
Journal of Machine Learning Research 18:199–213, 2012 Proceedings of KDD-Cup 2011 competition

Combining Predictors for Recommending Music:
the False Positives’ approach to KDD Cup track 2

Suhrid Balakrishnan suhrid@research.att.com

Rensheng Wang rw218j@research.att.com

Carlos Scheidegger cscheid@research.att.com

Angus MacLellan angusm@research.att.com

Yifan Hu yifanhu@research.att.com

Aaron Archer aarcher@research.att.com

Shankar Krishnan krishnas@research.att.com

David Applegate david@research.att.com

Guang Qin Ma gma@research.att.com

S. Tom Au sau@research.att.com

180 Park Ave, Florham Park, NJ, 07932

Editor: G. Dror, Y. Koren and M. Weimer

Abstract

We describe our solution for the KDD Cup 2011 track 2 challenge. Our solution relies heav-
ily on ensembling together diverse individual models for the prediction task, and achieved
a final leaderboard/Test 1 misclassification rate of 3.8863%. This paper provides details
on both the modeling and ensemble creation steps.

1. Introduction

The 2011 KDD Cup featured two music recommendation tracks. This paper will focus
on Track 2, where the goal was to design methods to predict whether a user would rate
a particular track highly (she likes this track, or a binary label of 1) or likely not rate
this track at all (label 0). The dataset provided for this challenge was a large partially
observed/sparse ratings matrix R (in a 0-100 scale) on a set of users, U , and items, I. The
items rated in the training set are music tracks, artists, albums and genres.

Additionally, a reasonably complete taxonomy was provided, which described relations
between items. There were two different (overlapping) sources of taxonomy information,
one that was track-centric, namely one file which gave relations between tracks and other
items (what album a track belongs to, which artist the track is by etc.) and one that
was album-centric (in addition to the artist information, which additional genres an album
belongs to etc.). Figure 1 schematically depicts these two sources of taxonomy information.

Predictions were solicited for 6 tracks per user, and there were 101,172 users in the test
dataset, which results in 607,032 test user-item pairs (there are a large number of “extra”
users and items that only appear in the training dataset). Of these test user-item pairs, the
contest rules stated that “The three items rated highly by the user were chosen randomly
from the user’s highly rated items, without considering rating time. The three test items

c© 2012 S. Balakrishnan et al.

Balakrishnan et al.

Figure 1: Taxonomy information for items as a graph (best viewed in color). The track-
centric information is shown with black edges and album-centric information with
red edges. Colors/levels distinguish the different types of items (tracks, albums
etc.).

not rated by the user are picked at random with probability proportional to their odds to
receive high (80 or higher) ratings in the overall population.”. Thus, as set up, this is a
binary classification task, with additional known structure in the output, namely that of
the 6 items to be rated per user, exactly 3 have label 1 and the remaining three have label
0.

The evaluation metric was 0/1 misclassification rate (percentage error) and in the style
of the Netflix Prize the organizers reported continually updated results on a leaderboard
for half of the predictions named Test 1. All the misclassification error rates we report
in this paper are based on the data in Test 1 (the other half, “Test 2” was used for the
final evaluation). To limit the number of submissions a team could make, submissions were
throttled to a rate of one every 8 hours.

2. Our Approach

Our overall approach to the task was to ensemble as many different component strategies as
we could reasonably envision and implement. Ensemble-based solutions have performed well
in many contests (e.g. the Netflix Prize, many previous KDD Cups and the Yahoo! Learning
to Rank Challenge), drawing their strength from excellent generalization performance, easily
outperforming any single component model (Jahrer et al., 2010).

Our component models included matrix factorization methods, different classification
approaches trained on taxonomy-based features, a large-scale k-nearest neighbor approach
and ranking techniques. We also experimented with a few different ensemble techniques.
The next sections in the paper delve into details of both these methods and ensembling
strategies.

3. Matrix Factorization

Our first approach was to tackle the problem as a modified collaborative filtering task,
that is, to use the training data to learn models that predict ratings for all test user item

200

False Positives

pairs. In order to get the binary test predictions, we sort the six predicted ratings per user,
labeling the top three as 1s and the bottom three 0s. Our underlying assumption is that
a high value of predicted rating for a track is a strong indication of a preference for that
track; recall that the 1 ratings all have ratings values ≥ 80. It is less clear, however, that a
low predicted rating value is an indication that the user would not have rated that track at
all. We attempt to address this “rated or not” issue by modifying the training data as we
explain below.

The advantage of the rating prediction approach is that we can draw from many recently
developed methods, such as PMF, BPMF and SVD++, by Salakhutdinov and Mnih (2007,
2008); Koren (2008). One big disadvantage is that these methods have not been developed
specifically for the binary prediction task that we are given. Another disadvantage is that
in general, these methods do not use the available item taxonomy.

Most of the models we experimented with for rating prediction were based on matrix
factorization, mainly due to their scalability and good reported performance on prior ratings
prediction tasks like the Netflix prize developed by Koren (2008); Töscher et al. (2009). All
of these matrix factorization models estimate k dimensional factors (or parameter vectors)
for both users, j ∈ U and the items, i ∈ I. Denoting the user k-vector by uj and the item
factors by vi, predictions for the user-item pair i, j are made using:

R̂ij = vT
i uj .

