
JMLR: Workshop and Conference Proceedings 18:169–181, 2012 Proceedings of KDD-Cup 2011 competition

Taxonomy-Informed Latent Factor Models
for Implicit Feedback

Andriy Mnih amnih@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit

University College London

Editor: G. Dror, Y. Koren and M. Weimer

Abstract

We describe a latent-factor-model-based approach to the Track 2 task of KDD Cup 2011,
which required learning to discriminate between highly rated and unrated items from a large
dataset of music ratings. We take the pairwise ranking route, training our models to rank
the highly rated items above the unrated items that are sampled from the same distribution.
Using the item relationship information from the provided taxonomy to constrain item
representations results in improved predictive performance. Providing the model with
features summarizing the user’s rating history as it relates to the item being ranked leads
to further gains, producing the best single model result on Track 2.

Keywords: Collaborative Filtering, Implicit Feedback, Machine Learning, Ranking

1. Introduction

Collaborative filtering deals with inferring complete user preferences from large but incom-
plete collections of preference expressions (Marlin, 2004). Users can express their preferences
using explicit feedback, such as item ratings, or implicit feedback, such as item views or
purchases (Hu et al., 2008). Explicit feedback is more reliable than implicit feedback but
is typically available in much smaller quantities because it requires an effort on the part of
the user to explicitly express their preferences through special actions, such as rating items.
Implicit feedback, on the other hand, is much easier to obtain in large quantities as it is a
byproduct of the natural use of the system. This wide availability makes modelling implicit
feedback an important task which until recently has received surprisingly little attention.

What makes implicit feedback fundamentally different from two-valued explicit feedback
(e.g. like/dislike) is that users provide only positive examples, that is just the items they
are interested in (Hu et al., 2008). In other words, though users can express their interest in
an item by selecting it, they have no direct way to express their disinterest. Note that not
having expressed interest in an item is not the same as having expressed disinterest. After
all, the set of items a user has expressed interest in is almost certainly incomplete for a
number of reasons, such as budgetary and time constraints as well as incomplete knowledge
of the inventory. As a result, the set of items not selected by a user typically contains both
interesting and uninteresting items. It is this uncertainty about the unobserved items that
makes implicit feedback more difficult to model than its explicit counterpart.

The simplest way to deal with this uncertainty is to disregard it and treat all items not
selected by the user as negative examples. If we view the dataset as a binary user-item

c© 2012 A. Mnih.



Mnih

matrix with 1s indicating the items selected by users, this strategy amounts to replacing
the unobserved entries with 0s. Finding a low-rank approximation to the resulting dense
matrix (Hu et al., 2008; Pan et al., 2008; Pan and Scholz, 2009) is the most popular approach
to modelling implicit feedback. Such models are typically trained using alternating least
squares in time linear in the number of positive examples but cubic in the rank of the
approximation matrix, which can be interpreted as the number of real-valued latent factors
describing each user or item.

A recently introduced approach, called Bayesian Personalized Ranking (BPR), makes
more realistic assumptions about the unobserved items (Rendle et al., 2009) by treating
them as merely less interesting than the observed items, as opposed to completely un-
interesting. The model is trained to rank the positive items above the negative ones in
positive-negative item pairs, with the negative items sampled from the uniform distribu-
tion. Both users and items are represented using latent factor vectors which are learned
using stochastic gradient ascent, ensuring excellent scalability. In this paper we adapt BPR
to the Track 2 task of KDD Cup 2011, modifying the training algorithm to use a popularity-
based distribution of negative examples and extending the model to take advantage of the
item taxonomy.

2. Task Description

The Track 2 task deals with music recommendation using a dataset of item ratings collected
from the Yahoo! Music service. The dataset consists of ratings assigned to music items of
four types (tracks, albums, artists, and genres) by about 249K users of the site. There are
about 64M ratings on a scale from 0 to 100 for over 296K items, about 224K of which are
tracks. See Dror et al. (2011) for a more detailed description of the data.

The task is to learn to discriminate between the highly rated (ratings 80 and above) and
the unrated tracks for each user. The test set contains six tracks per user, three of which
are highly rated and three are unrated. Note that because this rated/unrated breakdown is
known, it is possible to discriminate between items in the test set even with a model that
ranks items instead of classifying them.

