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Abstract

This paper provides the solution of the team “commendo” on the Track1 dataset of the
KDD Cup 2011 Dror et al.. Yahoo Labs provides a snapshot of their music-rating database
as dataset for the competition. We get approximately 260 million ratings from 1 million
users on 600k items. Timestamp and taxonomy information are added to the ratings. The
goal of the competition was to predict unknown ratings on a testset with RMSE as error
measure. Our final submission is a blend of different collaborative filtering algorithms. The
algorithms are trained consecutively and they are blended together with a neural network.

Keywords: Collaborative Filtering, Ensemble Learning, KDD Cup, Rating Prediction,
Music Ratings

1. Introduction

Yahoo! Music released one of the largest rating datasets for public analysis Dror et al.. The
goal is to submit the lowest RMSE score on a test set.

1.1. Notation

We consider the dataset as sparse matrix R = [rui], where we use the letter u for users and
i for items during this writeup. Bold letters are used for matrices and vectors. I is the set
of items and |I| is the total number of items, |I|=624,961. U is the set of users and |U| is
the total number of users, |U|=1,000,990. Predictions for user/item pairs are denoted as
r̂ui. The date of the rating is given by tui. Resolution of tui is given in minutes, hence we
can calculate minute, hour and day values per rating. The set of items, which is rated by
user u is I(u). The set of users, which rates item i is U(i).

For all models we want to minimize the quadratic error E(θ) on the set of ratings rui.
The letter θ indents the trainable weights/parameter of the model. To avoid overfitting we
use L2-penalty on all parameters during learning. ||A||F denotes the Frobenius norm and

it is defined as ||A||F =
√∑

∀i,j a
2
ij . This leads to the following error function:

E(θ) =
1

|R|
∑
u,i∈R

(rui − r̂ui(θ))2 + λ||θ||2F (1)

The following notation is used for model parameters. pu is a user-dependent feature
and qi is an item-dependent feature. All features are stored in matrices, for example all the
user features pu are stored in the matrix p ∈ RFx|U | and the columns are F -dimensional
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Yahoo Music Rating Data
|R| = 262,810,175

Train
|R| = 252,800,275

Validation
|R| = 4,003,960

Test
|R| = 6,005,940

Figure 1: KDD Cup 2011 Track1 dataset

features. The feature values are typically initialized with small random numbers and they
are trained with stochastic gradient descent, using the data rui. As learning rate we use the
constant η and λ for L2-regularization. In a basic matrix factorization model a prediction
r̂ui is calculated by the dot product of the user and the item feature r̂ui = pTuqi.

1.2. The Dataset

The provided dataset for Track1 Dror et al. consists of 262,810,175 ratings from 1,000,990
users on 624,961 items. The range of the rating value is between 0 and 100. An item can be
a track, an album, an artist or a genre. Most of the ratings are given to tracks (47%). The
distribution of types within all items are given by 507,172 tracks, 88,909 albums, 27,888
artists and 992 genres. The data is considered as sparse user x item matrix R = [rui],
with the fill-rate of 0.04% being very low. For example in the Netflix Prize dataset Bennett
et al. (2007) the fill-rate is about 1%. The timestamps of the ratings are given in minute-
resolution.

Additional to the rating data there is taxonomy information available. Taxonomy means
the relationship between the items within the music domain. For example track x belongs to
album y, and album y belongs to artist z. For a more simple and holistic view we calculate
item-to-parent and item-to-child tables. The total number of children is 2,453,808 (same
number of parents).

Figure 1 provides an overview of how the dataset is split to train, validation and test.

1.3. The Training of the Models

Our solution consists of a blend of many single predictors. The standard way of training
a predictor consists of two steps. In the first step the validation set is removed from the
dataset and the model is trained. Then predictions for the validation set are stored. In the
second step training is done on all available data with the same meta parameters as in the
first step, such as learning rate η, regularization λ, number of epochs and so on. Last, the
predictions for the test set are stored. A summary of all step is table 1.

