
JMLR:Workshop and Conference Proceedings 16 (2011) 19–45Workshop on Active Learning and Experimental Design

Results of the Active Learning Challenge

Isabelle Guyon isabelle@clopinet.com
Clopinet, California

Gavin Cawley gcc@cmp.uea.ac.uk
University of East Anglia, UK

Gideon Dror gideon@mta.ac.il
Academic College of Tel-Aviv-Yaffo, Israel

Vincent Lemaire vincent.lemaire@orange-ftgroup.com

Orange Labs, France

Editor: Neil Lawrence

Abstract

We organized a machine learning challenge on “active learning”, addressing problems where
labeling data is expensive, but large amounts of unlabeled data are available at low cost.
Examples include handwriting and speech recognition, document classification, vision tasks,
drug design using recombinant molecules and protein engineering. The algorithms may
place a limited number of queries to get new sample labels. The design of the challenge and
its results are summarized in this paper and the best contributions made by the participants
are included in these proceedings. The website of the challenge remains open as a resource
for students and researchers (http://clopinet.com/al).

1. Background

The accumulation of massive amounts of unlabeled data and the cost of labeling have
triggered a resurgence of interest in active learning. However, the newly proposed methods
have never been evaluated in a fair and open contest. The challenge we organized has
stimulated research in the field and provides a comparative study free of “inventor bias”.

Modeling can have a number of objectives, including understanding or explaining the
data, developing scientific theories, and making predictions. We focus in this challenge on
predictive modeling, in a setup known in machine learning as “supervised learning”. The
goal is to predict an outcome y given a number of predictor variables x = [x1, x2, ...xn],
also called features, attributes, or factors. During training, the model (also called the
learning machine) is provided with example pairs {x, y} (the training examples) with which
to adjust its parameters. After training, the model is evaluated with new example pairs
(the test examples) to estimate its generalization performance. In our framework, example
pairs can only be obtained at a cost; optimal data acquisition must compromise between
selecting many informative example pairs and incurring a large expense for data collection.
Typically, either a fixed budget is available and the generalization performance must be
maximized or the data collection expenses must be minimized to reach or exceed a given
generalization performance. Data pairs {x, y} are drawn identically and independently from
an unknown distribution P (x, y). In the regular machine learning setting (passive learning),
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a batch of training pairs is made available from the outset. In the active learning setting,
the labels y are withheld and can be purchased from an oracle. The learning machine must
select the examples, which look most promising in improving the predictive performance of
theodel. There exist several variants of active learning:

• Pool-based active learning: A large pool of examples of x is made available from
the outset of training.

• Stream-based active learning: Examples are made available continuously.

• De novo query synthesis: The learner can select arbitrary values of x, i.e. use
examples not drawn from P (x).

Other scenarios, not considered here, include cases in which data are not i.i.d.. Such
situations occur in time series prediction, speech processing, unsegmented image analysis
and document analysis.

Of the variants of active learning considered, pooled-based active learning is of consid-
erable importance in current applications of machine learning and data mining, because
of the availability of large amounts of unlabeled data in many domains, including pat-
tern recognition (handwriting, speech, airborne or satellite images, etc.), text processing
(internet documents, archives), chemo-informatics (untested molecules from combinatorial
chemistry), and marketing (large customer databases). These are typical examples of the
scenarios we intended to study via the organization of this challenge. Stream-based active
learning is also important when sensor data is continuously available and data cannot be
easily stored. However, it is more difficult to evaluate in the context of a challenge, so we
focus instead purely on pool-based active learning. Several of the techniques thus developed
may also be applicable to stream-based active learning. The last type of active learning,
“de-novo” query synthesis, will be addressed in upcoming experimental design challenges in
which we will allow participants to intervene on x. In this challenge, however we limit the
actions of the participants to sampling from a set of fixed points in input space and query
for y, we do not allow interventions on x, such as setting certain values xi.

A number of query strategies with various criteria of optimality have been devised. Per-
haps the simplest and most commonly used query strategy is uncertainty sampling (Lewis
and Gale, 1994). In this framework, an active learner queries the instances that it can label
with least confidence. This of course requires the use of a model that is capable of assessing
prediction uncertainty, such as a logistic model for binary classification problems. Another
general active learning framework queries the labels of the instances that would impart the
greatest change in the current model (expected model change), if we knew the labels. Since
discriminative probabilistic models are usually trained with gradient-based optimization,
the “change” imparted can be measured by the magnitude of the gradient (Settles et al.,
2008a). A more theoretically motivated query strategy is query-by-committee (QBC) (Se-
ung et al., 1992). The QBC approach involves maintaining a committee of models, which are
all trained on the current set of labeled samples, but represent competing hypotheses. Each
committee member votes on the labels of query candidates and the query considered most
informative is the one on which they disagree most. It can be shown that this is the query
that potentially gives the largest reduction in the space of hypotheses (models) consistent
with the current training dataset (version space). A related approach is Bayesian active
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Table 1: Development datasets. ALEX is a toy dataset given for illustrative purpose.
The other datasets match the final datasets by application domain (see text).