This task is most naturally viewed as an implicit feedback modelling problem because
the goal is to learn to discriminate between the observed positive examples (the highly
rated tracks) and the unobserved negative examples (the unrated tracks). However, there
are two important ways in which the task differs from the classic implicit feedback problem.
First, models are evaluated at discriminating between positive items and negative items
that come from the same distribution. This makes it impossible to use item popularity for
discrimination between positive and negative examples, which is not the case in the classic
setting where negative examples are effectively uniformly distributed. Second, in addition
to the identities of the positive items, which are also available in the classic setting, we have
access to the item taxonomy and rating values. We will show how to take advantage of
these additional sources of information to improve model performance.

170



Taxonomy-Informed Latent Factor Models for Implicit Feedback

3. Basic Latent Factor Model

We represent both users and items using D-dimensional real-valued vectors, which will be
learned automatically from the data. We will refer to entries in these vectors as latent
factors to emphasize that they are learned. Though latent factors are sometimes called
features in the collaborative filtering literature (e.g. Salakhutdinov and Mnih (2008)), we
will use the term features to refer only to the precomputed quantities given to the learning
algorithm as (fixed) inputs. For example, the number of items rated can be one of the
features associated with a user. Though such hand-engineered features can often be used
to boost system performance, designing effective features is a difficult and time-consuming
task, which is why our approach relies mostly on learned representations.

3.1. Scoring Function

Our approach to the problem is based on learning a scoring function for each user to capture
their preferences. Since the task of interest is discrimination between positive and negative
items, we would like to learn functions that assign higher scores to positive items than to
negative ones. Once the scoring function for a user has been learned, we can rank any set
of items by ordering them according to their scores.

We restrict our attention to functions of the form

su(i) = U>u Vi + bi, (1)

where Uu and Vi are the latent factor vectors for user u and item i respectively, and bi is the
item-specific bias term that models the popularity of the item. We do not include a user-
specific bias term because it would not affect the induced ranking. In spite of their simple
parametric form, such scoring functions are very expressive because the factor vectors they
operate on are learned from the data and can be as high-dimensional as necessary.

In order to learn scoring functions we need to introduce an objective function that links
item scores to observations. Unfortunately, the classification error rate, which is the official
Track 2 performance metric, is discontinuous which makes optimizing it difficult. We take
the probabilistic approach instead and use the (penalized) log-likelihood as the objective
function, which is much easier to optimize because it is smooth.

3.2. Classification and Ranking Objective Functions

Our first model classifies items for each user into positive and negative by computing the
probability that the item is positive based on its score. The probability of an item being
positive is obtained by applying the logistic function to its score:

P (i ∈ Pu) =
1

1 + exp(−su(i))
, (2)

where Pu is the set of positive items for user u. This model can be seen as a logistic
regression classifier with the item factor vector serving as the input and the user factor
vector as the weights.

While this model is appealing because of its simplicity, it is trying to solve a harder
problem then necessary by estimating the probability of an item being positive. After all,

171



Mnih

in collaborative filtering we are typically interested in ranking items based on some criterion,
such as potential interest to the user, not classifying them. Since ranking is in a sense an
easier task than classification because there is no need to decide on a score threshold for
separating the positive and the negative items, we also tried learning scoring functions by
training a probabilistic ranking model. We take the pairwise ranking approach followed by
BPR (Rendle et al., 2009) and model the probability that user u prefers item i to item j as
the logistic function of the difference between the corresponding item scores:

P (i >u j) =
1

1 + exp(−(su(i)− su(j)))
. (3)

The model is trained on positive item i / negative item j pairs. We describe how the
negative items are generated in Sec. 4.3.

Predictions on the test set are made by ranking each user’s items based on their scores
and labelling the three top-scoring ones as positive and the remaining three as negative.

4. Incorporating Taxonomy Information

One distinguishing feature of the Yahoo! Music dataset is that items come in several types:
tracks, albums, artists, and genres. We are also given a taxonomy that links items of
different types, providing the album, the artist, and the list of genres for each track, as well
as the artist and the list of genres for each album.