The differences in the various techniques we apply are based on one of three criteria.
The first criterion is the form of the loss used for training. Most techniques use squared loss
between predictions and true ratings. The second criterion is the form of regularization the
technique uses. Finally the third criterion is the form of data used for training. One could
use all the training data including album and artist items, or just use the tracks. There are
choices having to do with whether we treat missing values as 0 or not. Further, there are
questions about how to use the taxonomy. We settled on five main forms of the data, each
emphasizing a slightly different aspect of information about our final binary classification
problem:

A Full - All the provided ratings, on all items and all users. This dataset leverages all
the information from tracks/users other than the test tracks/users. On the negative
side, this dataset is not optimized for the binary prediction task, or the test tracks
and users.

B Full Balanced - The Full dataset A, with additional sampled 0 track ratings (we sample
0 rated tracks in the same way as described in the track 2 problem description). This
dataset also borrows strength across non-test users and tracks, but additionally tries
to move toward better solutions for the binary prediction task by adding in sampled
0 rated tracks.

C Balanced - This dataset consisted of a subset of A, comprising just high ratings (over
all items), and an equal number of sampled zeros. This dataset is smaller than B, and
moves solutions even more towards our given task, by only considering high ratings.

201

Balakrishnan et al.

D Binary - which is a binary version of the high item rating data. If an item is rated
highly, it is present as a 1 in this dataset, and 0 otherwise. This kind of binary rated
or not information was found useful in the Netflix Prize.

E Augmented - where we used A. and augmented this with further imputed ratings from
the taxonomy (more details in section 3.6). The aim of this dataset was to regularize
solutions using information from the taxonomy.

While training, we monitored progress using a validation dataset that we created of the
same size as the test dataset. We sample 1 s from the test users high track ratings, and
additionally sample an equal number of zeros. In our training datasets, we exclude these
validation samples except for the case of about a hundred test users, who happen to have
only three high track ratings. In these cases, we included the high ratings in both our
validation and training datasets. Although this introduces a small amount of overfitting for
these users, it makes the subsequent prediction task straightforward, as opposed to having
to perform additional inference for users not present during training (cold-start).

3.1. Probabilistic Matrix Factorization

The main matrix factorization technique we used is probabilistic matrix factorization (PMF),
by Salakhutdinov and Mnih (2007). Specifically, we used the PMF implementation from
Graphlab, mainly because of Graphlab’s automatic parallelization, as described by Low
et al. (2010). PMF uses squared loss, and regularizes the factors in an `2 manner.

We trained PMF models on most forms of data (A, B and C) above. In general we found
PMF to be quite resilient to overfitting (we have found that more factors always translated
to better performance) and we trained many models with k = 400 factors. Our best model
in this category was based on dataset C, and had test misclassification error around 8.4%.

3.2. Weighted PMF

One of the drawbacks of the standard PMF model in our setting is that it does not distin-
guish between tracks and other items like artists, albums etc. Since our test set is composed
solely of tracks, we felt it would be beneficial to bias our models towards getting their rat-
ings predictions correct. We implemented this idea by training a model on dataset B with
different costs for various items. In particular, we trained using a weighted loss, which per
item is of the form:

Lij = wi(Rij − vT
i uj)

2.

We set relatively high weights (wi) for highly rated and sampled 0 tracks. We also set low
weights on non track ratings as well as low track ratings. Our best weighted PMF model
achieved a test error of 8.6%.

3.3. Implicit Feedback

One other matrix factorization approach was to view the task as one of item prediction
instead of rating prediction, as Hu et al. (2008). In this approach, the training data consists
of only the set of highly rated items per user (dataset D). The model then tries to learn
item and user factors that minimize an objective function on this (entire) binary data. The

202

False Positives

loss is weighted, and emphasizes predicting the 1 s, but also assigns a tunable low weight
to predicting the 0 s. We used the implementation in MyMediaLite 1. Our best models in
this class achieved around 11.2% misclassification rate.

3.4. CofiRank

Another form of matrix factorization that we used was CofiRank, by Weimer et al. (2007).
CofiRank uses a maximum margin matrix factorization setup (a trace norm regularization
on the user and item factors). Because it uses bundle methods to relax difficult objective
functions, it can be trained on complicated losses. In particular, we were interested in
normalized discounted cumulative gain (NDCG), a ranking loss. This seemed a more natural
fit with the problem, since individual ratings are not as important as the relative ordering
for the six items per test user. Notice that using this NDCG loss does not address the
ambiguity of low rating values. Our experience with CofiRank was mixed, in that we were
not able to get very large models to train in reasonable amounts of time on dataset A, B
and C, but the models we did train seemed quite good. Our best model achieved 18.2%
misclassification error.

