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Abstract

In this paper we present new probabilistic ranking functions for content based image re-
trieval. Our methodology generalises previous approaches and is based on the predictive
densities of generative probabilistic models modelling the density of image features. We
evaluate the proposed methodology and compare it against two state of the art image
retrieval systems using a well known image collection.
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1. Introduction

Probabilistic models for information retrieval are based on decision and probability the-
ory and thus they provide guidance on how to optimally rank documents with respect to
user queries (Robertson and Zaragoza, 2009). Despite their successful applications on web
and text document retrieval, their application on retrieving multimedia documents such as
images and videos with no associated text meta-data has not been widely explored until
recently. Early content based image retrieval systems where based on similarity and dis-
tance functions designed specifically for the underlying image representation and feature
extraction method (Smeulders et al., 2000).

Recently, Chum et al. (2008) proposed a methodology to represent images as unordered
sets of discrete descriptive salient features which are analogous to terms for text documents
and thus indexing and ranking models for information retrieval can be directly applied.
Vasconcelos (2001); Westerveld et al. (2003) have generalised the methodology of Chum
et al. (2008) and instead of creating a representation similar to text documents they employ
generative probabilistic models to directly model the density of continuous features. This
methodology has been shown to be very general and has also been applied for audio retrieval
(Turnbull et al., 2008).

In this paper we present a framework based on Bayesian inference for deriving probabilis-
tic ranking functions for multimedia information retrieval. We employ this framework to
derive two new ranking functions for the bag of terms representation of Chum et al. (2008)
and the generative model representation of Westerveld et al. (2003) and Vasconcelos (2001)
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and show how previous ranking functions can be seen as approximations to those presented
here.

2. Probabilistic Image Retrieval

Similar to text information retrieval, probabilistic models for content based image re-
trieval are based on the probabilistic ranking principle, i.e an image I is ranked w.r.t.
to a user query image Q using p(Q|I). This probability however is not estimated di-
rectly and thus a parametric model p(x|θI) is employed to model the density of image
features. The image specific parameters θI are often estimated using a maximum likelihood,
θ̂I = arg maxθI

p(I|θI), or a maximum a posteriori procedure θ̂I = arg maxθI
p(I|θI)p(θI).

Assuming the same parametric model for query images, ranking is then based on the query
likelihood p(Q|θ̂I). Probabilistic image retrieval systems differ on the type of features ex-
tracted from images, i.e. the image representation, and on the model assumptions defined
by the parametric models p(I|θI).

A popular methodology for image retrieval is to create a representation of images that
is similar to that of text documents and then apply directly information retrieval ranking
models. For example, Chum et al. (2008) extract local SIFT features (Lowe, 2004) from a
collection of images and quantise them using K-means to form a visual vocabulary. SIFT
features from an image are mapped to their closest visual term from the vocabulary and an
image is then represented as an unordered set of visual terms. The distribution of terms in
an image under this representation is modelled as a multinomial distribution M(x|θI) and
the ML estimates of the parameters is θ̂I = nt,I/

∑
t′ nt′,I where nt,I denotes the frequency

of term t in image I. A MAP estimate can be obtained by assuming a Dirichlet prior
distribution over the parameters and results in θ̂I = (nt,I + αt − 1)/

∑
t′(nt′,I + αt′ − 1).

The prior hyper-parameters αt are commonly set to the frequency of terms in the collection
(Zhai and Lafferty, 2001).

The method presented by Westerveld et al. (2003) and Vasconcelos (2001) can be seen
as a generalisation of the method of Chum et al. (2008) that avoids quantisation er-
rors by using a semi-parametric model to model directly the density of continuous im-
age features. For each image a finite multivariate Gaussian mixture model of the form
p(x|θI) =

∑K
k=1 πkN (x|µk,Σk) is employed to model the density of Discrete Cosine Trans-

form (DCT) coefficients extracted from a uniform grid over an image. In this setting an
image I is represented by an unordered set of vectors in RD where D is the number of DCT
coefficients. ML estimates are obtained by using the EM algorithm for finite mixture models
while MAP estimates can also be obtained by assuming conjugate priors. In Westerveld
et al. (2003) smoothing with a background model is also discussed as an alternative in order
to obtain a regularised estimate for the parameters.