We used taxonomy information to parameterize track factor vectors in a more sophisti-
cated way and to generate features that relate items to the user’s rating history in a more
direct manner than latent factors allow.

4.1. Taxonomy-Based Parameterization

Learning latent factor models that generalize well can be difficult because of the large
number of free parameters that have to be estimated from the data. For example, a model
from Sec. 3 with 100-dimensional latent vectors has over 54M parameters, which is of
the same order as the number of positive examples in the training set. If we know that
some of the parameters should take on similar values, we can improve generalization by
incorporating this information into the model. We apply this principle to encourage tracks
from the same album or by the same artist to have similar representations by parameterizing
latent factor vectors in a hierarchical manner:

V H
i = Vi + wr

alValbum(i) + wr
arVartist(i), (4)

where album(i)/artist(i) refer to the album/artist for track i.1 In other words, a track
is now represented by a linear combination of its old unconstrained representation Vi and
the representations of its album and artist. The contributions of the album and artist
representations are modulated by wr

al and wr
ar, which are learned along with all other

parameters. We also define new track biases in an analogous manner:

bHi = bi + wb
albalbum(i) + wb

arbartist(i), (5)

1. If the album or artist for a track is unknown we drop the corresponding term from Eq. 4.

172



Taxonomy-Informed Latent Factor Models for Implicit Feedback

and use V H
i and bHi in place of Vi and bi in Eq. 1.

This kind of hierarchical parameterization encourages the latent vectors (and biases) of
tracks from the same album and/or by the same artist to have similar representations. It also
encourages track representations to be similar to those of its album and artist. As a result,
updating the latent vector V H

i for a track will affect not only the track’s representation
but also the representations of its album and artist, as well as the representations of all
other tracks sharing the album or the artist. Similarly, updating a representation for an
album will also affect representations for all tracks off that album. Thus this kind of
parameterization allows pooling of information among all types of items, except for genres.
We also experimented with including a contribution from the genre representations in Eq. 4
but found that it did not improve model performance.

4.2. Taxonomy-based Features

There is another, more direct, way to use the item relationship information provided by
the taxonomy. It involves identifying the items related to the current track (i.e. its album,
artist, and tracks sharing the album or the artist) and then computing a set of features that
summarize the user’s rating history for these items. The resulting feature vector f(u, i) is
then used as an additional input to the scoring function:

su(i) = U>u Vi + bi + (Wu + Wi + W )>f(u, i). (6)

Here Wu, Wi, and W are the user-specific, the item-specific, and the global feature weights
respectively, which are learned jointly with all other model parameters.

Though this approach is conceptually simple, its effectiveness is heavily dependent on
the choice of features. This sort of feature-based approach has been very successful in nat-
ural language processing (Manning and Schütze, 1999) and computer vision (Lowe, 1999).
Designing useful features however requires a reasonably good understanding of the problem
and extensive experimentation.

We experimented with a number of features and found that while many of them reduced
the training error, only a few of them helped on the validation set. We also observed that
some features helped models with low-dimensional latent factor vectors considerably, but
either hurt or had no effect on models with higher-dimensional factor vectors.

Our feature-based models used (some) of the following features:

1. The rating given to the track’s album by the user (divided by 100)

2. Is the album’s rating 80 or higher?

3. The rating given to the track’s artist by the user (divided by 100)

4. Is the artist’s rating 80 or higher?

5. The fraction of the track’s genres rated by the user (either directly or by rating an
album or a track of that genre)

6. Has the user rated (directly or indirectly) any of the track’s genres?

7. The fraction of user’s genre ratings the track’s genres account for

173



Mnih

8. Has the user rated any other track from the album?

9. Has the user rated any other track by this artist?

10. The mean rating of the track’s genres that have been rated by the user (divided by
100)

In general, we found that only the first four of these features improved model performance
in all cases. As we show in Sec. 6, using too many features can easily lead to overfitting in
models with a large number of latent factors.

4.3. Training

The models we described need access to both positive and negative examples for train-
ing. We used the user-item pairs from the training set as positive examples. For each
user/positive-item pair we generated a negative item by sampling from the empirical distri-
bution of items in the training set. We did not ensure that the sampled negative item had
not been rated by the user because we found that the required bookkeeping increased the
running time considerably without having much of an effect on the predictive performance.