3.5. Pure SVD

We also experimented with (sparse) singular value decomposition, which produce orthonor-
mal factors. Our motivation was recent work by Cremonesi et al. (2010) who found sparse
SVD to be competitive at predicting the top-k item recommendations for any user. Once
again, since this is more close to ranking this appeared to be a reasonable method to at-
tempt. For this set of models, we mainly used dataset B, and our best Pure SVD model
(k = 500) scored around 15.6%.

3.6. Graph-based Data Augmentation

Because of the rich taxonomy information in the data set, we considered using this infor-
mation in training the factor model. We chose to do this by augmenting the ratings with
additional imputed ratings data obtained by smoothing the taxonomy information via graph
diffusion.

First, we construct a taxonomy graph, treating each item as a node. Two nodes have
an edge between them if the relationship between these two nodes is in the taxonomy. For
example, if node i1 is a track, and node i2 is an album, and that we know that track i1 is
part of album i2, then there is an edge between i1 and i2 in our graph. This gives a graph
with 291,858 nodes and 460,543 edges. In forming this graph, we ignored all genre related
information. This graph has many connected components, the largest having 168,624 nodes,
followed by 802, 700, 447, 434, and 392 nodes.

Given this taxonomy graph, for each user, only a small fraction of the nodes are rated.
We impute the rating for nodes that are not rated by the user, but are close (in graph
distance) to the rated nodes in the graph. Starting from a rated node, the unrated neighbors
of this node are given the average rating of their rated neighbors. This diffusion of rating

1. http://www.ismll.uni-hildesheim.de/mymedialite/index.html

203

Balakrishnan et al.

is repeated in a breadth-first fashion for all nodes in the graph. The result is additional
imputed user-item ratings.

We point out that although the taxonomy graph is sparse, it is still well connected,
with the largest component having a graph diameter of 19. Thus a breadth-first diffusion
quickly assigns ratings to all items. To avoid imputing too many ratings, resulting in a
very dense rating matrix, we limit the diffusion to items that are at most 2 hops away from
rated items. Furthermore, since we are only interested in items that are highly rated, the
diffusion is only carried out for ratings over 80.

We augment the training data with these imputed ratings to create dataset E. We
then train an implicit feedback style matrix factorization model (Hu et al., 2008) on this
dataset. Our highest scoring factor model derived from this graphical approach gives a
misclassification error of 30.8%. We ran out of time before we could attempt to run other
matrix factorization models such as PMF on this augmented dataset.

4. Taxonomy-based Classification

Our next approach was almost completely taxonomy-driven and based on classification.
In summary, we first create a validation dataset using the training ratings and sampled
0tracks mimicking the test dataset (thus all items in this dataset are tracks). Next, using
the taxonomy and the training ratings R, we generate features xz for each of the user-item
pairs chosen in this dataset, z = 1 . . . 607, 032 (these features are also generated for the test
dataset). This results in a classification dataset, Dtx (features and their labels) on which
we can run various classifiers to train predictive models. At test time we use the classifier
predictions/scores ŷtest to create a valid submission per user, by sorting appropriately, and
setting exactly three out of the six item predictions to be 1.

More specifically, we create features for each user-item (i, j) pair by using the track-
centric taxonomy information. Recall that the track-centric taxonomy information asso-
ciates each track with its album, an artist and one or more genres (See Figure 1). As a
pre-processing step for feature creation, for a given user j, we first extract from R her
ratings on all items—call this vector of ratings Rj . We create four sets of features, one set
for each of related tracks, albums, artists and genres.

Our first set of features is based on related tracks via album information. Given a track
i, we use the taxonomy to find all related tracks that are in the same album. The lowest level
of Figure 2 shows these related tracks schematically. We then extract all existing related
track ratings from the users known ratings Rj (we do not impute missing values). Now,
we create four features from the vector of related track ratings by user j—the maximum,
minimum, average and number of ratings in this vector.

Similarly, we generate four features based on related albums. We do this by extracting
the same four features using the related albums by the same artist and Rj (see the album
level of Figure 2 for a schematic of the related albums). Finally, since there may be more
than one genre associated with any track, we also generate two sets of four features. The
first set of features comes from related artists from the union of the set of genres. The
second set of features comes directly from the union of the set of genres.

To these 16 features, we add the album and the artist rating if it exists in Rj . These 18
features for each user-item pair x, and their associated label y comprise our classification

204

False Positives

Figure 2: Schematic illustrating related items using the track-centric taxonomy. For a given
track (the track node with the solid outline), the lowest level shows related tracks,
and higher levels show related albums, artists and genres.

dataset. We correspondingly also create the same 18 features for all test user-item pairs as
well. Intuitively, we hoped the features would be informative in at least two ways. First,
if a user likes a particular track she would also like related tracks/albums/artists, and this
would show up as high value in our features. Second, if a track was sampled (not rated by
the user), we also hope to capture this by seeing a lot of missing values in the features we
create. In fact, these observations were borne out by a large fraction of data.