The validation predictions from the first step are used to train the blender. The training
of the first predictors is stopped when the RMSE on the validation set is minimal. For all
other models a linear combination of all available predictions is directly optimized, this
technique is also known as blend-stopping Töscher and Jahrer (2008).
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step description

1 load the complete data
2 remove the validation set from data
3 optimize the model on the validation error
4 store the validation prediction with lowest error
5 insert the validation set into train
6 re-train the model with best parameters
7 predict + store the test set

Table 1: How one predictor is created

predictor validation RMSE

global mean (µ=48.8) 38.2138
item mean 32.3941
user mean 27.6525

Table 2: Baseline predictions

For all models in section 2 we report RMSE values on the validation set. In table 2
we list three baseline RMSE values. A low RMSE of a single predictor, is not necessarily
needed in order to blend well within the ensemble.

2. Algorithms

In the following the used collaborative filtering models are described. Most of the models
are trained on the rating data directly, but there is the possibility of training on residuals
from another model. How this is done can be read in the Netflix Grand Prize Report from
team BigChaos Töscher and Jahrer (2008).

All different models get listed here with their corresponding explanation. The formula
for predicting one user/item pair is also added to each of the algorithms. For completeness
we add the RMSE value on the validation set of each of the models including the used
meta-parameters. The listed numbers are taken from a predictor which is actually in our
final blend.

2.1. Baseline Model

The baseline is used for data cleaning. The model does not cover any user/item interaction,
similar to the one proposed by Y.Koren in Koren (2010) and the Netflix Prize team Prag-
matic Theory in Piotte and Chabbert (2008). The idea of the baseline model is to clean the
data and erase effects from all the ratings such as day biases or hour biases. The Baseline
prediction r̂ui consists of many parts. The following equation shows all factors.
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We divide the prediction formula into three lines. In the first line there are simple
biases: globel bias µ, user bias µu and item bias µi. We have separate biases for each
minute µminute, hour µhour and day µday in the dataset. The value for minute, hour and
day are calculated from the rating date tui. The last expression in the first line is a user-
day bias µu,day. In the second line there are frequency-dependent user and item biases. As
frequency freq(u, day) we define the number of ratings from user u on the particular day.
The frequency biases are used for model effects when for example a user gives more ratings
on the same day. We limit the value of freq(u, day) and freq(i, day) to 10. In the third

line there are factorized user-vs-date biases. For example the first term p
(0)
u

T
y

(0)
minute is a

user x minute dot product. The features p(0) have the size of |U| x F . The features y(0)

has the size of |minutes| x F .
In the forth line one can find item-vs-date biases. From the dataset we get a total

number of |minutes| = 5,726,101, |hours| = 95,436 and |days| = 3,978.
During training all parameters are penalized by the L2-norm. Training of the baseline is

done by stochastic gradient descent. We get an error on the validation set of RMSE=23.3766
with F=50, η=0.0002 and λ=0.58 after 40 iteration epochs.

2.2. Matrix Factorization Models

This section is about different matrix factorization techniques. The idea of matrix factorza-
tion is to project users and items to a low-dimensional space. So each user and each item
is represented by a latent feature vector. The dot product of them pTuqi is the prediction.

2.2.1. SVD

The SVD model is a simple matrix factorzation of the rating matrix. Predictions of a
user/item pair are given by the following formula.

r̂
(1)
ui = pTuqi (3)

This has been one of the most popular models in collaborative filtering since the Netflix
Prize Bennett et al. (2007) in 2006. When using gradient descent as learning algorithm,
training time grows linear with the number of ratings |R|, prediction time of one user/item

64



Collaborative Filtering Ensemble

pair can be done in constant time O(1), hence very fast. For completeness we sketch the
stochastic gradient descent training in Algorithm 1.

Algorithm 1: Pseudo code for training a SVD on rating data.

