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Abstract

We test whether two sequences are generated by the same distribution or by two different
ones. Unlike previous work, we make no assumptions on the distributions’ support size.
Additionally, we compare our performance to that of the best possible test. We describe an
efficiently-computable algorithm based on pattern maximum likelihood that is near optimal
whenever the best possible error probability is ≤ exp(−14n2/3) using length-n sequences.

1. Introduction

We consider the problem of testing whether two sequences are generated by the same
distribution or by two different ones. There is an extensive amount of literature on this
problem and several of its variants in the framework of hypothesis testing [5, 21, 7, 11, 12],
which primarily considers asymptotic error performance when the sequence lengths tend to
infinity.

For non-asymptotic lengths, significant progress has been made recently under distribu-
tion property testing [2, 3, 17, 19], which provide efficient algorithms for closeness testing
and other problems like entropy estimation and support size estimation using a number
of samples that is sublinear in the support size. Nonetheless, these algorithms and their
error performance guarantees require a priori knowledge of upper bounds on the support
size. In this paper, we present closeness-testing algorithms that are competitively optimal
when the best possible error probability is small. The algorithms do not require knowledge
of the underlying support size. Our methods extend the technique of pattern maximum
likelihood (PML) used in [14, 15] for estimating large alphabet distributions in the context
of universal compression.

1.1. Problem definition

Let (p1, p2) be a pair of unknown distributions over an alphabet A = {a1, a2, . . . , ak} of
size k. Two length-n sequences X1, X2 are generated i.i.d. and independently of each other
according to p1 and p2 respectively. The problem is to decide whether p1 and p2 are same
or different given only X1 and X2. A closeness test ∆ for sequences in An is a mapping
∆ : An × An → {same , diff } that labels each sequence pair as same or diff , indicating
whether the distributions that generated them are believed to be same or different. The
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error probability of ∆ for any (p1, p2) is the probability that it labels a sequence pair they
generate incorrectly, i.e.,

Pne (∆, p1, p2)
def
=

{
Pr(∆(X1, X2) = diff ) if p1, p2 are same,

Pr(∆(X1, X2) = same ) if p1, p2 are different.

The goal is to design a test ∆ that uses few samples and yet has a low error probability,
both when (p1, p2) are same, i.e., p1 = p2 and when (p1, p2) are sufficiently different to be
distinguishable by some test.

1.2. A closeness test based on empirical-frequency distributions

The closeness problem is closely related to hypothesis testing. In simple hypothesis testing
problems, one of two known distributions p and q is chosen at random and generates a
random sequence x. Based on the sequence, we are asked to determine which of the two
distributions generated it. It is well known that the likelihood ratio test (LRT) [5, 16] which
decides on p or q depending on whether p(x)/q(x) is larger or smaller than 1 has the lowest
error probability.

In composite hypothesis testing problem [16] there are two known distribution classes
P and Q. One of the two classes is chosen at random and an unknown distribution from
that class generates the observation. Based on the observation, we need to decide which
class the generating distribution came from. As noted in [2], the closeness problem can be
regarded as a composite hypothesis testing problem where the two distribution classes are
Psame containing all pairs of identical distributions (p, p), and Pdiff containing all pairs of
significantly different distributions (p1, p2).

For composite hypothesis testing, we do not know which distribution to select from each
class, hence often the most likely distribution in each class is estimated. The actual distri-
butions in the LRT are replaced by their maximum likelihood estimates taken from their
respective classes, and the test thereby obtained is known as the generalized likelihood ratio
test (GLRT) [16]. Since the sequences are generated i.i.d. , the empirical-frequency distri-
bution is the maximum likelihood distribution, and is known to be a good estimate of the
underlying distribution when the sequence length n is large relative to the alphabet size k.

Specifically for closeness testing, let µ(a) be the number of appearances of a symbol a in

x, and let P̂ (x)
def
= maxp p(x) =

∏
a∈A

(µ(a)
n

)µ(a)
be the maximum likelihood of a sequence

x ∈ An under all possible i.i.d. distributions. Note that for all (x1, x2),

P̂ (x1)P̂ (x2) = max
p1,p2

p1(x1)p2(x2) ≥ max
p1=p2

p1(x1)p2(x2) = P̂ (x1x2),

hence P̂ (x1)P̂ (x2)/P̂ (x1x2) ≥ 1. A modified empirical-frequency based GLRT test was
therefore used in [10], where for all (x1, x2) ∈ An ×An,

∆emp(x1, x2)
def
=

diff if P̂ (x1)P̂ (x2)

P̂ (x1x2)
>
(
n+k−1
n

)2
n,

same otherwise.

They showed that when k = o(n), if p1 = p2 then P̂ (X1)P̂ (X2)/P̂ (X1X2) is small and

≤
(
n+k−1
n

)2
n with probability≥ 1− 1

n . And when the L1 distance |p1−p2| > ε for some ε > 0,
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then P̂ (X1)P̂ (X2)/P̂ (X1X2) is large and ≥ 2nε
2/6 >

(
n+k−1
n

)2
n with probability 1 − o(1).

Hence when the alphabet size k is sublinear in n, then ∆emp has low error probability, both
when p1 = p2 and when |p1 − p2| > ε for some constant ε > 0.