We experimented with various classification models based on this data (and made pre-
dictions for the test data). We tried random forests as described by Breiman (2001), gener-
alized linear models (binomial link), and support vector machines2. We also experimented
with various ways to handle missing data, and found that imputing a single value for all
missing entries (found via cross-validation) increased classification performance by a small
amount. Random forests (200 trees) gave us the best performance of models in this class,
with an error rate close to 9.0%. We further improved models by extending the feature
sets using user-neighbors (more on these neighbors in section 5), global features for items
(features derived from all training users). In our final evaluations, our best model in this
class had an error rate around 5.7%.

5. kNN

We also tried a user-based k-nearest neighbors (kNN) approach to the problem. At test
time, this requires knowing a 101,172 x 249,012 user similarity matrix, and estimating
this matrix required distributed computation. We subdivided the data and performed the
computations on a cluster. The test users Utest, were partitioned into 405 groups (set A).
For each group, the corresponding rating data was extracted from R. Similarly, the training
users Utrain were partitioned into 499 groups (set B) and their ratings data was also extracted
from R. To compute the similarity matrix, each user in each group A was compared to
each user in each group B, resulting in 405*499 = 202,095 group comparison tasks. The
exact subdivision was mostly arbitrary; all we required was sufficiently many tasks so that
the amount of memory required for each task was small enough to be manageable on the

2. http://svmlight.joachims.org/

205

Balakrishnan et al.

available hardware. The 202,095 comparison tasks were spread over 80 Linux OS machines
of various capabilities. We used various tools to manage the execution of this Map/Reduce-
style workload, including Ningaui by Hume and Daniels (2002). Each of the 405 similarity
matrix files generated took approximately 3.5 GB uncompressed, and 700MB compressed.
The entire matrix we generated took around 1.4TB uncompressed, and was computed twice
during the KDD competition, each time taking approximately 4 days to compute.

The similarity function we computed for our user pairs was Euclidean distance on the
common rating vectors. In other words, in order to compute the similarity between users j1
and j2, we first find the set of items which both users have rated (we also store the cardinality
of this intersection set for all our user pairs). We then compute the Euclidean distance
between the rating vectors restricted to this subspace of common items. Unfortunately, we
did not have time to explore using the taxonomy for the distance calculation.

After computing the similarity matrix, our kNN predictions were made for test users
who did not rate either the album or the artist (in that order) corresponding to a given
track. If the user did rate either of these items, this rating was taken to be the predicted
rating for that track.

The kNN prediction for a user j item i is a simple average of the ratings of (some number
of neighboring) items. Our kNN procedure is sequential and while making predictions we
continually keep track of the size of the number of items being used to make our prediction.
The idea here is to use all available neighboring item information, but to weigh track
information most heavily and add its predictive component first, and then successively add
in lower weighted information from albums, artists and genres respectively as needed.

In more detail, a set of k neighboring users (we require that neighbors must addition-
ally overlap on a minimum number of common ratings, which we arbitrarily set to 30) is
examined first for ratings of track i. If we have a sufficient number of these track-neighbor
ratings we stop and make a prediction as the average of these ratings. If not, we use the
taxonomy to then examine album-neighbor ratings (ratings of neighbors of j for the album
corresponding to track i, or moving up one level from tracks to albums in Figure 1). If we
have enough track-neighbors and album-neighbors, we make our prediction, otherwise we
proceed to artist- and genre-neighbor ratings.

Our best kNN method achieved an error of 19.8%, using k = 25, and the weights for
tracks, albums, artists and genres were set to 0.75, 0.50, 0.25 and 0.10 respectively.

6. Classification Revisited

In an effort to construct more predictive features for the classification approach described in
section 4, we also experimented with using features derived from the matrix factor models (in
section 3) in combination with the existing taxonomy based features, Dtx. More specifically,
for dataset C (see section 3), we generated taxonomy-based features Dtx as in section 4. We
then concatenated the feature vectors for user-track pairs with additional features derived
from trained matrix factorization models. The matrix factorization features we used were
the component-wise product of the user and item factors (the k scalar vikujk values), and

additionally the matrix factorization model predicted rating R̂ij . This generated k + 1
extra features per user-item example (we used both k = 100 and k = 300).

206

False Positives

This then gave us a new, larger set of training examples and associated binary labels.
We then trained the same classifiers on this version of the dataset, which provided our best
single model. In particular, we trained a linear SVM (7.9% error), a generalized linear
model (6.9% error), random forests by Breiman (2001) (5.7% error), boosted decision trees
(8.7% error).

7. Collaborative Ranking

As mentioned in section 3.4, a ranking loss appears a better fit to the problem. Inspired
by Joachims (2002) and Burges (2010), in the learning to rank community, we also tried
an approach where the loss function was rank-based. In other words, learned a function
that would produce a score for each of the six test items such that the three 1s would be
higher scoring than the unrated items. The ranking model we consider generates pairwise
training data (per user) for models that learn to respect the 0/1 ordering, and is indifferent
to ordering within the relevance levels.

In our experiments, we created a dataset based on both matrix factorization models and
the taxonomy with six ratings per test user (we used one of our validation datasets). There
are two advantages of using a constant, small number of entries per user (instead of using
every available high rating). First, we get a balanced training set. Second, the number of
training pairs grows quadratically with the number of available 0/1 ratings, and we wanted
to keep that value low. We then trained an SVMrank model described by Joachims (2002)
directly on the binary 0/1 label pairs as the two ‘relevance’ levels. The best models we
trained in this class had about 6.8% error.