Input: Sparse rating matrix R ∈ R|U |x|I| = [rui]
Tunable: Learning rate η, Regularization λ, feature size F

1 Initialize user weights p ∈ RFx|U | and item weights q ∈ RFx|I| with small random values
2 while error on validation set decreases do
3 forall the u, i ∈ R do
4 r̂ui ← pTuqi
5 e← r̂ui − rui
6 for k = 1...F do
7 c← puk
8 puk ← puk − η · (e · qik + λ · puk)
9 qik ← qik − η · (e · c+ λ · qik)

10 end

11 end

12 end

With F=100, η=0.0002, λ=0.5 and 30 iteration epochs we get RMSE=21.9962 on the
validation set. Total training time of the model is about 5 hours.

2.2.2. SVD + Baseline Model

In this model we add the SVD model and the Baseline model together. The SVD part
models user/item interactions.

r̂
(2)
ui = r̂

(0)
ui + r̂

(1)
ui (4)

With F=100, Fbaseline=50, η=0.0002, λ=0.6 and 50 iteration epochs we get RMSE=20.9507
on the validation set.

2.2.3. AFM

This model is called asymmetric factor model because it has only item-dependend parame-
ters. It was first mentioned by Paterek in Paterek (2007). It learns a different kind of data
variablity compared to the simple SVD model, hence it blends well within the ensemble.
The following equation is the prediction of a user/item pair. In a simplified view, the pre-
diction is again a dot product of the item feature qi and the user feature (right side). The
user feature is given by the set of items I(u) that user u has rated. Therefore the user is
expressed purely by his rated items.

r̂
(3)
ui = µu + µi + qTi

 1√
|I(u)|

∑
j∈I(u)

q
(0)
j

 (5)

The two matrices q and q(0) have both the size |I| x F . The term 1√
|I(u)|

is used for

normalization purpose. User and item biases are µu and µi. With F=30, η=0.01, λ=0.0008
and 35 iteration epochs we get RMSE=23.5492 on the validation set.
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2.2.4. AFM Single Feature

Here we have the same AFM as described above, but one set of item features q.

r̂
(4)
ui = µu + µi + qTi

 1√
|I(u)|

∑
j∈I(u)

qj

 (6)

The item features q has the size of |I| x F . With F=30, η=0.0004, λ=0.001 and 50
iteration epochs we get RMSE = 26.5411 on the validation set.

2.2.5. AFM Flipped

Again the same asymmetric idea, but flipped to the item side. We have a fixed user feature,
but the item is expressed by the set of users U(i) which rated this item. Thus, the item
feature is build from a normalized sum of rated user features.

r̂
(5)
ui = µu + µi + pTu

 1√
|U(i)|

∑
j∈U(i)

p
(0)
j

 (7)

The two matrices p and p(0) have both the size |U| x F . With F=30, η=0.00003, λ=0.06
and 50 iteration epochs we get RMSE=22.3234 on the validation set. It is remarkable that
the “AFM flipped” model has a better performance than the AFM model itself and comes
close to the performance of the SVD model.

2.2.6. ASVD

The ASVD model combines the basic SVD approach with the idea from the AFM. The user
is described by the user-dependend feature pu and the normalized sum of rated items. This
model is the same as SVD++ from Y.Koren Koren (2008).

r̂
(6)
ui = µu + µi + qTi

pu +
1√
|I(u)|

∑
j∈I(u)

q
(0)
j

 (8)

The two matrices q and q(0) have both the size |I| x F , matrix p has the size |U| x
F . With F=30, η=0.0002, λ=0.005 and 15 iteration epochs we get RMSE=21.9202 on the
validation set.

