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Abstract

Active Learning (AL) exploits a learning algorithm to selectively sample examples
which are expected to be highly useful for model learning. The resulting sample is governed
by a sampling selection bias. While a bias towards useful examples is desirable, there is
also a bias towards the learner applied during AL selection. This paper addresses sample
reusability, i.e., the question whether and under which conditions samples selected by AL
using one learning algorithm are well-suited as training data for another learning algorithm.

Our empirical investigation on general classification problems as well as the natural
language processing subtask of Named Entity Recognition shows that many intuitive as-
sumptions on reusability characteristics do not hold. For example, using the same algorithm
during AL selection (called selector) and for inducing the final model (called consumer) is
not always the optimal choice. We investigate several putatively explanatory factors for
sample reusability. One finding is that the suitability of certain selector-consumer pairings
cannot be estimated independently of the actual learning problem.

Keywords: active learning, uncertainty sampling, sample selection bias, covariate shift

1. Introduction

While supervised machine learning methods are de-facto standards for a variety of real-
world problems, their greediness for large amounts of labeled training data is one of the
major obstacles along the path to applications. Training data are usually not available
in real-world applications. Human experts of the specific domain in focus need to create
such labeled examples which is extremely costly. This holds, for example, for a range of
natural language processing (NLP) tasks where (parts of) natural language text need to be
classified. For the creation of training data the human annotator has to read through a set
of (usually randomly selected) textual examples and manually assigns the corresponding
categories to the constituent of interest (e.g., words). Such annotation is costly and usually
requires domain experts, for example when biomedical publications are to be annotated.
Active learning (AL) tackles the challenge of economic training data creation. In the
AL paradigm, only examples of high utility for classifier training are selected for manual
annotation in an iterative manner. AL has been shown to be a promising solution to
annotation cost reduction, especially for scenarios where large amounts of unlabeled data are
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available at no or relatively low costs. Since AL exploits a learning algorithm to selectively
sample examples which are expected to be highly useful for model learning, the resulting
sample is governed by a sampling selection bias, also known as covariate shift. While a bias
towards useful examples is generally intended and desirable, one must also keep in mind
that utility is assessed with respect to the learner applied during AL selection so that the
resulting sample is somewhat biased to this particular learner.

Approaches to AL are typically based on the assumption that the learning algorithm
used during selection — called selector — and the learning algorithm used to induce the
final model — called consumer — to are identical. Yet, there are settings where selector
and consumer intentionally diverge. Firstly, the interaction with the annotating expert
demands a fast learning algorithm embedded in AL. Hence, a less complex learner might be
used as selector, while the final consumer remains the high-accuracy, more complex learning
algorithm. Secondly, the optimal learner for a new problem is often unknown during data
acquisition so that the selector is likely to differ from the final consumer. Thirdly, we may
want to annotate just once and use the example set for many different learning problems.
We call settings, where selector and consumer diverge foreign-selection (in contrast to self-
selection as the default setting). Foreign-selection constitutes a scenario of AL sample
reuse. We say that a sample S47 obtained by AL is reusable by a particular consumer, if
this consumer yields a higher classification accuracy when trained on Sz, than it would (on
average) achieve when trained on a random sample Sgp.

The question is, whether and under which conditions a sample selected with AL exploit-
ing a specific learner is suitable (i.e., reusable) for training another learning algorithm, or
— more generally — how sampling efficiency of AL is affected by foreign-selection settings.
To the best of our knowledge, this question has neither been posed nor studied in context
of AL before. Most research in AL is restricted to a self-selection scenario. Despite its
practical importance, the reusability issue has not yet been investigated.

For our investigation of reusability we state a set of hypotheses on a) expected reusability
characteristics of specific foreign-selection scenarios and b) relevant factors assumed to
influence reusability in foreign-selection scenarios. These hypotheses are empirically tested
on several general classification problems as available from the UCI repository as well as the
NLP task of Named Entity Recognition (NER) which is a well acknowledged prerequisite
for tailored information services and so an inherently realistic application scenario of AL
(Tomanek et al., 2007).