Dataset Feat. type Feat. num. Sparsity Missing Pos. lbls Tr & Te num.
(%) (%) (%)

ALEX binary 11 0 0 72.98 5000

HIVA binary 1617 90.88 0 3.52 21339

IBN SINA mixed 92 80.67 0 37.84 10361

NOVA binary 16969 99.67 0 28.45 9733

ORANGE mixed 230 9.57 65.46 1.78 25000

SYLVA mixed 216 77.88 0 6.15 72626

ZEBRA continuous 154 0.04 0.0038 4.58 30744

learning. In the Bayesian setting, a prior over the space of hypotheses is revised to give the
posterior after seeing the data. Bayesian active learning algorithms (Tong and Koller, 2000,
for example) maximize the expected Kullback-Leibler divergence between the revised pos-
terior distribution (after learning with the new queried example) and the current posterior
distribution given the data already seen. Hence this can be seen both as an extension of the
expected model change framework for a Bayesian committee and a probabilistic reduction
of hypothesis space. A more direct criterion of optimality seeks queries that are expected
to produce the greatest reduction in generalization error, i.e. the error on data not used
for training drawn from P (x, y) (expected error reduction). Cohn and collaborators (Cohn
et al., 1996) proposed the first statistical analysis of active learning, demonstrating how
to synthesize queries that minimize the learner’s future error by minimizing its variance.
However, their approach applies only to regression tasks and synthesizes queries de novo.
Another more direct, but very computationally expensive approach is to tentatively add to
the training set all possible candidate queries with one of the opposite labels and estimate
how much generalization error reduction would result by adding it to the training set (Roy
and McCallum, 2001). It has been suggested that uncertainty sampling and QBC strate-
gies are prone to querying outliers and therefore are not robust. The information density
framework (Settles et al., 2008b) addresses that problem by considering instances that are
not only uncertain, but representative of the input distribution, to be the most informative.
This last approach addresses the problem of monitoring the trade-off between exploration
and exploitation. Methods such as “uncertainty sampling” often yield mediocre results be-
cause they stress only “exploitation” while “random sampling” performs only “exploration”.
For a more comprehensive survey, see (Settles, 2009).

2. Datasets and evaluation method

The challenge was comprised of two phases: a development phase (Dec. 1, 2009 - Jan.
31, 2010) during which the participants could develop and tune their algorithms, using six
development datasets and a final test phase (Feb. 3, 2010 - Mar. 10, 2010). Six new datasets
were provided for the final test phase. One of the exciting aspects of the organization of
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Table 2: Final test datasets. The fraction of positive labels was not available to the
participants.

Dataset Feat. type Feat. num. Sparsity Missing Pos. lbls Tr & Te num.
(%) (%) (%)

A mixed 92 79.02 0 13.35 17535

B mixed 250 46.89 25.76 9.14 25000

C mixed 851 8.6 0 8.1 25720

D binary 12000 99.67 0 25.52 10000

E continuous 154 0.04 0.0004 9.04 32252

F mixed 12 1.02 0 7.58 67628

this challenge has been the abundance of data, which clearly signals that this problem is
ripe for study, and solving it will have immediate impact. Several practitioners in need
of good active learning solutions offered to donate data from their study domain. The
data statistics are summarized in Table 1 for the development datasets and Table 2 for the
final test sets. The data may be downloaded from: http://www.causality.inf.ethz.

ch/activelearning.php?page=datasets#cont . All datasets are large (between 20000
and 140000 examples). We selected six different application domains, illustrative of the
fields in which active learning is applicable: Chemo-informatics, embryology, marketing,
text ranking, handwriting recognition, and ecology. The problems chosen offer a wide
range of difficulty levels, including heterogeneous noisy data (numerical and categorical
variables), missing values, sparse feature representation, and unbalanced class distributions.
All problems are two-class classification problems.

The datasets from the final phase were matched by application domain to those of the
development phase. During the challenge, the final test datasets were named alphabetically,
so as not to make that matching explicit. However, the final datasets have mnemonic nick-
names (unknown to the participants during the competition) such that the correspondences
are more easily remembered:

• A is for AVICENNA, the Latin name of IBN SINA. This is a handwriting recognition
dataset consisting of Arabic manuscripts by the 11th century Persian author Ibn Sina.

• B is for BANANA, a fruit like ORANGE. This is a marketing dataset donated by
Orange Labs.

• C is for CHEMO, this is a chemo-informatics dataset for the problem of identifying
molecules that bind to pyruvate kinase. It is matched to HIVA, another chemo-
informatics dataset for identifying molecules active against the HIV virus.

• D is for DOCS. This is a document analysis dataset, matched with NOVA.

• E is for EMBRYO, an embryology dataset, matched with ZEBRA.

• F is for FOREST, an ecology dataset. The problem is to find forest cover types like
for SYLVA.
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A report describing the datasets is available (Guyon et al., 2010).
The protocol of the challenge was simple. The participants were given unlabeled data

and could purchase labels on-line for some amount of virtual cash. In addition, the index of
a single positive example was given to bootstrap the active learning process. Participants
were free to purchase batches of labels of any size, by providing the sample numbers of the
labels they requested. To allow the organizers to draw learning curves, the participants were
asked to provide prediction values for all the examples every time they made a purchase of
new labels. Half of each dataset could not be queried and was considered a test set.