Since the models are evaluated based on their ability to rank three positive items above
three negative items, optimal performance is achieved when each of the positive items
is assigned a score higher than the scores of the three randomly-sampled negative items.
We encouraged our models to rank positive items above the highest-scoring of the three
randomly-chosen negative items by sampling three negative item candidates and keeping
the one with the highest score under the model.

We trained all our models using stochastic gradient ascent. The algorithm iterated
through the user/positive-item pairs in the training set in a random order, generating a
negative item for each such pair before updating the model parameters. Training a model
with 100-dimensional latent vectors as well as features took about half a day on a several-
year-old Xeon machine. Training models without features was considerably faster.

Model parameters were regularized using L2 weight cost (see Salakhutdinov and Srebro
(2010)) as well as early stopping on the validation set.

5. Implementation Details

Except when explicitly stated otherwise, all reported results were obtained by training on
user-item pairs with ratings 50 and higher, with the contribution from pairs with ratings
between 50 and 79 weighted by a factor of 0.25. The empirical distribution used for gen-
erating negative items was based on pairs with ratings 50 and higher. Features described
in Sec. 4.2 were computed based on pairs with ratings 10 and above, as we discovered that
including pairs with ratings between 10 and 49 to compute features improved predictive
accuracy.

We generated negative samples from the empirical distribution of items in the training
set by picking a training case uniformly at random and taking the associated item as the
sample. This is approach is both simpler and more efficient than generating samples based
on the precomputed empirical item probabilities in time logarithmic in the number of items.

174



Taxonomy-Informed Latent Factor Models for Implicit Feedback

In order to compute features from Sec. 4.2 efficiently, we stored all the necessary infor-
mation about user ratings in hash maps2 before starting training. Hash maps allowed us to
compute features for a user-item pair in time that is effectively constant in the number of
training set ratings for the user.

Table 1: The effect of the training objective
Objective function Test ERR (%)

Classification (Eq. 2) 5.182
Ranking (Eq. 3) 4.961

Table 2: The effect of the sampling distribution
Distribution of Test ERR (%)
negative items

Uniform 8.889
Popularity-based 4.961

Table 3: The effect of the taxonomy-based parameterization and features
Features Taxonomy-based Test ERR (%)

used parameterization

— No 5.673
— Yes 4.961

Best 4 (1-4) No 3.469
Best 4 (1-4) Yes 3.314

6. Results

We created a validation set in order to monitor model performance during training as well
as to allow quick model evaluation without using the KDD Cup website. For each user
present in the test set, we randomly selected three highly-rated tracks from the training
set as positive examples and moved them to the validation set.3 The negative examples
were generated by sampling from the empirical distribution of tracks rated 80 or higher
in the training set. The scores on the resulting validation set were highly correlated with
the corresponding test scores, being about 0.45 higher. In other words, a model with a
validation error rate (ERR) of 5.45% has a test ERR of about 5%.

Unless stated otherwise, the models used 100-dimensional factor vectors and the taxonomy-
based parameterization from Sec. 4.1, but did not use features. The feature-based models
were trained using the best four features (features 1-4) from Sec. 4.2. Early stopping on the
validation set was performed to prevent overfitting to the test set. All the scores we report
were computed on the part of the test set used to calculate the leaderboard scores.

2. We also tried using binary trees but found them slower, though more memory-efficient, than hash maps.
3. Users with fewer than three such tracks were not included in the validation set.

175



Mnih

Table 4: The effect of fixing the album/artist contribution weights wr
al / wr

ar

Weights learned Test ERR (%)
or fixed?

Learned 3.314
Fixed to 1 3.847

First, we looked at the effects of the objective function and the distribution of negative
items on model performance. As can be seen from Table 1, the pairwise ranking approach
outperforms the classification approach, though not drastically. The effect of sampling
negative items from the empirical distribution of positive items instead of the uniform
distribution used by BPR is much more dramatic. As shown in Table 2 it reduces the error
rate by a factor of 1.8. As a result, we performed all the remaining experiments using the
ranking objective with the negative items sampled from the empirical distribution.