The bag of terms approach of Chum et al. (2008) is a very efficient method for retrieval
and can scale to large collections since an inverted index data structure can be used due to
the sparse nature of the representation. However, retrieval performance is greatly affected
by the quantisation errors induced by the K-means procedure. On the other hand, the
approach of Vasconcelos (2001) and Westerveld et al. (2003) is also sensitive to the number
of mixture components which in both studies is set empirically and to a constant value
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across the collection. This can lead to severe over, or under, fitting for images with less, or
more, complex densities.

3. Predictive Densities for Image Ranking

The ranking functions using the query likelihood based on ML or MAP point estimates are
in fact approximations to a ranking function employing the predictive densities of image
models. In particular we can write p(x|I) as

p(x|I) =

∫
θI

p(x|θI)p(θI |I)dθI (1)

where p(θI |I) is the posterior of the model parameters obtained by Bayes’ theorem p(θI |I) =
p(I|θI)p(θI)/p(I). In cases where the posterior is sharply peaked around some value θ̂I
then p(x|I) ≈ p(x|θ̂I) and thus it is equivalent to the ML or MAP functions. However,
when data is scarce the posterior is broad and the uncertainty is taken into account pro-
viding regularised estimates of relevance. Moreover, the ranking functions obtained by the
predictive densities in Equation (1) are no longer sensitive to parameter estimates as they
are not dependent on θI . However, they rely on the ability to accurately estimate the
integral in Equation (1) and the posteriors p(θI |I) for all images in the collection.

3.1. The Multinomial Dirichelt model

For the bag of terms model discussed in the previous section, the posterior and predictive
densities can be easily calculated in closed form provided that a Dirichlet prior is specified.
In particular, the posterior is also a Dirichlet of the form D(θI |n·,I +α− 1), where n·,I is
the vector of term frequencies in image I, and the predictive density for a query image Q is

p(Q|I) =
(
∑

t nt,Q)!∏
t nt,Q!

Γ (
∑

t nt,I + αt)

Γ (
∑

t nt,Q + nt,I + αt)

∏
t

Γ (nt,Q + nt,I + αt)

Γ (nt,I + αt)
(2)

Equation (2) can be simplified by calculating its log, as it is a convex function and thus it
does not affect ranking; removing terms which depend only on nt,Q, as they are constant
for all images in the collection; and finally using the fact that Γ(n) = (n−1)! for all positive
integers n to give the following ranking function

log p(Q|I) ∝
∑

t:nt,Q,nt,I>0

nt,Q∑
g

log

(
1 +

nt,I
at + g − 1

)
−

∑
t′ nt′,Q∑
j=1

log

(∑
t′

nt′,I + at′ + j − 1

)
(3)

3.2. Variational inference for finite Gaussian mixture models

Unfortunately the posterior and the predictive density do not have a closed form for mixture
models and thus the above methodology cannot be applied directly to the methods of
Westerveld et al. (2003). We therefore resort to the framework of variational inference
(Attias, 2000) in order to obtain analytical approximations.
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We start by imposing a conjugate prior over the model parameters, i.e. Dirichlet for the
mixing coefficients π, Gaussian for the means µ and inverse Wishart for the covariance
matrices Σ, of the form p(θI) = p(π)

∏K
k=1 p(µk|Σk)p(Σk) where

p(π) = D(π|a0), p(µk|Σk) = N (µk|m0, β
−1Σk), p(Σk) = IW(Σk|W 0, v0)