The rest of this paper is structured as follows: Section 2 motivates the hypotheses we
aim to test. Section 3 then describes our experimental setting, including data sets, learning
algorithms, AL approaches, and a novel measure for reusability. Results are reported and
discussed in Section 4. Related work is discussed in Section 5 and Section 6 concludes.

2. Hypotheses

Expected reusability characteristics The first two hypotheses state what seems to be
common-sense:

e H1: Samples obtained by AL with a particular selector are rather unlikely to be
reusable by another learning algorithm due to adversarial ties to the selector.
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e H2: For a particular consumer, self-selection constitutes the upper bound for AL
sampling efficiency.

Expected factors influencing reusability These hypotheses cover four factors which
possibly influence the reusability characteristics of a specific scenario.

e H3: Are there selector-consumer pairings exhibiting general reusability characteristics
which hold for most learning problems? H3 states, that there are selectors which are
in general well suited for certain consumers, and vice-versa.

e H4: Since the selector classifies examples according to its model, the similarity of
the consumer’s and the selector’s model could determine reusability. H4 states that a
high degree of model similarity or model relatedness leads to high reusability.

e H5: Since the resulting selection is what counts, H5 states that the similarity of
samples chosen by self-selection and foreign-selection is important for reusability.

e H6: Since the example input space is changed by a learner’s feature weights, H6 states
that the similarity of the feature ranking in self- and foreign-selection is important for
reusability.

3. Experimental Setup

This section outlines the experimental setup used for empirically investigating the hypothe-
ses on AL sample reuse.

3.1. Learning Problems and Data

General classification problems as well as the NER learning problem are chosen. The data
sets are chosen such that results are reproducible and comparable to previous work. Within
the UCI repository (Asuncion and Newman, 2007), five data sets were selected according to
(a) size (data sets should have more than 1,000 examples so that AL can actually select), and
(b) diversity (data sets should contribute different numbers of features and example/feature
ratios as well as different numbers of target classes). As for NER, we chose the Muc7 and
the PBGENE corpus. Both corpora consist of natural language sentences annotated with
respect to the particular entity classes of interest. ' Table 1 gives an overview of the selected
data sets and corpora.

3.2. Learning Algorithms

For experiments on the UCI data sets, we chose four well-known learning algorithms: Naive
Bayes (NB), Multinomial Logistic Regression (MaxEnt), C4.5 Decision Trees (DT), and
linear kernel Support Vector Machines (SVM). The respective implementations of these
algorithms in the WEKA toolkit are used with their default parameters (Witten and Frank,
2005). For NER experiments, we applied the following algorithms: Conditional Random
Fields (CRF), MaxEnt, NB, Hidden Markov Models (HMM), and SVMs. We used standard
features for NER (Nadeau and Sekine, 2007).

1. MucT7 (see http://www.ldc.upenn.edu/Catalog) has 7 entity types; PBGENE is a sub-corpus derived
from the PENNBIOIE corpus (see http://bioie.ldc.upenn.edu/) and has 3 gene entity types.
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UCI data sets

data set # examples # attributes attribute types classes
CAR 1,728 6 nominal 4
MUSHROOM 8,124 22 nominal 2
NURSERY 12,960 8 nominal )
SEGMENT 2,310 19 real 7
SICK 3,772 30 mixed 2

NER data sets
data set  # examples # attributes attribute types classes

Muc7 3,022 ~ 50K binary 8
PBGENE 10,570 ~ 50K binary 4

Table 1: Data sets used for AL sample reuse experiments. For NER, examples refers to the
number of sentences contained in the respective data set.

3.3. Active Learning and Utility Measures

In the scenario inspected here, the expert is in the loop of AL. This requires a fast processing
of AL. Fast utility estimates come along with the price of possibly not finding a globally
optimal sample. Statistically optimal approaches to AL (such as in Cohn et al. (1996) or
Roy and McCallum (2001)) usually require model retraining for each unlabeled example to
be tested in each AL iteration. In contrast, Uncertainty Sampling (Lewis and Gale, 1994)
requires only one model training step in each AL iteration. Uncertainty Sampling correlates
utility with model confidence: the utility of an example is based on the uncertainty (as the
inverse of the confidence) of the current classifier in its prediction. For our experiments we
thus decided for Uncertainty Sampling instead of statistically optimal approaches to fit the
practical requirement of low selection times when an (annotation) expert is in the loop.