We investigated the benefits of the taxonomy-based parameterization and taxonomy-
based features by training four models, one for each possible parameterization / features
combination. The scores shown in Table 3 indicate that the features help considerably
more than the hierarchical parameterization. The two uses of taxonomy information are
complementary, as using them both results in the best-performing model.

The importance of learning the weights for the contributions of the album and artist
factor vectors to the hierarchically parameterized track factor vectors is demonstrated in
Table 4: fixing these weights to 1 instead of learning them increases test ERR by over 0.5.

To explore the interplay between the features used and the latent vector dimensionality
we trained models with different numbers of latent factors using only the best four features
or all features. Table 5 shows the results for models with 100-dimensional latent vectors
and models with no latent factors. Using more features seems to hurt models with many
latent factors and help models without (or with few) latent factors, which suggests that
the models with a lot of features and latent factors are overfitting. We have also observed
that models without features benefit from higher-dimensional latent vectors (e.g. 200D and
higher) much more than the models with features do, which supports the overfitting theory.

To determine the contribution of different types of feature weights, we trained three
models, each of which used only one type of feature weights (global, user-specific, or item-
specific). The results shown in Table 6 suggest that the user-specific feature weights do
most of the work, though the item-specific and the global weights also help.

Table 5: The interplay between the number of latent factors and the usefulness of features
Features Number of latent Test ERR (%)

used factors

All 0 6.709
Best 4 (1-4) 0 11.386

All 100 3.524
Best 4 (1-4) 100 3.314

176



Taxonomy-Informed Latent Factor Models for Implicit Feedback

Table 6: The contribution of different feature weights
Feature Test ERR (%)

weights used

All 3.314
Global only 3.632
Item only 3.591
User only 3.445

Table 7: Summary of results. “Hier. param.” indicates whether the taxonomy-based hier-
archical representation was used for item factor vectors. “Min. rating” refers to
the minimal value a rating needed to have in order to be included when comput-
ing features. “Finetuned” indicates further training with reduced learning rates.
“Fold. valid.” indicates whether the validation set was folded into the training set
before training.

Model Model # of Hier. Features Min. Fine- Fold. Test
type factors param. used rating tuned valid. ERR

1 Ranker 500 Y – 10 Y N 4.010
2 Ranker 1000 Y – 10 Y N 3.728
3 Ranker 2000 Y – 10 Y N 3.562
4 Ranker 1000 Y 1-10 10 Y N 3.358
5 Ranker 100 Y 1-6,10 10 Y N 3.281
6 Ranker 100 Y 1-5 10 Y N 3.210
7 Classifier 100 Y 1-5 10 Y N 3.348
8 Classifier 500 Y 1-5 10 Y N 3.557

9 Blend of 1-8 N/A N/A N/A 10 N/A N 2.934

10 Classifier 100 Y – 10 N N 5.182
11 Ranker 100 Y – 10 N N 4.961
12 Ranker 100 N – 10 N N 5.673
13 Ranker 100 N 1-4 10 N N 3.469
14 Ranker 100 Y 1-4 10 N N 3.314
15 Ranker 100 Y 1-10 10 N N 3.524
16 Ranker 0 Y 1-4 10 N N 11.386
17 Ranker 0 Y 1-10 10 N N 6.709

18 Ranker 100 Y 1-4 10 N Y 3.191
19 Ranker 100 Y 1-4 0 N Y 3.104
20 Ranker 100 Y 1-4 0 Y Y 2.911

177



Mnih

7. Our Best Submission

Our best submission combined predictions from the following models:

1. Ranker without features with 500 latent factors

2. Ranker without features with 1000 latent factors

3. Ranker without features with 2000 latent factors

4. Ranker with features 1-10 with 1000 latent factors

5. Ranker with features 1-6,10 with 100 latent factors

6. Ranker with features 1-5 with 100 latent factors

7. Classifier with features 1-5 with 100 latent factors

8. Classifier with features 1-5 with 500 latent factors

The following learning rates were used: 10−2 for user representations and item biases,
3 × 10−2 for item representations, 10−4 for artist/album contribution weights (wr

ar / wr
al),

10−2 for user/item feature weights, and 10−4 for global feature weights. The weight cost
for user/item representations was 10−4 in models without features and 10−3 in models with
features. The weight cost values for user/item-specific feature weights and global feature
weights were 3× 10−3 and 10−3 respectively. User and item representations were initialized
from the uniform distributions over the interval [−10−2, 10−2]. All other parameters were
initialized to zero.