The prediction performance was evaluated according to the Area under the Learning
Curve (ALC). A learning curve plots the Area Under the ROC curve (AUC) computed on
all the samples with unknown labels, as a function of the number of labels queried. To
obtain our ranking score, we normalized the ALC as follows:

globalscore = (ALC −Arand)/(Amax−Arand)

where Amax is the area under the best achievable learning curve and Arand is the area
under the average learning curve obtained by making random predictions. See http://

www.causality.inf.ethz.ch/activelearning.php?page=evaluation#cont for details.
An obvious way of “cheating” would have been to use an “associate” or register under

an assumed name to gain knowledge of all the labels, then submit results under one’s
real name. Preventing this kind of cheating is very difficult. We resorted to the following
scheme, which gives us confidence that the participants respected the rules of the challenge:

• The participants had to register as mutually exclusive teams for the final phase. The
membership of teams were manually verified.

• The team leaders had to electronically sign an agreement that none of his team mem-
ber would attempt to exchange information about the labels with other teams.

• We announced that we would perform some verification steps to deter those partici-
pants who would otherwise be tempted to cheat.

• For one of the datasets (dataset A), we provided a different set of target labels to
each participant, without letting them know. In this way, if two teams exchanged
labels, their resulting poor performance should be suspicious. This would alert us and
require us to proceed with further checks, such as asking the participants to provide
their code.

Our analysis of the performances on dataset A did not give us any reason to suspect that
anyone had cheated (see Appendix A for details). During the verification phase we asked
the participants to repeat their experiments on dataset A, this time providing the same
labels to everyone. Those are the results provided in the result tables.
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Table 3: Best benchmark results for the development and final datasets. The mean rank
on test datasets is 3.833.

Dataset Experiment Classifier Strategy AUC ALC Rank

HIVA gcchiva4 Näıve Bayes Bayesian 0.805504 0.328535 —
IBN SINA gccibnsina1 Linear KRR Random 0.978585 0.813690 —
NOVA gccnova1 Linear KRR Random 0.991841 0.715582 —
ORANGE gccorange1 Linear KRR Random 0.814340 0.283319 —
SYLVA gccsylva1 Linear KRR Random 0.996240 0.921228 —
ZEBRA gcczebra1 Linear KRR Random 0.785913 0.416948 —

Avicena gccA004v Linear KRR Random 0.883768 0.586001 3
Banana gccb1 Linear KRR Passive 0.720291 0.370762 3
Chemo gccc4 Linear KRR Random 0.814450 0.301776 5
Docs gccd2 Linear KRR Random 0.962951 0.651222 6
Embryo gcce1 Linear KRR Passive 0.773262 0.496610 5
Forest gccf2 Linear KRR Random 0.954557 0.821711 1

3. Baseline results

We uploaded baseline results to the website for the development datasets under the name
“Reference”. The majority of these submissions used linear kernel ridge regression as the
base classifier, where the regularisation parameter was tuned by minimising the virtual
leave-one-out cross-validation estimate of the sum-of-squared errors, i.e. Allen’s PRESS
statistic (Allen, 1974; Saadi et al., 2007). The best results, shown in Table 3, were generally
obtained using either passive learning (all labels queried at once) or random active learning,
where samples are chosen at random for labeling by the oracle. The one exception was the
HIVA dataset, where a näıve Bayes classifier was found to work well, with a Bayesian
active learning strategy, where samples were submitted to be labelled in decreasing order
of the variance of the posterior prediction of the probability of class membership. For a full
description of the baseline methods, see Cawley (2010).

It is interesting to note that a simple linear classifier, with passive learning, or random
active learning strategies performs so well (as indicated by the rankings, shown in Table 3).
The overall rank of 3.833 for those submissions is subject to a strong selection bias resulting
from choosing the best of the four baseline submissions for each benchmark. A more realistic
overall ranking is obtained by looking at the results for linear KRR with random active
learning (gccA002v, gccb2, gccc2, gccd2, gcce2 and gccf2), which gives an overall rank of
4.667, which would have been sufficient to achieve runner-up status in the challenge. This
shows that active learning is an area where further research and evaluation may be necessary
to reliably improve on such basic strategies.
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(a) (b)

Figure 1: Distribution of results. We show box-whiskers plots for the various datasets.
The red line represents the median, the blue boxes represent the quartiles, and
the whiskers represent the range, excluding some outliers plotted individually as
crosses. (a) Area under the ROC curve for the last point on the learning curve.
(b) Area under the learning curve.

4. Challenge results

The challenge attracted a large number of participants. Over 300 people registered to
gain access to the data and participate in the development phase. For the final test phase
30 teams were formed, each comprised of between 1 and 20 participants. This level of
participation is remarkable for a challenge that requires a deep level of commitment for
participation because of the specialized nature of the problem and the iterative submission
protocol (participants must query for labels and make predictions by interacting with the
website).