In each iteration, AL greedily selects example p = (x) with the highest utility score
u(p, 8) which is based on the current model #. Such a locally optimal selection depending
on the history of previous selections is performed with the hope that it will lead to a good
global solution. The true class label y for a selected example is queried from a human expert
and the labeled example is then added to the training set £ and the next AL iteration starts.
After stopping, the sample £* containing all labeled examples is returned. This sample is
then used to train the final model. Algorithm 1 formalizes this procedure. When applied
on the UCI data sets, we indeed only selected one example per AL iteration. Applied to
the more complex learning problem of NER, we modify Algorithm 1 so that b > 1 examples
with the highest utility scores are selected. This aims at keeping selection time low.

For AL with a NB and a MaxEnt-based selector, the confidence is estimated as the
margin between the best and the second best label. The margin utility function (Scheffer
and Wrobel, 2001) is given by:

uria(p.6) = 1 = (max Po(y/la) — max Pofy/]a)) 1)
y'ey yey
y' 2y
For maximum margin classification, the decision value d(x) = (w,x) + b indicates the

distance of an example to the hyperplane. Larger distances can be interpreted as higher

172



INSPECTING SAMPLE REUSABILITY FOR ACTIVE LEARNING

Algorithm 1: Greedy Active Learning

input
L: set of labeled examples | = (z,y) € X x ),
P: set of unlabeled examples p = (z) € X;
T(L): a learning algorithm;
u(p, 0): utility function;

repeat

learn model: 0 =T'(L);
select p* = argmax,, cpu(p’, 0);
query label y for p*: I* = (z,y);
L=LUl*, P=P\p"5
until stopping criterion met;
return £* =L

confidence of the classifier in its classification. For the SVM-based selector, the margin
utility function is accordingly defined

usvam (P, w, b) = —(dy= (%) — dy=-(x)) (2)
with y* = argmax,,cyd, (x) and y** = argmax ,rcy d,»(x). Due to the well-known instabil-
y' £y

ity of decision trees, Uncertainty Sampling should not be applied (Dwyer and Holte, 2007).
Instead, a variant of AL known as Query-by-Committee (Seung et al., 1992) is promising.
The utility of an example is derived from the disagreement within a committee of classifier
models C = (0y,...,6.). In the experiments, committees with |C| = 3 and member 6; are
trained on a subsample £ of the available training data £ with |£/| = |C‘|T_|1]£] The Vote
Entropy utility function quantifies disagreement (Engelson and Dagan, 1996)

Z V(y/7$) 1 V(ylvx) (3)

y' ey

where V(y/, ) is the number of committee members 6; predicting class /.

As for the NER learning problems, the example grain size is set to complete sentences.
However, since sentences consist of single tokens, we calculate the utility scores for each
token separately and then average over all tokens of a sentence to get the sentence-level
utility score.? Moreover, for the NER learning problems, we apply batch-mode AL where
b = 20 sentences are selected in each AL iteration. Batch-mode AL is here applied to reduce
computational complexity of AL because model training for NER is rather complex due to
the high-dimensional feature space (=~ 50,000 in this case).

In all experiments, the data sets described above where each split into a pool of AL
selected (90%), and a held-out test set (10%) used to calculate learning curves. The results

2. Note that while CRFs and HMMs are actually used to model the sentence as a sequence of tokens
x = (z1,...,Ty), we still calculated the utility score as an average over all token-level utility scores. The
token-level score is based on the marginal probability at position 7 for a sequence x. See e.g. (Tomanek
and Hahn, 2009) for details.
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reported in the following are averages over 20 independent AL runs. For each run, another
random split was generated. All experiments are based on the same 20 splits. AL runs were
stopped once |£| = 150 was reached (UCI), or once £ consisted of 50,000 tokens (NER).