Furthermore, we introduce the latent variables ZI where zi,k = 1 iff the ith vector of
an image is allocated to the kth mixture component otherwise zi,k = 0 and re-write the

likelihood as p(I|θI) =
∏
i

∏K
k=1 [πkN (xi|µk,Σk)]

zi,k where i indexes vectors in image I.
We augment model parameters and latent variables in an extended space ΘI = {θI ,ZI}
and by assuming an approximate posterior q for the augmented set of parameters ΘI which
factorizes as q(ΘI) = q(θI)q(ZI) the marginal likelihood can be written as

p(I) =

∫
ΘI

q(ΘI) log
p(I,ΘI)

q(ΘI)
dΘI︸ ︷︷ ︸

Lower Bound

−
∫
ΘI

q(ΘI) log
p(ΘI |I)

q(ΘI)
dΘI︸ ︷︷ ︸

KL

(4)

From Equation (4) we can see that by maximising the lower bound the KL divergence
between the true and the approximate posterior is minimised. By optimising the lower
bound for each of the approximate densities separately while considering the other fixed we
arrive at the following result for the approximate posteriors of mixture model parameters

q(zi) =M(zi|1, ρi,1, . . . , ρi,K), q(µk) = N
(
µk|mk, (β + nk)

−1Σk

)
q(Σk) = IW (Σk|W k, nk + v0) , q(π) = D(π|a0 + nk)

The parameters ρ,m,W , nk of the approximate posteriors in the above equations are found
by the variational EM algorithm. See Bishop and Corduneanu (2001) for more details.

Finally, substituting the above expressions into Equation (1) we can analytically evaluate
the integral and obtain the predictive density which takes the form of a mixture of Student-t
densities. The ranking function for a query image is then

p(Q|I) =
∏
x∈Q

1∑K
k=1 pk

K∑
k=1

pkSt(x|mk,Λk, vk + 1−D) (5)

where pk = a0 + nk, vk = v0 + nk and Λk = (vk+1−D)(β+nk)
1+β+nk

W−1
k and St(·) is the Student-t

density.
To estimate the number of mixture components K, we follow a method similar to that

of Bishop and Corduneanu (2001). The method is based on initially over-estimating the
number of components and setting K to a large value. Selecting a Dirichlet prior for the
mixing coefficients π such that sparse solutions are preferred, i.e. setting α0 to a value close
to zero, the variational EM algorithm converges to solutions where many of the components
are identical to the prior distribution with nk = 0 and thus they can be removed as they
do not affect the result in Equation (5).
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4. Experiments

In this section we present experimental results in order to validate the proposed methodology
and compare it with previous approaches. We will be using the Corel 5K dataset which
has been widely used in the literature to evaluate image retrieval and classification systems.
The Corel 5K dataset consists of 5,000 images from 50 thematic categories such as images
of tigers or images of cars. The collection is further divided into a training set of 4,500
images and a test set of 500 images where in the test set there are 10 images from each
thematic category. We index only the 4,500 images of the training set and use the test set
as user queries. Retrieval performance is evaluated using the thematic category information
of each query. That is, for each query image we except the retrieval systems to rank higher
the 90 images in the training set from the same category.

We follow the same methodology as in (Westerveld et al., 2003) and (Vasconcelos, 2001)
in order to extract features from images. All images are rescaled to 192 × 128 pixels and
a sliding window of 8× 8 pixels with an overlap of 4 pixels is used to segment images into
local regions. From each region we use the DCT coefficients after a transformation from the
RGB colour space to the Luminance-Colour space. Exploiting the compression properties
of the DCT coefficients we use only the first 3 DCT coefficients from the colour bands of
the image and all DCT coefficients from the Luminance band resulting into 70 dimensional
vectors.

For the bag of terms representation we apply K-means with the Euclidean distance to
cluster the feature vectors from the 4,500 images in the training set into 2,000 clusters and
map each vector to its closest centroid. Two ranking function were then obtained by using
a MAP estimate of the Multinomial parameters and the predictive densities as discussed in
the previous sections. For the rest of the section we will denote them by BOT-MAP and
BOT-PD respectively. In both cases the prior hype-parameters αt are set to the frequency
of visual terms in the training set.