2.2.7. ASVD Flipped

As in the section above, we apply the asymmetric idea from the ASVD model to the item
side. Now, the user feature pu is fixed and we have on the item side (right brackets) the
item-dependend feature qi and the normalized sum of rated user features.

r̂
(7)
ui = µu + µi + pTu

qi +
1√
|U(i)|

∑
j∈U(i)

p
(0)
j

 (9)
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The two matrices p and p(0) have both the size |U| x F , matrix q has the size |I| x F .
With F=100, η=0.0002, λ=0 and 3 iteration epochs we get RMSE=22.817 on the validation
set.

2.2.8. ASVD + Baseline Model

The next step is to add the factors of the baseline model to the ASVD model, which results
in the following formula. This model can explain user/item interactions, as well as remove
time effects from the data, which results in the following model:

r̂
(8)
ui = r̂

(6)
ui + r̂

(0)
ui (10)

With F=150, Fbaseline=60, η=0.0001, λ=0.06 and 30 iteration epochs we get RMSE=21.1875
on the validation set. Total training time of this model is 36h.

2.2.9. ASVD + Baseline Model + time features

In this model we add user- and item-dependend time features to the “ASVD + Baseline”

model. Biases are covered by the Baseline model part r̂
(0)
ui . On the item side (second line

in equation 11) there is an item-day feature qdayi added. On the user side we add three
separate features based on different time bases. An user-minute feature pminuteu , a user-hour
feature phouru and a user-day feature pdayu .

r̂
(9)
ui = r̂

(0)
ui +(

qi + qdayi

)T
·pu +

1√
|I(u)|

∑
j∈I(u)

q
(0)
j + pminuteu + phouru + pdayu


(11)

The “ASVD + Baseline Model + time features” results in a huge number of parameters,
which makes the model very memory intensive. Hence, the number of features F are limited
to a small amount. The two matrices q and q(0) have both the size |I| x F , p has the size
|U| x F . The item-day features qday has a size of |I| x F x |days|. User-minute feature
pminute has size |U| x F x |minutes|, followed by phour with a size of |U| x F x |hours| and
pday with size |U| x F x |days|.

In this model, the largest feature is the user-minute feature. Assuming F = 10 and
4-Byte floats, we would get a size of 1, 000, 990 ·10 ·5, 726, 101 ·4Byte = 229TB, if we would
store the full matrix. Instead of doing that, we store only the minute features, where the
user gives a rating. An average user gives ratings on 104 different minutes, which reduces
the size of the example to 1, 000, 990 · 10 · 104 · 4Byte = 4GB.

With F=10, Fbaseline=10, η=0.0004, λ=0.3 and 20 iteration epochs we get RMSE=21.771
on the validation set.
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2.2.10. SVD + Baseline Model + time features

This model is quite similar to the one above, the difference is that we have no asymmetric

part 1√
|I(u)|

∑
j∈I(u) q

(0)
j and we add an item-hour feature.

r̂
(10)
ui = r̂

(0)
ui +(

qi + qdayi + qhouri

)T (
pu + pminuteu + phouru + pdayu

) (12)

With F=20, Fbaseline=30, η=0.0004, λ=0.2 and 20 iteration epochs we get RMSE=21.1782
on the validation set. This model is one of the most accurate single models within the en-
sembe.

2.3. K-Nearest Neighbors Models (KNN)

Neighborhood models can be effectively applied, if the correlation matrix can be precom-
puted. The size of the correlation matrix is data dependent. Within an item-item KNN
we should store all item-to-item correlations. But the KDD Cup 2011 dataset has a huge
number of items (|I|=624,961). The current hardware is not feasible to store all the entries.
Assume we would calculate all the correlations with float accuracy it would require |I| x |I|
x 0.5 x 4Byte = 781GB of memory, which is simply too much.

Calculate correlations on-the-fly will solve the problem of memory overflow. But this
dramatically slows down the prediction time. We tried to use Pearson correlation but this
turned out to be too slow to apply it on the KDD Cup 2011 Track1 dataset. In the next
two algorithms we present a trick how to make the neighborhood approach runable.