3.4. Quantification of Sample Reusability

To quantify sample reusability on a continuous scale we introduce a novel measure based on
the Area Under the learning Curve (AUC). For a baseline sampling scenario Spase (usually
random sampling), the learning curve of AL self-selection Sger, and that of AL foreign-
selection Sgen, the REU score is given by

AUC(Skgn, a,b) — AUC(Spase; a, b)
AUC(Sgeif, @, b) — AUC(Shase, a, b)

REU(Stegn, Sself, Sbase, @, b) = -1 (4)
on an interval [a,b] in the learning curve. This score indicates the percentage decrease of
AL self-selection sampling efficiency by foreign-selection relative to the baseline sampling
scenario, when compared to self-selection. If REU = 0, foreign- and self-selection are
equally efficient and in the case of REU > 0, foreign-selection would be even better than
self-selection. A negative score with —1 < REU < 0 indicates that reusability is in evidence
but foreign-selection is less efficient than self-selection. Further, we say that reusability is
“high” for negative REU scores close to 0, “low” for negative REU scores beyond or just
slightly above —1. If REU < —1 we say that reusability is not given since foreign-selection
is worse than random selection. Figure 1 visualizes the calculation of the REU score.

Note that a learning curve shows model performance as a function of data acquisition
cost. Data acquisition cost may be application-specific. Obviously, the interval [a, b] of the
REU score must be chosen on the appropriate unit. As for the UCI data sets, we assume
a unit cost per example and set the interval for REU score calculation to [50;150] so as
to exclude the “start-up” phase of AL where the learning curves are naturally very steep
as well as to exclude the “convergence-phase” where learning curves usually flatten out.
As for the NER scenario where complete sentences are selected, we say that the cost is
a function of the sentence length (measured in number of tokens contained). We set the
interval for REU score calculation to [10000;30000] — again, in order to exclude start-up
and convergence phase.

4. Results

The REU scores shown in Tables 2 and 3 are used to discuss the hypotheses.

4.1. Hypothesis H1

As for NER, reusability can be recorded for all AL foreign-selection scenarios and REU
scores rarely fall below —0.5, indicating a high degree of reusability for this special learning
problem. The only exception is that of foreign-selection for a NB-based consumer on the
PBGENE corpus. On the UCI data sets, in only 15 out of 60 foreign-selection scenarios,
sample efficiency considerably drops below that of random selection with REU scores < —1.
Moreover, there are only two cases (both on the SEGMENT data set) where a sample actively
selected by a specific selector is not reusable in by another consumer.
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CAR consumer MUSHROOM consumer
selector DT MaxEnt NB SVM selector DT MaxEnt NB SVM
DT 0.00 —0.30 —0.47 —0.42 DT 0.00 -0.59 —0.69 -0.19
MaxEnt —0.84 0.00 —1.04 —0.27 MaxEnt —0.05 0.00 —-0.47 0.12
NB —0.84 —-0.11 0.00 —0.28 NB 0.00 -0.07 0.00 —0.02
SVM —-0.90 0.26 —0.86 0.00 SVM —0.91 —0.43 —1.17 0.00
NURSERY consumer SEGMENT consumer
selector DT MaxEnt NB SVM selector DT MaxEnt NB SVM
DT 0.00 —1.13 —2.13 -0.93 DT 0.00 —-0.72 —0.47 —-0.95
MaxEnt -0.33 0.00 —1.46 -0.07 MaxEnt -0.95 0.00 —1.24 —3.07
NB 0.48 —0.09 0.00 0.14 NB —2.56 —2.04 0.00 —1.77
SVM —0.36 -0.35 —-1.19 0.00 SVM —4.35 —3.53 —2.39 0.00
SICK consumer

selector DT  MaxEnt NB SVM

DT 0.00 —0.83 —0.54 -0.90

MaxEnt 0.26 0.00 —0.43 -0.77

NB 0.31 —0.90 0.00 —2.18

SVM 0.34 —0.18 —-0.25 0.00

Table 2: Reusability scores (REU) on UCI data sets. Colors: REU >0 and REU < —1

Table 3: Reusability scores on NER data sets. Colors:

Muc7 (NER)

consumer
selector NB HMM  MaxEnt SVM CRF
NB 0.00 0.07 —-0.19 0.13 —0.15
HMM —0.48 0.00 —0.40 —0.29 —0.39
MaxEnt —0.39 —0.05 0.00 0.12 —0.12
SVM —0.40 —0.07 —0.20 0.00 —0.24
CRF —0.38 0.01 0.02 0.05 0.00

PBGENE (NER)

consumer
selector NB HMM  MaxEnt SVM CRF
NB 0.00 —0.02 —0.01 —-0.17 —0.13
HMM —1.51 0.00 —0.29 —0.38 —0.35
MaxEnt —3.47 —0.57 0.00 —0.08 —0.09
SVM —2.22 —0.24 —0.22 0.00 —0.25
CRF —3.58 —0.58 —0.06 —0.36 0.00

REU >0 and REU < —1

175



TOMANEK MORIK

0.6

performance
0.4

—— AL self-selection
—— AL foreign—selection
—— random sampling

0.2

I T T T
0 10000 20000 30000 40000

examples

Figure 1: Quantification of sample reusability through the REU score which is here calcu-
lated by AJriB — 1. In this example, REU = —0.17 indicates good reusability.

The hypothesis that reusability were a rare scenario (H1) is thus rejected. In contrast,
reusability is observed in the majority of cases.

4.2. Hypothesis H2

Most surprising, the results reveal that self-selection sampling efficiency is occasionally
outperformed by foreign-selection. As for NER, this is the case in 6 out of the 40 foreign-
selection scenarios; for the UCI data sets, 8 out of the 60 foreign-selection scenarios exceed
the assumed upper bound. Look, for instance, at the combination of an SVM selector and
a MaxEnt consumer processing the CAR data set. This falsifies the upper-bound hypothesis
leading to the remarkable finding that there are scenarios where a learner 75 estimates the
utility of an example for learner 77 more appropriately than T} itself.

4.3. Hypothesis H3

The shown REU scores also contradict the assumption that there are certain pairings of
learning algorithms for which general reusability characteristics hold. Inconsistent reusabil-
ity characteristics for the selector-consumer pairings have to be ascertained over the five
UCI data sets. NB, for example, is a good selector for the MaxEnt consumer on some data
sets (MUSHROOM, NURSERY and CAR), but not on others (SICK and SEGMENT).

4.4. Hypothesis H4

Additional experiments test whether model similarity explains reusability. In line with
Baldridge and Osborne (2004), H4 states that sample reusability depends on the degree of
relatedness between selector and consumer regarding their models. Relatedness is usually
measured by the degree of correlation between the predictions of models. However, in the
context of AL, more interesting than the consistency of predictions is how similar the utility
rankings of the unlabeled examples achieved with two different models are. This is because
these rankings determine which examples are selected. For use in our AL scenario, we thus
say that two models are related when they lead to a highly correlated utility ranking of
unlabeled examples.
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The Spearman’s rank correlation coefficient rg compares the utility rankings of two
models (Baldridge and Osborne, 2004). We trained all learners on random samples (of
10,000 tokens in case of NER, and on 150 examples in case of the UCI data sets). ® Utility
rankings of the examples in the test set are then compared for all tuples of models.