It is difficult to make a fair assessment of the results on development data sets because
the participants were allowed to perform multiple experiments on the same dataset, the
knowledge of the labels obtained in previous experiments may have implicitly or explicitly
been used in later experiments. Hence we report only the results on the final test sets for
which the participants were only allowed to perform one single experiment. The distribution
of performance with respect to AUC and ALC are shown in Figure 1. The results of the top
ranking teams for each final dataset are found in Table 4. We also plotted the learning curves
of the top ranking participants overlaid on top of all the other learning curves (Figures 2
to 7).

We encouraged the participants to enter results on multiple datasets by exponential
scaling of the prizes with the number of wins. However, no team ended up winning on more
than one dataset. The remaining prize money has been used to provide travel grants to
encourage the winners to attend the workshop. For those participants who entered results
on all 6 datasets, we performed a global ranking according to their average rank on the
individual datasets. The overall winner by average rank (average rank 4.2) is the Intel team
(Alexander Borisov and Eugene Tuv), who already ranked among the top entrants in several
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Figure 2: Learning curves for dataset A.

Figure 3: Learning curves for dataset B.
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Figure 4: Learning curves for dataset C.

Figure 5: Learning curves for dataset D.
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Figure 6: Learning curves for dataset E.

Figure 7: Learning curves for dataset F.
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past challenges. The runner up by average rank (average rank 4.8) is the ROFU team of
National Taiwan University (Ming-Hen Tsai and Chia-Hua Hu). Other members of this
research group headed by Chin en Lin have also won several machine learning challenges.
The next best ranking teams are IDE (average rank 5.7) and Brainsignals (average rank
6.7). The team TEST (Zhili Wu) made entries on only 5 datasets, but did also very well
(average rank 6.4).

We briefly comment on the methods used by these top entrants:

• The Intel team used a probabilistic version of the query-by-committee algorithm (Fre-
und et al., 1997) with boosted Random Forest classifiers as committee members (Borisov
et al., 2006). The batch size was exponentially increasing, disregarding the estimated
model error. Some randomness in the selection of the samples was introduced by ran-
domly sampling examples from a set of top candidates. No use was made of unlabeled
data. The technique used generated very smooth learning curves and reached high
levels of accuracy for large numbers of training samples. The total run time on all
development datasets on one machine is approximately 6-8 hours depending on model
optimization settings. The method does not require any pre-processing, and naturally
deals with categorical variables and missing values. The weakness of the method is
at the beginning of the learning curve. Other methods making use of unlabeled data
perform better in this domain.

• The ROFU team used Support Vector Machines (SVMs) (Boser et al., 1992) as a
base classifier and a combination of uncertainty sampling and query-by-committee as
active learning strategy (Tong and Koller, 2002). They made use of the unlabeled
data (V. Sindhwani, 2005; Sindhwani and Keerthi, 2006) and they avoided sampling
points near points already labeled. No active learning was performed on dataset B
and E (inferring from the development dataset results that active learning would not
be beneficial for such data). The method employed for learning from unlabeled data
must not have been very effective because the results at the beginning of the learning
curves are quite bad on some datasets (dataset C and F), but the performances for a
large number of labeled examples are good. The authors report that using SVMs is
fast so they could optimize the hyper-parameters by cross-validation.

• The IDE team used hybrid approaches. In the first few queries, they used semi-
supervised learning (i.e., make use of both labeled and unlabeled data with cluster-
and-label and self-training strategies), then switch to supervised learning. For active
learning, they combined uncertainty sampling and random sampling. Logistic regres-
sion and k-means clustering were used when the number of labeled examples is very
small (≤ 100). Boosted decision trees were used when the amount of labeled examples
is large (≥ 500). The authors think that getting the representative positive examples
in the first few queries was key to their success. Indeed, the authors had very few
points on their learning curve and their performance for small number of examples on
several datasets determined their good rank in the challenge on most datasets.

• The TEST team did not make any attempt to use unlabeled data and queried a
large number of labels at once (' 2000 examples). Hence its good performance in
the challenge are essentially based on the second part of the learning curve. This
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is a conservative strategy that takes no risk in the first part of the learning curve,
which from our point of view was the most interesting. The classifier used is logistic
regression and the active learning strategy is uncertainty sampling. The learning
curves are smooth. Hence, the use of uncertainty sampling with an sufficiently large
initial pool of example seems to be a viable strategy.

• The Brainsignals team did not perform active learning per se. The strength of the
entries made and their good ranking in the challenge stem from a good first point in
the learning curve obtained with a semi-supervised learning method based on spectral
clustering (Zhu, 2005). Then very few points are made on the learning curve at
256, 1024, and all samples. Random sampling was used and classical model selection
techniques with cross-validation to select among ensemble of decision trees, linear
classifiers, and kernel-based classifiers.

Several participants found that uncertainty sampling and query-by-committee, with-
out introducing any randomness in the selection process, may perform worse than random
sampling (see also Section 3 on baseline methods). To illustrate how things can go wrong
when strictly using uncertainty sampling, we show in Figure 8 the learning curve of one
team on dataset D who used such strategy for active learning. There is a catastrophic
decrease in performance in the middle of the learning curve. Query by committee performs
better than uncertainty sampling both in randomized and non-randomized settings. Tech-
niques for pro-actively sampling in regions with low densities of labels were reported not
to yield significant improvements. Ensemble methods combined with query-by-committee
active learning strategies yielded smooth learning curves. Good performances for very small
number of examples (≤ 100) were achieved only by teams using semi-supervised learning
strategies.