2.3.1. Item-Item KNN with SVD Features

The Item-item neighborhood model uses similarities of items as weights to compute the
prediction of a user/item pair. To make an item-item neighborhood model applicable we
compute the correlations on the fly by using the inverse of the normalized Euclidean dis-
tance between two item features. The correlation cij between item i and item j with their
corresponding item features qi and qj is given by the following equation, which can be
computed in constant time O(1). F is the size of the features.

cij =

 ∑F
k=1(qik − qjk)2√∑F
k=1 q

2
ik

√∑F
k=1 q

2
jk


−2

(13)

Furthermore, the prediction for an item-item neighborhood model is a weighted sum of
the ratings from user u multiplied by the item-item correlations and normalized with the
absolute sum of the correlations. I(u) is the set of items that the user rated.

r̂
(11)
ui =

∑
j∈I(u) rujcij∑
j∈I(u) |cij |

(14)

Our item-item neighborhood model uses a sigmoid function to map the correlations cij
to ĉij by introducing two new parameters σ (scale) and γ (offset).
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ĉij = 0.5 · tanh(σ · cij + γ) + 0.5 (15)

In order to predict the rating r̂ui. A k-nearest neighbor algorithm selects K ratings
with the highest correlations to the item i. Therefore we indroduce the set of items
I(u, i,K) which consists of rated items from user u with the K-highest correlations to item
i. I(u, i,K) ⊂ I(u). Here we have the final prediction formula for the model “Item-Item
KNN with SVD Features”.

r̂
(12)
ui =

∑
j∈I(u,i,K) ruj ĉij∑
j∈I(u,i,K) |ĉij |

(16)

The model requires item features for all items, hence we use the SVD from section 2.2.1
in order to get the item features which are required to compute the “Item-Item KNN with
SVD Features”. We train the model as follows. First, the algorithm uses the SVD as feature-
learner. The number of iteration epochs of the gradient descent procedure is constant. In
the second step, the three meta-parameters scale σ, offset γ and neighborhood size K are
optimized by using the parameter searcher APT2 from Töscher and Jahrer (2008). APT2 is
a simple corrdinate search. The optimization target is the linear combination of all avaliable
predictions within the current ensemble. Linear regression is used as linear combiner.

The item-item KNN is more effective when it is applied on the residuals of another
model. One of our results is based on the residuals from a “AFM flipped” model. The
meta-parameters are σ=3.49, γ=-4.28 and K=184. For the SVD we use F=50, η=0.0003,
λ=0.1 and 50 iteration epochs. The resulting error on the validation set is RMSE=20.6802.

2.3.2. User-User KNN with SVD Features

A user-user KNN uses the same idea, but it requires user-user correlations. The correlation
cuv between user u and user v with their corresponding user features pu and pv is given by
the following equation, which can be computed in constant time O(1). F is the size of the
features.

cuv =

 ∑F
k=1(puk − pvk)2√∑F
k=1 p

2
uk

√∑F
k=1 p

2
vk

−2

(17)

In order to predict the rating r̂ui. A k-nearest neighbor algorithm selects K ratings with
the highest correlations to the item i. Again, we map the correlations cij to ĉij by using
equation 15.

We indroduce the set of users U(i, u,K) which consists of user rated item i with the
K-highest correlations to user u. U(i, u,K) ⊂ U(i). The prediction of a user/item pair is

r̂
(13)
ui =

∑
v∈U(i,u,K) rviĉuv∑
v∈U(i,u,K) |ĉuv|

(18)

During the competition the user-user KNN models does not improve the blend signif-
icantly. One possible reason is that the item-item KNN covers much of the neighborhood
structure.
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The best model from the User-User KNN with SVD Features has an RMSE=22.7863,
following meta-parameters are used: σ=24.4, γ=-11.6 and K=1631. For the SVD we use
F=50, η=0.0005, and 15 iteration epochs.