Each model was trained using the above parameters until its validation set ERR started
increasing. Then the model was finetuned by reducing all learning rates by a factor of 10
(except for the artist/album contribution weight learning rate, which was set to 0) and
training until the validation ERR started increasing again. The finetuning process was
repeated one more time for models 1-3 after removing the observations with ratings lower
than 80 from the training set. The feature weights for model 4 were learned before other
model parameters and were kept fixed while learning the remaining parameters.

Model scores were combined linearly using the weights learned by minimizing the ranking
loss (Eq. 3) on the validation set. The resulting ensemble achieved the score of 2.9337 on
the leaderboard.

8. Further Improvements

Model performance can be improved further by making a number of tweaks to the training
procedure. Our starting point is model 14 (100-dimensional latent vectors and the best four
features) from Table 7. The first improvement involves folding in our validation set into
the training set. In order to avoid biasing the test ERR by performing early stopping on
the test set, we simply make the same number of passes through the training set as we did
when training model 14. Using the complete training set reduces the test ERR from 3.314
to 3.191. Computing the features on all ratings during training and testing, instead of just
the ones with values 10 and higher, reduces the score down to 3.104. Finally, finetuning the

178



Taxonomy-Informed Latent Factor Models for Implicit Feedback

model by reducing the learning rates as described in Sec. 7 results in our best-performing
model with the test set ERR of 2.911. Note that this single model performs better than
our best ensemble submission which placed fourth on Track 2. Using more than 100 latent
factors is likely to result in even better performance as long as the regularization parameter
values are chosen appropriately.

9. Discussion

We have described several improvements to the Bayesian Personalized Ranking model (Ren-
dle et al., 2009) that dramatically improve its performance on Track 2 of KDD Cup 2011.
They include generating negative examples from the popularity-based item distribution
and taking advantage of the item taxonomy by introducing a hierarchical parameterization
of item representations. We also used the taxonomy to provide the model with features
summarizing the user’s rating history as it relates to a particular item.

Some of the proposed improvements have been independently discovered by other KDD
Cup 2011 participants. Several of the top teams on Track 2 used BPR-like models and
sampled negative examples from the popularity-based distribution (Toscher, 2012; Gantner
et al., 2012; McKenzie et al., 2012). A taxonomy-based parameterization was also used by
some of the teams (Toscher, 2012; Laiy et al., 2012), though they used fixed album/artist
contribution weights instead of learning them like we do. Manually designed taxonomy-
based features were also quite popular (e.g. Zhang et al. (2012)), with one team taking this
approach to the extreme and achieving competitive results without using any latent factors
(Xie et al., 2012). To the best of our knowledge, however, no other team has proposed
a latent factor model that used both the taxonomy-based parameterization and features.
This combination yielded our best-performing model with the test ERR of 2.911, which
at the time of this writing is the best score achieved by a single model on Track 2 by a
considerable margin.

There is a number of directions we did not have time to explore. Since BPR is based
on the pairwise ranking approach Burges et al. (2005) introduced in the “learning to rank”
literature, it might be worthwhile to consider the more recent ranking methods developed
in that field. LambdaRank (Burges et al., 2006) as well as the list-wise ranking methods
(Xia et al., 2008; Cao et al., 2007) seem especially promising.

Using a linear function to map features to item score contributions is the simplest but
probably not the best choice. More powerful mappings such as neural networks might be
able to make better use of the features.

Acknowledgments

I would like to thank Yee Whye Teh for helpful discussions and feedback on a draft of this
paper.

References

Christopher J. C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamil-
ton, and Gregory N. Hullender. Learning to rank using gradient descent. In ICML, pages
89–96, 2005.