4.1. Methods employed

In what follows, for each category of methods (active learning, pre-processing, feature se-
lection, etc.) we report the fraction of participants having used each method. Note that
the sums of these numbers do not necessarily add up to 100%, because the methods are not
mutually exclusive and some participants did not use any of the methods.

We analyzed the information provided by the participants in the fact sheets:

• Active Learning and use of Unlabeled Data: In Figure 9, we show a histogram
of the type of active learning methods employed. Most of the participants used
“uncertainty sampling” as part of their strategy (81%) or random sampling (47%).
Query-by-committee was also very popular (38%). Interestingly no participant used
Bayesian active learning, 20% of the participants used no active learning at
all but 57% made use of unlabeled data – not shown on the figure.

• Pre-processing and Feature Selection: In Figure 10 we show histograms of the
algorithms employed for pre-processing, feature selection. Few participants did not
use any pre-processing (14%) and most participants performed data normalizations
(71%). A large fraction of the participants used replacement of missing values by
the mean or the median or a fixed value (43%). Principal Component Analysis (PCA)
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Table 4: Result tables for the top ranking teams.
Dataset A

Team AUC (Ebar) ALC

Flyingsky 0.8622 (0.0049) 0.6289
IDE 0.9250 (0.0044) 0.6040
ROFU 0.9281 (0.0040) 0.5533
JUGGERNAUT 0.8977 (0.0036) 0.5410
Intel 0.9520 (0.0045) 0.5273

Dataset B

Team AUC (Ebar) ALC

ROFU 0.7327 (0.0034) 0.3757
IDE 0.7670 (0.0038) 0.3754
Brainsignals 0.7367 (0.0043) 0.3481
TEST 0.6980 (0.0044) 0.3383
Intel 0.7544 (0.0044) 0.3173

Dataset C

Team AUC (Ebar) ALC

Brainsignals 0.7994 (0.0053) 0.4273
Intel 0.8333 (0.0050) 0.3806
NDSU 0.8124 (0.0050) 0.3583
IDE 0.8137 (0.0051) 0.3341
MUL 0.7387 (0.0053) 0.2840

Dataset D

Team AUC (Ebar) ALC

DATAM1N 0.9641 (0.0033) 0.8610
Brainsignals 0.9717 (0.0033) 0.7373
ROFU 0.9701 (0.0032) 0.6618
TEST 0.9623 (0.0033) 0.6576
TUCIS 0.9385 (0.0037) 0.6519

Dataset E

Team AUC (Ebar) ALC

DSL 0.8939 (0.0039) 0.6266
ROFU 0.8573 (0.0043) 0.5838
IDE 0.8650 (0.0042) 0.5329
Brainsignals 0.9090 (0.0039) 0.5267
Intel 0.9253 (0.0037) 0.4731

Dataset F

Team AUC (Ebar) ALC

Intel 0.9990 (0.0009) 0.8018
NDSU 0.9634 (0.0018) 0.7912
DSL 0.9976 (0.0009) 0.7853
IDE 0.9883 (0.0013) 0.7714
DIT AI 0.9627 (0.0017) 0.7216
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Figure 8: Example of learning curves for dataset D using the uncertainty sampling strategy.
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Figure 9: Active Learning Methods Employed. Also worth noting: 57% of the participants
used unlabeled data (with or without active learning).
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Figure 10: Preprocessing and feature selection.
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was seldom used and reported not to bring performance improvements. Discretiza-
tion and other types of pre-processing were not used very much in this challenge.
About half of the participants (52%) used some form of feature selection. Feature
ranking methods were the most widely used feature selection methods (33%) and
other filter methods were also used (9%). Compared to previous challenges, many
participants used embedded methods (19%), but consistent with previous challenges,
wrapper methods with extensive search were unpopular.

• Classification algorithm and model selection: In Figure 11 we show the classifi-
cation algorithms used. Most participants either used as part of their design a linear
classifier (62%) or a non-linear kernel method (43%). Decision trees and Näıve
Bayes are also quite popular (each have a 33% usage), while all the other methods,
including neural networks, are much less popular (less than 20% usage). The statistics
on loss function usage reveal the increasing popularity of the logistic loss (38%). The
hinge loss used for SVMs remains popular (29%). Other loss functions, including the
exponential loss (boosting) and the square loss (ridge regression and LS-SVMs) each
have less than 20% reported usage. We also collected statistics not shown on those
figures about regularizers, ensemble methods and model selection. Consistent with
the popularity of linear and kernel methods in this challenge, a large fraction of the
participants used regularization, with 43% usage of 2-norm regularizers and 19%
usage of 1-norm regularizers. Most participants made use of some ensemble method
(about 80%) including 33% usage of bagging and 29% usage of boosting. The wide use
of ensemble methods may explain the relatively low use of model selection methods
(62%); cross-validation methods such as K-fold and leave-one-out remain the most
popular (43%).