2.4. Restricted Boltzmann Machine (RBM)

RBM’s for collaborative filtering was first mentioned in 2007 by Salakhutdinov et.al. Salakhut-
dinov et al. (2007). We use the Conditional Restricted Boltzmann Machine described in
the herein before mentioned paper and apply it on the KDD Cup 2011 dataset. In contrast
to the paper we do not use mini batches, but apply updates after every training example.
Another difference is that we do not factorize the weight matrix.

The set of items rated by user u is denoted as I(u). Every item i is represented via a set

of binary visible units v
(l)
i , with one visible unit for every discrete rating. The dataset uses

ratings ranging from 0 to 100, so there are 101 different ratings. This leads to 101 binary

visible units for every item, where only one of these units is activated. The unit v
(l)
i is 1, if

the user u rated the item i with the rating l, otherwise it is 0. For the conditioning of the
hidden states we use the items rated by user u denoted as I(u).

The probabilities of the visible and hidden units for being high are given by:

p(v
(l)
i = 1|h) =

exp(a
(l)
i +

∑
j hjw

(l)
ij )∑

l̃ exp(a
(l̃)
i +

∑
j hjw

(l̃)
ij )

(19)

p(hj = 1|v) = σ

bj +
∑
i∈I(u)

(
dij +

∑
l

w
(l)
ij v

(l)
i

) (20)

σ(x) =
1

1 + e−x
(21)

We initialize the biases of the visible units a
(l)
i to the logarithm of the probabilities of

the corresponding unit of being high. The biases of the hidden units bj are initialized to
zero. The weights wij and dij are initialized to values drawn from a zero mean Gaussian
distribution with a small standard deviation of 0.001. In the appendix section we list all
RBM predictions, for each of the results a value of nRatings is listed. This is the number of
discrete rating steps of the model. We found out that the RBMs work better when we use
11 ratings instead of all 101 ratings. The best single RBM uses 100 hidden units to achieve
an RMSE of 23.096 on the validation set.

2.5. Basic Taxonomy

The dataset contains taxonomy information. Items consist of tracks, albums, artists and
genres. The information which track belongs to which album, the connection from the
albums to the artists and from artists to genres was given. The idea of the basic taxonomy
models is to produce predictors which blend well by using taxonomy information, which is
not captured by the used collaborative filtering models.

In total we use 14 different basic taxonomy predictors:
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1. r̃ui = the number of users which gave a high rating to item i

2. r̃ui = the number of users which rated item i

3. r̃ui = the number of high ratings the user u has given to tracks included in the album
of the given track i

4. r̃ui = the number of high ratings the user u has given to tracks belonging to the
artist(s) of the given track i

5. r̃ui = the number of high ratings the user u has given to tracks belonging to the
genre(s) of the given track i

6. r̃ui = the number of ratings the user u has given to tracks included in the album of
the given track i

7. r̃ui = the number of ratings the user u has given to tracks belonging to the artist(s)
of the given track i

8. r̃ui = the number of ratings the user u has given to tracks belonging to the genre(s)
of the given track i

9. r̃ui = the number of high ratings the user u has given to a parent (album, artist,
genre) of the given track i

10. r̃ui = the number of ratings the user u has given to a parent (album, artist, genre) of
the given track i

11. r̃ui = the number of high ratings the user u has given to parents (album, artist, genre)
and all children of those parents (distance 2) of track i

12. r̃ui = the number of ratings the user u has given to parents (album, artist, genre) and
all children of those parents (distance 2) of track i

13. r̃ui = the number of high ratings to item i and parents of item i

14. r̃ui = the number of ratings to item and parents of item i

The final predictions are given by adding 1 in order to avoid a zero and using the
logarithm, which leads to:

r̂ui = log(r̃ui + 1) (22)

3. Blending

As blending algorithm we use a neuronal network as proposed in Jahrer et al. (2010). Based
on our experience from previous competitions (Netflix Prize, KDD Cup 2010) where the
error measure was RMSE too, a neural network as blender is easy to parameterize and
delivers great results. Recall the limited time we had for deliver the final prediction, the
well-working neural network implementation from Jahrer (2010) was very helpful to keep
us focused on creating the ensemble.