179



Mnih

Christopher J. C. Burges, Robert Ragno, and Quoc Viet Le. Learning to rank with nons-
mooth cost functions. In NIPS, pages 193–200, 2006.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from
pairwise approach to listwise approach. In ICML ’07, pages 129–136, 2007.

Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus Weimer. The Yahoo! Music
Dataset and KDD-Cup’11. In KDD-Cup Workshop, 2011.

Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, and Lars Schmidt-Thieme.
Bayesian personalized ranking for non-uniformly sampled items. In JMLR W&CP Volume
18, 2012.

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback
datasets. In Proceedings of the 2008 Eighth IEEE International Conference on Data
Mining, pages 263–272, 2008.

S. Laiy, L. Xiang, R. Diao, Y. Liu, H. Gu, L. Xu, H. Li, D. Wang, K. Liu, J. Zhao, and
C. Pan. Hybrid recommendation models for binary user preference prediction problem.
In JMLR W&CP Volume 18, 2012.

D.G. Lowe. Object recognition from local scale-invariant features. In Computer Vision,
1999. The Proceedings of the Seventh IEEE International Conference on, volume 2, pages
1150 –1157 vol.2, 1999.

Christopher D. Manning and Hinrich Schütze. Foundations of statistical natural language
processing. MIT Press, Cambridge, MA, USA, 1999. ISBN 0-262-13360-1.

Benjamin Marlin. Collaborative filtering: A machine learning perspective. Master’s thesis,
University of Toronto, 2004.

T. G. McKenzie, C.-S. Ferng, Y.-N. Chen, C.-L. Li, C.-H. Tsai, K.-W. Wu, Y.-H. Chang,
C.-Y. Li, W.-S. Lin, S.-H. Yu, C.-Y. Lin, P.-W. Wang, C.-M. Ni, W.-L. Su, T.-T. Kuo,
C.-T. Tsai, P.-L. Chen, R.-B. Chiu, K.-C. Chou, Y.-C. Chou, C.-C. Wang, C.-H. Wu, H.-
T. Lin, C.-J. Lin, and S.-D. Lin. Novel models and ensemble techniques to discriminate
favorite items from unrated ones for personalized music recommendation. In JMLR
W&CP Volume 18, 2012.

Rong Pan and Martin Scholz. Mind the gaps: weighting the unknown in large-scale one-class
collaborative filtering. In KDD, pages 667–676, 2009.

Rong Pan, Yunhong Zhou, Bin Cao, Nathan Nan Liu, Rajan M. Lukose, Martin Scholz,
and Qiang Yang. One-class collaborative filtering. In ICDM, pages 502–511, 2008.

Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Schmidt-Thieme Lars. BPR:
Bayesian personalized ranking from implicit feedback. In UAI ’09, pages 452–461, 2009.

Ruslan Salakhutdinov and Andriy Mnih. Probabilistic matrix factorization. In Advances
in Neural Information Processing Systems, volume 20, 2008.

180



Taxonomy-Informed Latent Factor Models for Implicit Feedback

Ruslan Salakhutdinov and Nathan Srebro. Collaborative filtering in a non-uniform world:
Learning with the weighted trace norm. In NIPS, 2010.

Michael Jahrer Andreas Toscher. Collaborative filtering ensemble for ranking. In JMLR
W&CP Volume 18, 2012.

Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise approach to
learning to rank: theory and algorithm. In ICML ’08, pages 1192–1199, 2008.

Jianjun Xie, David Lisuk, Scott Leishman, Liang Tian, Seongjoon Koo, and Matthias
Blume. Feature engineering in users music preference prediction. In JMLR W&CP
Volume 18, 2012.

Hang Zhang, Eric Riedl, Valery Petrushin, Siddharth Pal, and Jacob Spoelstra. Committee
based prediction system for recommendation: KDD Cup 2011, Track2. In JMLR W&CP
Volume 18, 2012.

181


	Introduction
	Task Description
	Basic Latent Factor Model
	Scoring Function
	Classification and Ranking Objective Functions

	Incorporating Taxonomy Information
	Taxonomy-Based Parameterization
	Taxonomy-based Features
	Training

	Implementation Details
	Results
	Our Best Submission
	Further Improvements
	Discussion