We also analyzed the fact sheets with respect to the software and hardware implemen-
tation:

• Hardware: Many participants made use of parallel implementations (67% used mul-
tiple processor computers and 24% ran experiments in parallel). Memory usage was
relatively modest (38% used less than 2 GB and 33% less than 8 GB).

• Software: Few participants are Mac users; most use either Windows of Linux (about
half and half). In terms of programming languages (Figure 12), higher level languages
(Matlab, R, and Weka) are most popular, Matlab coming first (67%), but C/C++
and Java are also used significantly. About 70% of the participants wrote their own
code, 30% of which are making it freely available.

The amount of human effort involved in adapting the code to the problems of the
challenge varied but was rather significant because about half of the participants reported
spending less than two weeks of programming while half reported more than 2 weeks. The
amount of time spent experimenting (computer effort) was distributed similarly. While the
majority of participants reported having enough development time (67%) and enough test
time (62%), a large fraction of participants ran out of time to do what they wanted.
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Figure 11: Classification algorithms and loss functions.
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Figure 12: Programming Languages.

5. Discussion

5.1. Statistical significance of the results

One of the aims of this competition is to try to assess the quality of active learning methods
in an unbiased manner. To this end, it is important to examine whether the differences
between the top ranking methods and the lowest ranking methods can be attributed to
chance or are there are significant differences.

We performed a statistical test, specifically designed for settings in which multiple clas-
sifiers are being tested with multiple datasets: the Friedman test (Demšar, 2006). The
ranks of the algorithms on each dataset are used. A tabulated statistic is derived from the
average ranks of the algorithms to test the null hypothesis that all algorithms are equiva-
lent so their ranks should be equal. The above tests call for a full score matrix (teams vs.
datasets) so we restricted our analysis for the set of 11 teams who submitted the results for
all 6 datasets. We used the tests with a significance level of α = 0.05. The Friedman test
turned out highly significant (with a p-value of 0.0019), so there are significant differences
in performances among the teams.

Since this first test was successful (i.e., the null hypothesis of equivalence between al-
gorithms was rejected) we ran a post-hoc test as recommended by (Demšar, 2006): the
Nemenyi test. That test looks for significant differences between the performances of given
algorithms and the rest of them. Accordingly, only two teams to be significantly different:
the first (INTEL group) and the last (DIT AI Group).
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5.2. Post-challenge experiments

Lemaire and Salperwyck (2010) performed systematic post-challenge experiments to assess
a number of classifiers used by the challenge participants in a controlled manner. The au-
thors decoupled the influence of the active learning strategy from that of the strength of
the classifier by simply using a random sampling strategy (passive learning). To reduce the
variance on the results, each experiment was repeated ten times for various drawings of the
training samples, but always starting from the same seed example provided to the partici-
pants. Learning curves were drawn by averaging the performances obtained for training set
sizes growing exponentially 21, 22, 23, 24, .... The performances of the various classifiers were
compared with the ALC and the AUC of the final classifier trained on all the examples. The
authors compared several variants of Naive Bayes, logistic regression, several decision trees
and ensembles of decision trees. The study allowed the authors to confirm trends observed
in the analysis of the challenge and reported elsewhere in the literature:

• Tree classifiers perform poorly, particularly for small number of examples, but ensem-
bles or trees are among the best performing methods.

• Generative models illustrated by naive Bayes methods perform better than discrimi-
native models for small numbers of examples.

Interestingly, the challenge participants did not capitalize on the idea of switching classi-
fier between when progressing through the learning curve and performed model selection
globally using the ALC for a fixed classifier. The study reveals a ranking of classification
methods similar to that of the challenge, using using only passive learning. This observa-
tion suggests that the choice of the classifier may have been a more determining factor in
winning the challenge that the use of a good active learning strategy. The relative efficacy
of active learning strategies for given classifiers remains to be systematically assessed and
will be the object of further studies.

5.3. Comparison of the datasets

The datasets chosen presented a range of difficulties, as illustrated by the AUC results
obtained ad the end of the learning curve (Figure 1-a). The median values are ranked as
follows: F > D > A > C > E > B. The best AUC results are uniformly obtained by
ensembles of decision trees for all datasets. For dataset F (Ecology), the best AUC result
(0.999) is obtained by the Intel team using a combination of boosting and bagging of decision
trees. This confirms results obtained with this dataset in previous challenges in which
ensembles of tree classifiers won (Guyon et al., 2006). However, other methods including
ensembles of mixed classifiers (NDSU) and SVMs (DSL and DIT AI) also work well. For
dataset D (Text), the best AUC performance is also high (0.973) and it is obtained by the
Intel team, but the profile of other top ranking methods is rather different: it includes mostly
linear classifiers, which are close contenders. For dataset A (Handwriting Recognition), the
best final AUC is also obtained by the Intel team with ensembles of decision trees (0.952),
but other methods including heterogeneous ensembles and kernel methods line SVMs work
well too. The best results on dataset C (Chemoinformatics) are also obtained by the Intel
team with the same method (0.833) and are significantly better than the next best result
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obtained with an heterogeneous ensemble of classifiers. Dataset E (Embryology) exhibits
the largest variance in the results, hence a good model selection is crucial for that dataset.
The AUC result of the Intel team with ensembles of decision trees (0.925) is statistically
significantly better than the next best result. The best AUC result (0.766) on the hardest
dataset (dataset B, Marketing) was obtained by a different team (IDE) but also with an
ensemble of tree classifiers (the Intel result comes close).