For the mixture model representation we reproduce the experiments in (Westerveld et al.,
2003) and (Vasconcelos, 2001) and use the EM algorithm to obtain ML and MAP esti-
mates. The number of mixture components was fixed to 8 and as reported in both studies
results where not significantly affected by different settings while 8 produced the higher
retrieval performance. For the variational EM algorithm we used 40 components as an
initial estimate and after convergence removed all components with nk = 0. For the prior
hyper-parameters we followed (McLachlan and Peel, 2000, Chap. 4) and used the follow-
ing settings, α0 = 10E−4, β = 1, v0 = 5 while m0 and W 0 where set to the mean and
covariance of the feature vectors in the training set. Both the EM and variational EM al-
gorithms where initialised using a random assignment of the latent variables ZI . The three
ranking functions obtained by the ML, MAP and the predictive densities, will be denoted
as GMM-ML, GMM-MAP and GMM-PD respectively for the rest of this section.

4.1. Results

Table 1 summarises the results for the 500 queries in the test set using the standard infor-
mation retrieval evaluation measures. Average Precision (AP) is the average of precisions
computed at the point of each relevant image in a ranking list. Mean Average Precision
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(MAP) is the mean AP across all queries. R-Prec is the precision calculated at the position
of the last relevant image in a ranking list and P@N is the precision calculated at the Nth
position of the ranking list.

Table 1: Retrieval results for 500 query images in the test set. ∗ indicates statistical signif-
icance using a Wilcoxon rank-sum test with 1% significance level.

Method MAP R-Prec. P@5 P@10 P@20

BOT-MAP 0.0333 0.0364 0.0441 0.0429 0.0383
BOT-PD 0.0341 0.0375 0.0477 0.0431 0.0387
GMM-ML 0.0975∗ 0.1280∗ 0.3038∗ 0.2599∗ 0.2179∗

GMM-MAP 0.0999 0.1308 0.3070 0.2645 0.2210
GMM-PD 0.1165∗ 0.1457∗ 0.3315∗ 0.2836∗ 0.2370∗

From Table 1 we can see that despite the efficiency and scalability of the bag of terms
representation, quantisation errors can negatively impact retrieval performance. Directly
modelling the density of continuous features in images using semi-parametric models sig-
nificantly improves retrieval performance at the cost of the additional computations for
calculating the query likelihood for all images in the collection. Using regularised esti-
mates of the parameters of Gaussian mixture models also improves retrieval performance
although results are not statistically significant. Finally, the superior performance of GMM-
PD method can be attributed to the following two reasons. Firstly, in contrast to a MAP
estimate which provides a regularised point estimate, the predictive densities provide a
regularised estimate of relevance where the uncertainty associated with model parameters
is marginalised. The two approaches will be equivalent if the posterior is sharply peaked
around some values, but when the posterior is broad the predictive density averages all
possible solutions weighted by their posterior probability. Secondly, the number of mixture
components in GMM-PD is automatically determined by the output of the variational EM
algorithm. In contrast, previous approaches (Westerveld et al., 2003; Vasconcelos, 2001) set
the number of components empirically to a fixed value for all images in the collection which
can result in images with more complex densities to be under-fitted while others with more
simple densities to be over-fitted.

5. Conclusions and Future Work

We have presented a methodology for deriving retrieval functions for multimedia documents
based on the predictive density of generative models. The method does not make partic-
ular assumptions about the representation of documents in the collection but requires the
specification of a probabilistic generative model for the density of the documents’ features.
Despite the superior retrieval performance compared to previous approaches scalability to
large scale collections remains an important issue since the predictive densities for all images
in the collection have to be evaluated.
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Designing efficient indexing data structures such as the inverted index for the Multinomial
Dirichlet model is not trivial for models such as mixtures of Gaussians. We believe that a
more general methodology such as Locality Sensitive Hashing applied to kernel functions
(Kulis and Grauman, 2009) for generative models, such as Probability Product Kernels
(Jebara et al., 2004), is an interesting future direction.
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