Hypothesis H4 is operationalized by the assumption that relatedness scores positively
correlate with reusability scores. Table 4 shows correlation coefficients between the REU
score and model similarity (relatedness of models). It indicates that there is either no
or even a negative correlation between reusability and model similarity. By definition,
relatedness scores are symmetrical. However, reusability, according to Table 2, is not.
When the learners of selector and consumer are exchanged, reuse scores differ. Looking
at the relatedness scores (omitted here due to space limitations), we observe many such
cases. As an example, consider the pair of a SVM and a MaxEnt learner for which we
obtained a high relatedness score on the PBGENE corpus. A sample obtained by AL with
a MaxFnt-based selector is perfectly reusable by an SVM-based consumer. However, when
SVM is used to select for a MaxEnt consumer, reusability drops to a REU score of —0.22
(cf. Table 2). As another example, the very good reusability of a sample obtained by AL
with a NB selector for a HMM consumer is in contrast to the rather low relatedness score
for HMM and NB on the MuUc7 corpus. A low relatedness score thus does not necessarily
imply a low level of reusability. While a high rank correlation coefficient often accompanies
reusability (as for the MaxEnt-CRF tuple), one cannot conclude the opposite from low
correlation coefficients. This emphasizes that different samples can also lead to similar
model performances.

4.5. Hypothesis H5

H5 hypothesizes that the similarity of samples obtained in self- and foreign-selection mode
is a relevant factor for reusability. Different selectors may select from other parts of the
instance space. The more the covered space of a foreign-selector diverges from that of the
self-selector, the lower the REU scores are according to our assumption. A situation with
REU < —1 would then mean that the AL sample does not cover the relevant areas for
the consumer. Comparing the sample distributions over the input space is performed by
agglomerativ clustering over all unlabeled examples in the pool P. The distance between
two clusters is calculated according to the average linkage method based on the Euclidean
distance. The hierarchical clustering is flattened down to & = 20 clusters. The examples
in a sample S are then assigned to clusters in this clustering according to an example’s
proximity to a cluster centroid (Everitt et al., 2001).

Dg represents the distributions of the examples of sample S over the clustered input
space. This distribution gives the percentage of a sample’s examples falling in each cluster.
Figure 2 visualizes this for two samples S; and S5 obtained by two different selectors.
The similarity of the two samples S7 and Ss is estimated based on the divergence of their
distributions Dg, and Dg, which is calculated by the Jensen-Shannon divergence (JSD).
The JSD score ranges in the interval of [0,1]; lower scores indicate higher distributional
similarity. The similarity is calculated by SIM(S;,S2) = 1 — JSD(Dg,, Ds,). In the above
example, a similarity of SIM(S7,.S2) = 0.48 is obtained.

3. We also tested random samples of different sizes but did not obtain essentially different results.
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Figure 2: Distribution of samples S; (left) and Sy (right) over common clustering.

correlation of reusability and model similarity

CAR MUSHROOM NURSERY SEGMENT  SICK

rp 0.04 -0.31 0.07 -0.22 -0.47
rs 0.02 -0.31 0.01 -0.39 -0.24

correlation of reusability and sample similarity

CAR MUSHROOM NURSERY SEGMENT SICK

rp  0.30 0.24 0.03 0.37 0.23
rs 0.29 0.19 0.08 0.40 0.14

correlation of reusability and feature ranking similarity

CAR MUSHROOM NURSERY SEGMENT  SICK

rp  0.16 -0.35 0.46 -0.38 -0.06
rs 0.04 -0.49 0.45 -0.42 -0.21

Table 4: Pearson’s (rp) and Spearman’s (rg) correlation coefficients for REU score and
other variables (model similarity, sample similarity, and feature ranking similarity).

Now, H5 becomes the testable statement that similarity (SIM) correlates with reusabil-
ity (REU). Table 4 shows correlation coefficients between reusability and sample similarity.
Pearson’s correlation coefficients range between 0.03 and 0.37, which indicates a compara-
tively low (linear) relationship. Spearman’s correlation coefficients are also very low on av-
erage ranging from 0.08 to 0.4. SIM scores are symmetrical, where reusability is not. These
experiments show that the distributional similarity of samples does not explain reusability.

4.6. Hypothesis H6

Hypothesis H6 states that feature weighting is a relevant factor for reusability. This sensi-
tivity can be expressed by comparing feature rankings obtained from foreign-selection and
from self-selection. Feature rankings are obtained by a wrapper approach based on simple
hill climbing (Kohavi and John, 1997). Subsequently, tuples of feature rankings are com-
pared. A tuple always consists of the feature ranking obtained from a model learned on
a foreign-selection sample and the feature ranking of a model learned on the self-selected
sample. Comparison of feature rankings is based on a weighted version of Spearman’s rank
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correlation coefficient. * Accordingly, the feature ranking score FR(St,,St,) shows the
correlation of the feature rankings of a model induced by learner 75 on a foreign-selection
sample from AL with a selector based on T} and a self-selection sample where the selector
was based on T5.