Another point of comparison between datasets is the shape of the learning curves and
the success of active learning strategies. According to Figure 1-b, the ranking of dataset
median performance with respect to ALC is similar to the ranking by AUC F > D > E >
A > C > B (only the position of E differs), but the variance is a lot higher. This shows that
when it comes to active learning, it is easy to do things wrong! The analysis of Figures 2
to 7 provides some insight into the learnability of the various tasks from few examples. For
dataset F, the learning curve of the best ranking participants climbs quickly and with as
little as 4 examples a performance larger than AUC=0.9 is achieved. For dataset D, making
a good initial semi-supervised entry using the seed example was critical. Then, the learning
curves climb rather slowly. This can be explained by the relatively polarized separation
chosen for the task: computer related topics vs. everything else. Learning from just one
example came a long way. Rather similar learning curves are obtained for dataset E. The
teams who did not perform semi-supervised learning got much worse results in the first part
of the learning curve. For dataset A, there is a lot of variance in the first part of the learning
curve until about 32 examples are given. This high variance was also observed in the post-
challenge experiments. It may be due to the high heterogeneity of the classes. For dataset
C, the Intel team who obtained the best final AUC and has a learning curve dominating
all others starting at 32 examples did not do well for the small number of examples. Other
teams including MUL used semi-supervised learning strategies and climbed the learning
curve much faster. Dataset B presents the flatest learning curves. All top ranking learning
curve start with an AUC between 0.61 and 0.65 and end up with and AUC between 0.68 and
0.72. Virtually all active learning strategies are found among the top ranking participants
for that dataset but, according to our post-challenge experiments, random sampling does
just as well.

5.4. Compliance with the rules of the challenge

We struggled to find a protocol that would prevent violations of the rules of the challenge.
We needed a mechanism to ensure that the participants could not gain knowledge of the
labels unless they had legitimately purchased them (for virtual cash) from the website.
This implied that entries made to gain access to labels could not be corrected and that
the participating teams could not exchange information about labels. Inevitably, in the
course of the challenge, some participants made mistakes in their submissions that they
could not correct. The verification process that we implemented (see Appendix A) was not
uniformly well received because some participants felt that, had they known in advance
that the verification round counted for ranking, they would have spent more effort on it.
Hence, this generated some frustration. However, the validation process gave us confidence
that the participants respected the rules, which is important in order to be able to draw
valid conclusions from the analysis of the challenge.
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5.5. Lessons learned about the challenge protocol

This challenge is one of the most sophisticated challenges that we have organized because
it involved a complex website back-end to handle the queries made by the participants and
manage the status of their on-going experiments. Some participants complained that the
manual query submission/answer retrieval through web form was very inconvenient and
time consuming. In future challenges we plan to automate that process by providing scripts
to make submissions.

The nature of the challenge also made the use of part of the dataset for validation
impossible during the development period. We had to resort to using different datasets
during the development period and the final test period. However, due to limited resources,
not all the final datasets were completely different from their matched development dataset.
For dataset A, we added more samples and changed the targets, for dataset B, we changed
the features and the targets but the samples were the same, for dataset C, the task was
entirely new. For dataset D, we changed the features and the targets, but the samples were
the same, for datasets E and F, we sub-sampled the data differently and provided different
targets. For F, we also changed the features. For all datasets, the order of samples and
features were randomized. In this way, the participants could not re-use samples or models
from the development phase in the final phase. However, even through we did not explicitly
match the datasets between the two phases, it was not difficult to figure out the match.
Some participants seem to have made use of this information to select strategies of active
learning (or decide not to perform active learning at all on certain datasets).

To put most emphasis on learning from few labeled examples, our evaluation metric put
higher weight on the beginning of the learning curve by choosing a logarithmic scaling of
the x-axis. This was criticized because there is a lot of variance in the first part of the
learning curve and can cause some participants to win by chance. This is a valid concern
that, outside of the constraints of a challenge, may be addressed by averaging over multiple
experiments performed on data sub samples. In the context of a challenge, samples for
which labels have been purchases cannot be re-used, so averaging procedures are excluded.
Rather, we have offered the possibility of working on several datasets. The participants
who performed consistently well on all datasets are unlikely to have won by chance. In
retrospect, giving prizes for individual datasets might have encouraged to use “gambling
strategies”: some participants provided only two points in the learning curve, the first and
the last one. If by chance their first point was good on one of the 6 datasets, they could
win one of the 6 prizes. In retrospect, we might have been better off imposing the condition
that all the participants return results on all datasets and make a single ranking based on
the average rank on all 6 tasks. We could also regularize the performance measure e.g. by
a weighted average of performances obtained on different parts of the learning curve, such
as to take into account the difference of their variances.