8. Ensemble Creation

Our individual models were reasonable, but by themselves they would not have been ranked
very highly in the contest. We used two main techniques to create our ensemble submissions
which leverage the diversity of the individual models.

8.1. Ensemble Selection

Because the loss function on Track 2 is misclassification rate and linear ensembling works
best on `2 loss, we were not originally sure how to ensemble our individual models. Our
first attempt used Ensemble Selection (ES) (Caruana et al., 2004).

In summary, ES works by creating a non-negative (linear, in our case) combination
of component model outputs, via a greedy forward stepwise selection using a validation
set. ES has been shown to perform well with a large library of component models, and on
complicated error metrics including misclassification error rate, which made it attractive in
this setting. We implemented ES for misclassification loss, using a validation dataset. In
order to get valid test submissions (three 1s and three 0s per user), we performed ensembling
of component models on per-user rankings of the six items being tested (1 . . . 6), instead of
their binary predictions. The final result of ES was then rounded (sort result, set top three
to be 1s) to produce a valid submission. This ES strategy worked very well in the initial
stages of our effort. Unfortunately, we found that ES was prone to overfitting towards later
stages. Our best submitted ES solution achieved 5.94% misclassification.

207

Balakrishnan et al.

8.2. Leaderboard Ensembling

On further inspection, it became clear that even though the evaluation metric is misclassifi-
cation rate, since there were only 2 possible outcomes, the loss matrix is identical to that of
squared error on outcomes {0, 1}. This is interesting because for squared error/MSE, it is
possible to find a very good approximation to the linear combination of submissions which
globally minimizes the distance to the true solution (Töscher et al., 2009). In addition, the
technique we discuss here can be used without resorting to a single validation set. Since
some of our strategies involved generating new derived training and validation sets, the
ability to effectively combine the results from these different sets is attractive.

The main insight is that the leaderboard reveals a fair amount of information about the
sufficient statistics required for an optimal linear combination of test solutions. Following
the analysis in Section 7 of Team BigChaos Solution to the Netflix Grand Prize (Töscher
et al., 2009), for each of our test submissions, s (the binary solution vector), we first interpret
the misclassification rates returned (the leaderboard or Test 1 misclassification rate) as an
equivalent squared error from the true test answer, s∗. The idea is that we can view
the ensemble task as a linear regression where the predictors are S (a matrix of all our
submissions, stored as columns), and the response is the true test answer s∗. This leads to
the familiar linear regression estimate of the parameters: β = (STS)−1(ST s∗). In terms
of implementation, we use a standard minimum-norm linear least squares solutions based
on the SVD of S. This expression cannot be evaluated exactly of course, because the true
test solution s∗ is unknown (STS is calculable). However, it can be approximated using the
identity: 2〈a,b〉 = ||a − b||2 − 〈a,a〉 − 〈b,b〉 for any two vectors a and b. Since all valid
Track 2 submissions (and the true test submission) have 〈s, s〉 = 1/2, and the leaderboard
result can be scaled to give us an approximate estimate of ||s− s∗||2, we can estimate sT s∗

per submission. This in turn allows us to estimate the β parameters which are linear weights
for the submissions.

We make ensemble predictions using Sβ, which in general does not produce a valid
submission. We project to the space of valid solutions by “rounding”: we find the binary 6-
vector per user that is closest to the relevant entries in Sβ. It is easy to show that assigning
0 to the three lowest results and 1 to the remaining entries is a global minimizer of the `2
distance from the unconstrained Sβ solution to the space of plausible solutions. Notice,
however, that this method offers no guarantees that the linear combination Sβ itself is close
to a valid rounding (see Section 9.2 for an attempt to mitigate this).

We also noticed that a small number of test tracks had no high ratings in the training
data. If the training and highly rated tracks from the test data was the only rating infor-
mation used to create the test dataset, this implies that these tracks could not have been
sampled for any test user. Consequently these tracks must have been true 1s, and so we
force them to be 1 in our final submission.

We should also point out that since our ensemble technique was based on leader-
board/Test 1 score, we were concerned about overfitting to the Test 1 dataset. Our es-
timates for how much we were overfitting (or “optimism”, see Section 7.2 in (Töscher et al.,
2009)) were negligible compared to the gap between the score of our submission and the
leaderboard score just below us. Because of that, our final submission used no regulariza-
tion. This submission achieves a 3.8863% rate on Test 1, our best result and the one we

