued decoding.
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Table 4: Exact matching rates on Scene data: means (and standard errors) over 30 random runs.

Method: #models 400 samples 600 samples 800 samples 1000 samples 1211 (all) samples

One-vs-All(LGR):6 0.4356(0.0031) 0.4542(0.0035) 0.4710(0.0037) 0.4785(0.0030) 0.4868(0.0011)
One-vs-All(SVM):6 0.4210(0.0041) 0.4439(0.0046) 0.4634(0.0032) 0.4758(0.0026) 0.4861(0.0018)
Pairwise(LGR):21 0.4312(0.0032) 0.4572(0.0035) 0.4653(0.0023) 0.4749(0.0027) 0.4884(0.0012)
Pairwise(SVM):21 0.4183(0.0037) 0.4449(0.0034) 0.4634(0.0028) 0.4687(0.0026) 0.4857(0.0013)

CCA-Reduce(LGR):6 0.1585(0.0032) 0.2940(0.0024) 0.3622(0.0022) 0.4071(0.0020) 0.4438(0.0002)
CCA-Reduce(SVM):6 0.1618(0.0034) 0.2938(0.0022) 0.3594(0.0027) 0.3983(0.0030) 0.4259(0.0045)
CompressSensing:300 0.3917(0.0047) 0.4107(0.0030) 0.4199(0.0024) 0.4246(0.0017) 0.4322(0.0008)
One-vs-All(Tree):6 0.2948(0.0034) 0.3205(0.0039) 0.3373(0.0034) 0.3537(0.0031) 0.3678(0)

One-vs-All(Forest):300 0.4417(0.0020) 0.4813(0.0019) 0.5012(0.0012) 0.5139(0.0016) 0.5276(0.0014)
CCA-OC:12 0.5908(0.0041) 0.6063(0.0050) 0.6276(0.0037) 0.6326(0.0024) 0.6367(0.0011)

CCA-OC-Forest:600 0.6483(0.0040) 0.6780(0.0020) 0.6906(0.0015) 0.6977(0.0011) 0.7060(0.0010)

Table 5: Micro-averaged F-measures on Scene data: means (and standard errors) over 30 random runs.

Method: #models 400 samples 600 samples 800 samples 1000 samples 1211 (all) samples

One-vs-All(LGR):6 0.6203(0.0029) 0.6368(0.0024) 0.6480(0.0024) 0.6542(0.0017) 0.6589(0.0010)
One-vs-All(SVM):6 0.6091(0.0023) 0.6284(0.0027) 0.6395(0.0021) 0.6474(0.0019) 0.6570(0.0010)
Pairwise(LGR):21 0.6239(0.0024) 0.6445(0.0022) 0.6506(0.0011) 0.6599(0.0014) 0.6674(0.0008)
Pairwise(SVM):21 0.6171(0.0027) 0.6367(0.0023) 0.6460(0.0016) 0.6515(0.0014) 0.6622(0.0009)

CCA-Reduce(LGR):6 0.4185(0.0028) 0.5178(0.0022) 0.5677(0.0015) 0.6002(0.0015) 0.6259(0.0001)
CCA-Reduce(SVM):6 0.4156(0.0029) 0.5162(0.0022) 0.5654(0.0016) 0.5919(0.0020) 0.6153(0.0021)
CompressSensing:300 0.5510(0.0042) 0.5689(0.0026) 0.5781(0.0022) 0.5837(0.0017) 0.5911(0.0004)
One-vs-All(Tree):6 0.5177(0.0029) 0.5424(0.0032) 0.5549(0.0025) 0.5690(0.0022) 0.5885(0)

One-vs-All(Forest):300 0.6110(0.0021) 0.6463(0.0017) 0.6637(0.0012) 0.6742(0.0014) 0.6864(0.0011)
CCA-OC:12 0.6541(0.0028) 0.6713(0.0034) 0.6872(0.0029) 0.6927(0.0023) 0.7000(0.0011)

CCA-OC-Forest:600 0.7200(0.0021) 0.7418(0.0015) 0.7518(0.0012) 0.7568(0.0010) 0.7641(0.0010)

Table 6: Macro-averaged F-measures on Scene data: means (and standard errors) over 30 random runs.

Method: #models 400 samples 600 samples 800 samples 1000 samples 1211 (all) samples

One-vs-All(LGR):6 0.6303(0.0029) 0.6463(0.0020) 0.6558(0.0020) 0.6608(0.0016) 0.6644(0.0009)
One-vs-All(SVM):6 0.6196(0.0023) 0.6387(0.0024) 0.6480(0.0018) 0.6546(0.0017) 0.6630(0.0009)
Pairwise(LGR):21 0.6318(0.0026) 0.6519(0.0021) 0.6579(0.0010) 0.6667(0.0014) 0.6724(0.0007)
Pairwise(SVM):21 0.6253(0.0028) 0.6449(0.0022) 0.6533(0.0015) 0.6576(0.0014) 0.6672(0.0009)

CCA-Reduce(LGR):6 0.4233(0.0029) 0.5229(0.0023) 0.5728(0.0016) 0.6041(0.0015) 0.6291(0.0001)
CCA-Reduce(SVM):6 0.4199(0.0029) 0.5215(0.0025) 0.5702(0.0016) 0.5951(0.0025) 0.6195(0.0025)
CompressSensing:300 0.5409(0.0052) 0.5616(0.0032) 0.5712(0.0025) 0.5775(0.0019) 0.5851(0.0004)
One-vs-All(Tree):6 0.5263(0.0029) 0.5504(0.0031) 0.5620(0.0026) 0.5767(0.0022) 0.5966(0)

One-vs-All(Forest):300 0.5988(0.0024) 0.6370(0.0019) 0.6562(0.0014) 0.6669(0.0017) 0.6802(0.0012)
CCA-OC:12 0.6632(0.0028) 0.6799(0.0030) 0.6952(0.0025) 0.7000(0.0021) 0.7064(0.0012)

CCA-OC-Forest:600 0.7233(0.0022) 0.7462(0.0015) 0.7563(0.0012) 0.7612(0.0009) 0.7686(0.0010)

6 Conclusion and Future Work

Using CCA, we propose error-correcting codes for
multi-label classification. Label dependency is charac-
terized as the most predictable directions in the label
space, extracted as canonical output variates and en-
coded into the codeword. Predictions for the codeword
define a graphical model of labels with both Bernoulli
potentials (from classifiers on the labels) and Gaussian

potentials (from regression on the canonical variates).
Decoding is performed by mean-field approximation.
In the empirical study on music and image classifi-
cation, our proposed codes offer substantial improve-
ments over every competitor in every test.

In the future work we will consider recent variants of
sparse and nonlinear CCA for encoding, and state-of-
the-art variational inference techniques for decoding.
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