All inputs (the predictions) are normalized having zero mean and constant standard
deviation. Targets are normalized to [-1...+1]. The net topology is set to two hidden layers,
size of 50 and 30 neurons. Stochastic gradient descent is used as training algorithm, the
number of epochs is set to 300. The initial learning rate η = 0.003 is decreased linearly to
0 during training. Therefore η is subtracted by 0.003

300 = 0.00001 every epoch. All units in
the net have tanh() as activation function. For validation we use 16-fold cross-validation.

The source for blending is freely available under Jahrer (2010).
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4. Conclusion

During the competition the goal was to try many different models, which can explain
the variability of the data. Since the dataset is very large (260M ratings) time and space
considerations are important. For simple SVD algorithms we use stochastic gradient descent
over a randomized list of ratings. For models with an asymmetric part in the prediction
formula we use user-wise or item-wise training.

The dataset was strictly split according to the rating date. This means the dates of the
ratings have ascending order within these three ordered sets {train,validation,test}. Hence,
models with user-time features can not predict future behavior. This is the same issue that
Y.Koren discussed in Koren (2010). These features can only clean the data from user-time
effects. This has the advantage that user-item interactions can be learned better by the
model itself when such effects are removed.

During building the ensemble our goal was to try many different settings. The listed
algorithms have a lot of meta parameters, which can be set by hand or tuned automatically.
As an addition we train some models on the residuals of anothers. This works best for item-
item KNN models. In gradient-descent based algorithms, such as matrix factorizations, we
tune the number of training epochs automatically by minimizing the linear combination of
the existing predictions.

Unfortunately, there was too little time remaining at the end to test models based on
taxonomy integration, similar to those we had used for Track2.
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Appendix A. Single predictor performance