208

False Positives

Weight Score Type Weight Score Type Weight Score Type Weight Score Type
-0.2734 5.95 ES -0.0062 8.97 MF 0.0035 12.62 ES 0.0206 7.23 LE
-0.1210 6.88 GLM -0.0056 18.96 MF 0.0036 11.22 MF 0.0226 8.42 ES
-0.1124 4.33 LE -0.0050 8.44 ILP 0.0036 12.67 MF 0.0229 9.72 ES
-0.0643 3.95 LE -0.0049 5.31 LE 0.0038 9.56 MF 0.0236 9.59 RF
-0.0550 4.65 LE -0.0048 9.47 RF 0.0039 18.31 SVD 0.0255 8.48 RF
-0.0516 7.40 ES -0.0047 6.91 RF 0.0043 8.41 RF 0.0265 9.85 RF
-0.0434 6.06 ES -0.0038 9.88 MF 0.0043 15.63 MF 0.0282 8.96 ES
-0.0315 9.24 RF -0.0029 17.77 MF 0.0048 15.95 MF 0.0302 4.30 LE
-0.0315 9.24 GLM -0.0020 16.87 MF 0.0049 9.49 MF 0.0314 5.23 LE
-0.0310 9.19 RF -0.0019 11.98 GLM 0.0052 5.97 MF 0.0319 4.73 LE
-0.0300 6.48 RF -0.0018 13.80 ES 0.0052 5.97 MF 0.0347 10.00 MF
-0.0286 8.75 RF -0.0014 6.80 GLM 0.0076 15.53 MF 0.0373 9.38 RF
-0.0245 8.51 RF -0.0014 6.80 GLM 0.0083 12.11 MF 0.0383 6.04 LE
-0.0243 7.14 LE -0.0011 5.97 RF 0.0083 13.79 MF 0.0383 6.85 GLM
-0.0225 9.26 RF -0.0011 8.80 RF 0.0092 6.79 LE 0.0407 6.02 GLM
-0.0194 8.99 ES -0.0008 9.24 RF 0.0097 8.79 ES 0.0410 7.70 RF
-0.0186 9.72 GLM -0.0006 18.53 MF 0.0102 5.05 LE 0.0411 6.59 LE
-0.0182 20.04 GLM -0.0003 7.70 LE 0.0108 8.75 MF 0.0420 6.09 RF
-0.0176 14.20 MF 0.0002 13.61 MF 0.0114 9.69 MF 0.0484 6.84 ES
-0.0160 17.70 MF 0.0003 15.98 MF 0.0117 8.64 MF 0.0521 4.28 LE
-0.0159 13.64 ES 0.0004 19.83 COFI 0.0119 6.04 RF 0.0528 6.04 RF
-0.0158 4.84 LE 0.0005 19.70 MF 0.0120 4.96 LE 0.0530 6.04 RF
-0.0143 7.88 LE 0.0011 10.87 ES 0.0129 8.62 ES 0.0622 4.09 LE
-0.0140 7.84 RF 0.0019 4.30 LE 0.0147 12.38 MF 0.0653 5.72 LE
-0.0113 9.15 ES 0.0020 8.66 MF 0.0149 11.81 MF 0.0695 5.11 LE
-0.0106 7.72 RF 0.0022 13.04 ES 0.0156 8.85 MF 0.0776 4.28 LE
-0.0103 7.59 ES 0.0026 10.38 ES 0.0176 5.97 RF 0.1387 5.80 RF
-0.0092 9.65 VW 0.0026 13.56 ES 0.0179 8.68 MF 0.1521 5.94 VW
-0.0091 12.18 ES 0.0027 8.57 MF 0.0201 4.72 LE 0.1621 9.94 LE
-0.0073 7.59 ES 0.0029 10.36 ES 0.0204 7.42 ES 0.1880 5.76 RF

0.1946 3.95 LE

Table 1: Weights and Test 1 Scores (misclassification error percentage) of all submissions
from Team False Positives included in the final ensembling. The submissions were
weighted and the result rounded to 0/ 1 as described in the text. Legend: RF
= Random Forests (Section 4); LE = Leaderboard Ensembling; ES = Ensemble
Selection; GLM = Generalized Linear Model (Section 4); VW = L1 regression
using Vowpal Wabbit (Section 4); COFI = CofiRank; SVD = Full sparse SVD.

used for the final ranking among the teams. The set of of weights and the misclassification
percentages of each component model used in our final ensemble solution is shown in Ta-
ble 1. We note that this submission includes previous linear ensembles. This might seem
confusing, since it can never help a further linear ensemble to include a previous linear
ensemble (since it doesn’t change the solution span). Our submissions, however, are the
rounded linear ensemble, and those do augment the solution span.

9. Ideas To Explore

For completeness, we include in this section a few ideas which we consider interesting in
their own right, but did not have time to finish.

209

Balakrishnan et al.

9.1. Regression for user label vectors

All the techniques we implemented in the spirit of a general recommendation task, that is,
they are all models that can predict scores for arbitrary user-item pairs. However, in the
specific case for KDD Cup’s track 2, it should be possible to take advantage of the fact that
we only needed to predict one of

(
6
3

)
= 20 specific binary 6-vectors for each user (call these

6 0/1 values yj for user j). If we could learn a regression model that would take as input a
candidate binary 6-vector for a user, ŷj , and some features xj and output a score (low for
a 6-vector that is closer to the true answer, w.l.o.g.), then at test time, one could simply
generate all 20 possible label vectors, score all of them using the learned model and return
the lowest scoring 6-vector.