Now, H6 means that the FR scores correlate highly with the REU scores in the foreign-
selection scenarios. However, the experiments disprove this assumption. Table 4 shows
correlation coefficients between reusability and feature ranking similarity (FR score). Cor-
relation coefficients are mostly low or even negative. Overall, this outcome shows that the
FR score is inadequate for predicting the REU score (Pearson’s coefficient) as well as for
ranking the selectors according to their appropriateness for a particular consumer (Spear-
man’s coefficient). A twisted feature ranking may still lead to a model with similar accuracy
compared to a model which is induced from a self-selected sample.

Reusability cannot be explained by the fact that models learned on different samples
exhibit similar feature rankings. Note, a model 6 induced from a foreign-selection sample
may perform similarly well or even better than a model 6’ induced by the same learner but
from a self-selection sample.

5. Previous Work

While there is a huge body of work on AL for the self-selection scenario (see Settles (2009)
for an overview), there is only little on scenarios of AL sample reuse and foreign-selection.
A scenario of sample reuse motivated by the need to reduce the computational complexity
of sampling was first described by Lewis and Catlett (1994) for a text classification problem.
There, the consumer was based on decision trees and the selector was a logistic regression
algorithm. Positive findings about sample reusability were reported. For the NLP task of
statistical parsing, controversial findings on reusability have been published. Hwa (2001)
reported positive results, Baldridge and Osborne (2004), on the other hand, presented and
discussed scenarios where the AL foreign-selection bias considerably impairs reusability.

Previous work on AL sample reuse addresses AL sample reuse only in very specific sce-
narios. There is to-date no comprehensive study of the true nature of reusability, require-
ments for the presence of reusability, or prohibitive factors. To the best of our knowledge,
this paper is the first approach in this direction.

Under a more general consideration and without explicit reference to AL, Fan et al.
(2005) study how sensitive learning algorithms are in general to sample selection bias. A
learner is called local if it is invariant to this bias, and global otherwise. They found that
all learning algorithms can be both local and global depending on the combination of the
data set, modeling assumptions made by the learner, and the learner’s appropriateness to
model the particular data set. This observation fits to the findings presented in this paper.

6. Summary and Conclusions

This paper describes the problem of sample reusability in context of AL foreign-selection
scenarios. Several hypotheses on reusability characteristics and explanatory factors for

4. A weighted rank correlation is simply calculated based on weighted covariance. The weights are assigned
inverse to their ranks.
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reusability are empirically investigated. Experiments were performed both on general clas-
sification problems and on the NER task which constitutes a special class of learning prob-
lems.

Based on the results of our experiments we have to reject the dominant self-selection
assumptions (H1, H2). In particular for the NER learning problem, reusability is evident
in all practical scenarios. Self-selection does not constitute the upper bound of sampling
efficiency but can sometimes be outperformed by foreign-selection. None of the assumed
influencing factors — viz. model similarity, sample similarity, and similarity of the feature
ranking — were supported by our experiments. Reusability could even be observed when
all these assumptions were violated. Most importantly, experiments showed that one can-
not generalize which combinations of learners generally work well together in settings of
AL foreign-selection. Hence, whether reusability is in evidence for a particular selector-
consumer pairing appears to depend on the combination of learning problem, data set, and
appropriateness of the particular learning algorithm.

Overall, our study points out that reusability is a relevant and challenging problem.
Future work in this direction should focus on the quantification of a learner’s sensitivity to
sample selection bias given a specific learning problem in order to estimate — ideally prior
to AL sample selection — whether a sample obtained by AL and a specific selector may be
reusable by (which?) consumers. Our measure to quantify sample reusability is ready to
use for such further investigations.
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