no. model RMSE Test1 residual no meta parameters
1 AFM 25.15 - F=30 epochs=35 η=0.01 λ=0.0008
2 AFM single feature 27.78 - F=30 epochs=50 η=0.0003 λ=0.001
3 AFM flipped 23.54 15 F=30 epochs=50 η=0.00003 λ=0.15
4 AFM flipped 24.25 - F=30 epochs=50 η=0.00003 λ=0.06
5 AFM flipped 22.91 37 F=30 epochs=50 η=0.00003 λ=0.06
6 AFM flipped single feature 32.53 - F=30 epochs=3 η=0.00001 λ=0.0002
7 ASVD 23.85 - F=30 epochs=16 η=0.0002 λ=0.005
8 ASVD + Baseline 23.11 - F=150 Fbase=50 epochs=33 η=0.0001 λ=0.06
9 ASVD + Baseline 23.46 - F=200 Fbase=150 epochs=15 η=0.0001 λ=0
10 ASVD + Baseline 23.81 4 F=100 Fbase=100 epochs=20 η=0.0002 λ=0.1
11 ASVD + Baseline + timef 23.92 - F=10 Fbase=10 epochs=20 η=0.0004 λ=0.3
12 ASVD + Baseline + timef 23.82 - F=20 Fbase=1 epochs=50 η=0.0003 λ=0
13 ASVD flipped 24.63 - F=100 epochs=3 η=0.00025 λ=0
14 Basic Taxonomy 1-14 - - -
15 Baseline 25.20 - F=50 epochs=30 η=0.0002 λ=0.6
16 Item-Item KNN SVD feat 22.80 5 F=50 epochs=50 η=0.0002 λ=0.1 σ=3.5 γ=-4.3 K=184
17 Item-Item KNN SVD feat 29.08 - F=100 epochs=25 η=0.0005 λ=1 σ=25.1 γ=-45.3 K=1
18 Item-Item KNN SVD feat 24.46 3 F=150 epochs=40 η=0.0002 λ=0 σ=8.5 γ=-21 K=21
19 Item-Item KNN SVD feat 27.10 - F=50 epochs=4 η=0.0003 λ=0.1 σ=0.4 γ=-0.36 K=42
20 Item-Item KNN SVD feat 24.90 43 F=50 epochs=50 η=0.0003 λ=0 σ=0.13 γ=-18.7 K=2
21 Item-Item KNN SVD feat 24.35 30 F=80 epochs=20 η=0.0003 λ=0 σ=1.9 γ=-2.9 K=8
22 Item-Item KNN SVD feat 23.42 38 F=20 epochs=15 η=0.0003 λ=0 σ=820 γ=-3.8 K=9
23 Item-Item KNN SVD feat 25.94 31 F=50 epochs=45 η=0.0005 λ=1 σ=7.1 γ=-1.7 K=3
24 Item-Item KNN SVD feat 23.67 33 F=30 epochs=7 η=0.0005 λ=0 σ=212 γ=-6.6 K=5
25 Item-Item KNN SVD feat 26.38 41 F=60 epochs=15 η=0.0005 λ=0 σ=60200 γ=-4.7 K=5
26 Item-Item KNN SVD feat 24.94 29 F=50 epochs=25 η=0.0003 λ=0.5 σ=26.9 γ=-11.6 K=2
27 User-User KNN SVD feat 24.53 29 F=50 epochs=15η=0.0005 λ=0 σ=24.4 γ=-0.12 K=1631
28 User-User KNN SVD feat 27.14 - F=10 epochs=3η=0.0005 λ=0 σ=3.9 γ=-0.45 K=425
29 RBM discrete 24.81 - nRatings=11 nHid=100 epochs=15 η=0.001 λ=0
30 RBM discrete 27.05 - nRatings=2 nHid=50 epochs=15 η=0.002 λ=0.001
31 RBM discrete 27.47 - nRatings=2 nHid=300 epochs=15 η=0.001 λ=0
32 RBM gauss 23.83 15 nHid=100 epochs=15 η=0.0003 λ=0.0005
33 SVD 23.92 - F=100 epochs=30 η=0.00025 λ=0.5
34 SVD 24.85 - F=100 epochs=30 η=0.00025 λ=0
35 SVD 24.89 - F=10 epochs=20 η=0.0005 λ=0.1
36 SVD 38.91 - F=200 epochs=2 λu=0.04 λi=1.5 trained by ALS
37 SVD + Baseline 22.97 - F=100 Fbase=50 epochs=50 η=0.0002 λ=0.5
38 SVD + Baseline + time 23.49 - F=20 Fbase=30 epochs=20 η=0.0004 λ=0.2
39 SVD + Baseline + time 23.86 - F=30 Fbase=30 epochs=20 η=0.0003 λ=0
40 SVD + Baseline + time 24.68 - F=3 Fbase=3 epochs=20 η=0.0003 λ=0
41 SVD + Baseline + time 26.89 - F=15 Fbase=15 epochs=30 η=0.0005 λ=10
42 SVD + Baseline + time 23.52 - F=100 Fbase=50 epochs=50 η=0.0003 λ=0.4
43 SVD + Baseline + time 24.79 - F=10 Fbase=5 epochs=50 η=0.0003 λ=0.4
44 binary type indicator - - -

Table 3: Predictors in the final blend. The Neural-Network blender achieves an RMSE
of 18.9092 on the validation set and an RMSE of 21.0815 on the KDD Cup 2011
Track1 leaderbord. Test1 is a 50% subset of the leaderboad set, it contains 3002148
ratings. If a model is trained on the residuals of an other model, it is denoted in the
column “residual no”. For example the model “AFM flipped” (no=3) is trained
on the residuals of the Baseline model (no=15).
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