Table 5 details the empirical standard deviations of participants’ performances on vari-
ous datasets for the first and last points on the learning curve. As can be expected, for the
majority of the datasets (A, C, D and F) the standard deviation on the first point and is
considerably larger that that of the last point; On the remaining datasets (B and E) the
differences are small. It may be a coincidence but the two datasets with largest standard
deviations are exactly those for which the winning entries did not actually use active learn-
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Table 5: The empirical means, (µ0, µ1) and standard deviations (σ0 and σ) of the perfor-
mances (AUC) on the first point (no label purchased) and last point (all available
labels purchased) of the learning curve, respectively.

Dataset µ0 σ0 µ1 σ1
A 0.416 0.164 0.879 0.068

B 0.572 0.063 0.658 0.086

C 0.509 0.080 0.782 0.034

D 0.535 0.122 0.953 0.021

E 0.595 0.106 0.733 0.142

F 0.586 0.101 0.981 0.015

ing but used semi-supervised learning to optimize performance on the first point. Analyzing
the spread of results by inter-quartile range as a measure for the spread of the performances,
which is more resistant to outliers, produces the same picture.

6. Conclusion

The results of the Active Learning challenge exceeded our expectations in several ways.
First we reached a very high level of participation despite the complexity of the challenge
protocol and the relatively high level of expertise needed to enter the challenge. Second, the
participants explored a wide variety of techniques. This allowed us to draw rather strong
conclusions, which include that: (1) semi-supervised learning is needed to achieve good
performance in the first part of the learning curve, and (2) some degree of randomization in
the query process is necessary to achieve good results. These findings have been confirmed
in large on-going Monte-Carlo experiments, the initial results of which are presented in
Cawley (2010). This challenge proved the viability of using our Virtual Laboratory in
challenges requiring users to interact with a data generating system. We intend to improve
it to further automate the query submission process and use it in upcoming challenges on
experimental design.
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Appendix A. Post-challenge verifications

The protocol of the challenge included several means of enforcing the rule that teams were
not allowed to exchange information on the labels, including a manual verification of team
membership and a method for detecting suspicious entries described in this appendix.

For one of the datasets (dataset A), we took advantage of the fact that the problem
was a multi-class problem, with 15 classes. We assigned at random a different classification
problem to each team. The teams were not informed that they were working on different
problems.

To hide our scheme, we needed to provide the same seed example to all teams. To make
this possible, we created 14 classifications problems for separating class1 or class i vs. all
other classes, where i varies from 2 to 15. The seed was one example of class 1 (the same
for all problems). We assigned the classification problems randomly to the teams. The
intention was to detect eventual suspicious entries that could betray that the team tried to
use label information acquired “illegally” from another team.

For each team, we computed the learning curves and the corresponding score (normalized
ALC, Area under the Learning Curve) for all possible target values, hence 14 scores. We
investigated whether the teams scored better on a problem they were not assigned to, hence
for which they could not legitimately purchase labels. Our scheme obviously relies on our
ability to determine the significance of score difference. Theoretical confidence intervals for
our score (normalized ALC) are not known. There is naturally some variance in the results
making it possible that by chance a team would get a better result on one of the problems
to which it was not assigned. Furthermore, as illustrated in Figure 13, the problems are
correlated, which increases the chances of getting a better score on another problem.

Twenty one teams turned in results on dataset A, including all the competition winners.
Only a few teams submitted results in the final phase on other datasets than dataset A,
so they could not be checked. However, they scored poorly in the challenge and were not
in the top five for any dataset. Hence, our scheme allowed us to verify all the top ranking
teams. We proceeded in the following way:

• The teams whose score on their assigned problem was better then their score on all
other problems (11 among 21) were declared beyond suspicion. This includes the over-
all winner (Intel) and 3 other winning teams (Brainsignals, ROFU, and DATAM1N).

• Because the problems were assigned at random, some were not assigned to any team
(target values 10 and 11). Among the remaining 10 teams, those having their best
score on problems 10 or 11 (5 among 10 remaining teams) were declared beyond
suspicion, since none of the teams could purchase label for these tasks. This includes
one other winning team (Flyingsky).

• For the remaining 5 teams, we waived suspicion to 4 of them who had a score lower
than 0.3 for any problem (their score was so close to random guessing that it was easy
to score higher on another problem by chance). Most of those teams also scored low
on all the other datasets. Only one of those teams scored high on some other datasets
(NDSU), but did not win on any dataset.
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Figure 13: Correlation matrix between target values for dataset A. Targets 2 and
12 are particularly correlated.

• There remained only one team (IDE). Their results are better on problem 2 than
on their assigned problem, which happens to be problem 12. These results are not
suspicious either because those two problems are very correlated.

• For the least conclusive cases, we performed a visual examination of the learning
curves to detect eventual suspicious progressions.

In conclusion, none of the verification results raised any suspicion. Admittedly, these
results are not very strong because of the imperfections of the test due to noise and label
correlation. However, combined with the other measures we took to enforce the rules of the
challenge, this test gave us confidence in the probity of all the teams and did not justify
further verifications by asking the teams to deliver their code.
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