Here is how we envisioned constructing the features xj for this regression task. First, we
generate user-item features that are predictive in the classification setting, say for example
the taxonomy-based features from section 4. Call these features component features. Then,
given a candidate label 6-vector ŷj , with corresponding component features for the 6 items,
consider a single derived feature that is the sum of the component features over only the
1labeled items. Another derived feature could be the maximum value of a component
feature over only the 1items. One can easily derive a few other such features as well. The
observation is that we would expect well-behaved component features (features that are
roughly monotonic to the classification label) for the binary classification task to be well
behaved for this regression task as well.

A reasonable response value (the regression target) for a 6 item pair with proposed

labels, would be for example 2|ŷj−yt
j |. Thus, the target would be one if the proposed label

matched the true label vector yt
j , and larger the more errors there were. There are some

subtleties involved, in particular, naively creating all 20 possible label vectors would lead
to very imbalanced training data. We thought to address this issue by always including
in our training set the completely correct and completely incorrect candidate label vectors
and further sampling some small number of other incorrect label vectors.

9.2. Ensembles via randomized rounding

The structure of valid test predictions also led us to question whether an ensemble technique
could be crafted to take advantage of it.

Suppose that the true test solution is s∗ ∈ Rn. Let si, i ∈ [m] be the solution vectors
we wish to ensemble (where [m] := {1, . . . ,m}). Let ei denote the (Test 1) misclassification
error of a given solution si. This implies s∗ lies on the sphere of Hamming distance nei
centered at si. Since every user has exactly three 1s and three 0s, this is equivalent to
(si)T s∗ = 1

2n(1 − ei) =: bi. Letting S be the n ×m matrix whose ith column is si, we get
ST s∗ = b. This motivates us to search for a solution x̂ such that ST x̂ ≈ b.

The basic idea is to find a fractional solution vector x in the affine span of the given
solution vectors, then randomly round each user independently to obtain a solution x̂. By
requiring x to lie in the affine span, we ensure that its weight is 3 for each user. Because
we will use xi as a probability, we must ensure 0 ≤ x ≤ 1. Moreover, the 6 components of
x corresponding to a single user must be rounded in a dependent fashion, to preserve their
sum. We design both our computation of x and our rounding scheme to yield ST x̂ ≈ b.

210

False Positives

We propose two methods to compute x. Both require x to lie in the affine span of the si.
The first method explicitly requires 0 ≤ x ≤ 1. The second requires x to lie in the convex
hull of the si, which already implies 0 ≤ x ≤ 1. In both cases, we minimize ||STx − b||22.
To perform these optimizations, we introduce a vector of weights w ∈ Rm and express x
as Sw, so the objective is convex quadratic in w. In both cases, we include the constraint∑

iwi = 1 to place x in the affine span. In the second case, we further constrain w ≥ 0,
which restricts to the convex hull. In the first case, we first solve the relaxed problem with
the 0 ≤ x ≤ 1 bounds omitted, add in the most violated of these constraints, and iterate. In
our experience, this constraint generation approach converges rapidly to a solution. Both
methods require computing STS, i.e., all pairwise dot products of the si, and in both cases
this dominates the computation time.

We now discuss how to round the fractional vector x to a valid integer solution x̂. Our
aim is to keep x̂ close to the affine span of the si, while keeping ST x̂ ≈ STx. We achieve
both aims by rounding so as to preserve expectations, i.e., E[x̂i] = xi for all i, while making
the x̂i negatively correlated. Negative correlation is desirable because it implies Chernoff-
like concentration bounds for every linear combination of the x̂i(Panconesi and Srinivasan,
1997; Gandhi et al., 2006). In particular, this will ensure not only that ST x̂ is concentrated
around STx, but also that x̂ is concentrated near the affine span of the si.

Let xu and x̂u denote the restrictions x and x̂ to the 6 items that must be labeled for
user u, and let subscripts i ∈ [6] denote the 6 components for this user. Similarly, define
sui ∈ R6 to be the vector of labels for user u in solution i, and Su ∈ R6×m to be the matrix
whose columns are sui . Since we will round each user independently of the others, we just
need to construct the probability distribution for a single user.

For each subset I ∈
(
[6]
3

)
(the collection of 3-element subsets of [6]), let pI denote the

probability that we set x̂ui = 1 for exactly the items i ∈ I. We determine these pI by solving
a linear program, with linear constraints to preserve the expectations and ensure negative
correlation in the x̂is. A feasible solution to this program guarantees concentration bounds.
However, we still have a flexible objective function, which we use to minimize the variance
of (Su)T x̂u, which objective turns out to be linear in the pI variables.

This linear program for a single user has just 20 variables and 36 constraints, and is
hence trivial to solve. The pI are bounded above and below by the negative correlation
constraints, there are 6 equality constraints to preserve expectations, and 2

(
6
2

)
= 30 of the

negative correlation constraints.
In practice, this procedure achieved an ensembling within the distance constraints of

the candidate solutions. Unfortunately, the ensemble itself did not perform better than the
individual solutions, the reasons for which we are still investigating.

10. Conclusions

We described our approach to KDD Cup 2011, track 2. In line with reported results Jahrer
et al. (2010) found that fairly straightforward but diverse techniques ensemble together
very well, giving an effective final score. For discussion, we also outlined a few techniques
that we unfortunately did not get a chance to evaluate, but we believe take full advantage
of the particular structure of the output of track 2. We thank the organizers and other
participants for an exciting contest!

211

Balakrishnan et al.

11. Acknowledgments

We would like to acknowledge discussions with Bob Bell, always a source of great ideas and
inspiration. We would also like to thank the reviewers for their comments and suggestions.

References

Leo Breiman. Random forests. In Machine Learning, volume 45(1), pages 5–32, 2001.

C.J.C. Burges. From ranknet to lambdarank to lambdamart: An overview. In Microsoft
Research Technical Report MSR-TR-2010-82, 2010.

Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew, and Alex Ksikes. Ensemble selection
from libraries of models. In Proceedings of the twenty-first international conference on
Machine learning, ICML ’04, pages 18–, New York, NY, USA, 2004. ACM. ISBN 1-
58113-838-5. doi: http://doi.acm.org/10.1145/1015330.1015432. URL http://doi.acm.

org/10.1145/1015330.1015432.

Paolo Cremonesi, Yehuda Koren, and Roberto Turrin. Performance of recommender al-
gorithms on top-n recommendation tasks. In Proceedings of the fourth ACM confer-
ence on Recommender systems, RecSys ’10, pages 39–46, New York, NY, USA, 2010.
ACM. ISBN 978-1-60558-906-0. doi: http://doi.acm.org/10.1145/1864708.1864721. URL
http://doi.acm.org/10.1145/1864708.1864721.

Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Depen-
dent rounding and its applications to approximation algorithms. J. ACM, 53(3):324–360,
2006.

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback
datasets. In In IEEE International Conference on Data Mining (ICDM 2008, pages
263–272, 2008.

A. Hume and E. S. Daniels. Ningaui: A linux cluster for business. In USENIX Annual
Technical Conference, in FREENIX Track, 2002.

Michael Jahrer, Andreas Töscher, and Robert Legenstein. Combining predictions for ac-
curate recommender systems. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, KDD ’10, pages 693–702, New
York, NY, USA, 2010. ACM. ISBN 978-1-4503-0055-1. doi: http://doi.acm.org/10.
1145/1835804.1835893. URL http://doi.acm.org/10.1145/1835804.1835893.

Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings
of the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining, KDD ’02, pages 133–142, New York, NY, USA, 2002. ACM. ISBN 1-58113-567-X.
doi: http://doi.acm.org/10.1145/775047.775067. URL http://doi.acm.org/10.1145/

775047.775067.

Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering
model. In Proceeding of the 14th ACM SIGKDD international conference on Knowledge

212

http://doi.acm.org/10.1145/1015330.1015432
http://doi.acm.org/10.1145/1015330.1015432
http://doi.acm.org/10.1145/1864708.1864721
http://doi.acm.org/10.1145/1835804.1835893
http://doi.acm.org/10.1145/775047.775067
http://doi.acm.org/10.1145/775047.775067

False Positives

discovery and data mining, KDD ’08, pages 426–434, New York, NY, USA, 2008. ACM.
ISBN 978-1-60558-193-4. doi: http://doi.acm.org/10.1145/1401890.1401944. URL http:

//doi.acm.org/10.1145/1401890.1401944.

Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, , and
Joseph M. Hellerstein. Graphlab: A new parallel framework for machine learning. In
UAI, 2010.

Alessandro Panconesi and Aravind Srinivasan. Randomized distributed edge coloring via
an extension of the Chernoff-Hoeffding bounds. SIAM J. Comput., 26(2):350–368, 1997.

Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. In Neural
Information Processing Systems (NIPS), 2007.

Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factorization using
markov chain monte carlo. In In ICML 2008: Proceedings of the 25th International
Conference on Machine Learning, 2008.

Andreas Töscher, Michael Jahrer, and Robert M. Bell. The BigChaos solution to the netflix
grand prize, 2009.

Markus Weimer, Alexandros Karatzoglou, Quoc Viet Le, and Alex Smola. Cofi-rank: Max-
imum margin matrix factorization for collaborative ranking. In Neural Information Pro-
cessing Systems (NIPS), 2007.

213

http://doi.acm.org/10.1145/1401890.1401944
http://doi.acm.org/10.1145/1401890.1401944

	Introduction
	Our Approach
	Matrix Factorization
	Probabilistic Matrix Factorization
	Weighted PMF
	Implicit Feedback
	CofiRank
	Pure SVD
	Graph-based Data Augmentation

	Taxonomy-based Classification
	kNN
	Classification Revisited
	Collaborative Ranking
	Ensemble Creation
	Ensemble Selection
	Leaderboard Ensembling

	Ideas To Explore
	Regression for user label vectors
	Ensembles via randomized rounding

	Conclusions
	Acknowledgments