However, when the alphabet size is larger than n, empirical distribution may not be a
good estimate of the underlying distribution and ∆emp may not have low error probability,
as shown in an example in [10] and in the following, simpler, example.
Example 1 For large n and k = n3, let p1(a1) = 1 and p1(a2) = . . . = p1(an) = 0, and
let p2(a1) = 1/2 and p2(a2) = . . . = p1(an) = 1/(2(k − 1)). The two distributions are
clearly very different and |p1 − p2| = 1. If X1 and X2 are length-n sequences generated

i.i.d. according to p1 and p2 respectively, then X1 = an1 and X2 = a
n
2
1 a2a3 · · · an

2
+1 are

typical sequences. In particular, by the Birthday problem, with high probability no symbol
in {a2, a3, . . . , ak} appears more than once in X2. It follows that typically,

P̂ (X1)P̂ (X2)

P̂ (X1X2)
=
P̂ (an1 )P̂ (a

n
2
1 a2a3 · · · an

2
+1)

P̂ (a
3n
2

1 a2a3 · · · an
2

+1)
=

1n × (1
2)

n
2 ( 1

n)
n
2

(3
4)

3n
2 ( 1

2n)
n
2

=

(
4

3

) 3n
2

≈ 1.54n,

suggesting as it should that the sequences where generated by different distributions.
However, when both X1 and X2 are generated according to the same distribution,

p2, then typically X1 = a
n
2
1 a2a3 · · · an

2
+1 and X2 = a

n
2
1 an2 +2 · · · an+1 where no symbol in

{a2, a3, . . . , ak} appears more than once in X1X2. Then,

P̂ (X1)P̂ (X2)

P̂ (X1X2)
=
P̂ (a

n
2
1 a2a3 · · · an

2
+1)P̂ (a

n
2
1 an2 +2 · · · an+1)

P̂ (an1a2a3 · · · an+1)
=

(1
2)

n
2 ( 1

n)
n
2 × (1

2)
n
2 ( 1

n)
n
2

(1
2)n( 1

2n)n
= 2n,

an even higher ratio than when the distributions were different.

Therefore, for any choice of the threshold t, the GLRT test P̂ (X1)P̂ (X2)/P̂ (X1X2)
diff

same

>< t

will have a high error for at either (p1, p2) or (p2, p2). Furthermore, note that when X1, X2

are both generated according to p2, the sequences X1, X2 have very different empirical
distribution estimates than X1X2. �

1.3. Related work on estimating large alphabet distributions

Batu et al [2] developed a test that distinguishes between two distributions that are close
and those that are well separated in L1 distance using sequences whose length is sublinear in
size of the underlying alphabet. Using sequences of length n = O(k2/3 log k ·ε−4 ·log 1

δ ), their
algorithm outputs same when |p1 − p2| ≤ max( ε

32k1/3
, ε

4k1/2
) and diff when |p1 − p2| > ε

with error probability ≤ δ for both cases. Since the empirical frequency is a good estimate
for large probabilities, the algorithm estimates the L1 distance contribution of only the high-
probability symbols using their empirical frequencies. The contribution of low probability
symbols is estimated using a test for L2 distance that relies on the number of collisions (also
known as coincidences or repetitions) in the sequences. They establish a corresponding lower
bound by showing pairs of distributions (p1, p2) such that |p1−p2| > ε and that no algorithm
can distinguish it from the identical pair (p1, p1) using n = o(k2/3 · ε−2/3) samples. Valiant
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[19] further showed that distinguishing distribution pairs with L1 distance less than α from
those with distance greater than β for 0 < α < β < 2 requires n = k1−o(1) samples and
can be done using n = Õ(k) samples by [2] or by another test shown in [19]. Although no
assumptions are made on the structure of distributions, the tests in [2, 19] and their sample
complexities still depend on the knowledge of an upper bound on the alphabet size k of the
unknown underlying distributions. Moreover, as in Example 1, there are many distribution
pairs that can be tested for closeness in much less than Õ(k2/3) samples.

The related problem of classification was considered by many researchers, including
recently by Kelly et al [10]. Here, one is given training sequences X1 and X2 ∈ An generated
i.i.d. and independently according to unknown distributions p1 and p2 that are separated in
L1 distance. A third sequence Y ∈ An is generated i.i.d. and independently of each other
according to either p1 or p2 with equal probability and the problem is to decide whether
Y is generated according p1 or p2. They show a test that has low error probability when
(p1, p2) belong to a restricted class of distributions such that the probabilities of all symbols
are Θ( 1

k ) and k = Θ(nα), for any fixed α ∈ [0, 2). Their test uses the L2 distance between
the empirical frequency distributions, of the sequences to determine which one of the pairs
(X1, Y ) or (X2, Y ) are closer and classify accordingly.

The problem of estimating the probability multiset of large alphabet distributions was
also studied in the context of universal compression of large alphabet sources in [14, 15].
The main idea is to consider the pattern of a sequence, which conveys only the structure of
the sequence and the order in which symbols appear in the sequence, and not the identities
of the actual symbols. The pattern contains all the information that is needed to test
symmetric properties like entropy that depend only on the probability multiset and not
on the way in which the probabilities are associated with the symbols of the alphabet.
In [14], several estimators based on the maximum likelihood of patterns were shown that
estimate the pattern probabilities (that are usually exponentially small in n) to within a
factor that is subexponential in the sequence length n, regardless of the alphabet size and
the structure of the underlying distribution. Preliminary results on application of such
estimators to the problem of classification were shown in [18]. Partial results on classifiers
based on maximum likelihood estimation of the joint pattern of two or more sequences were
shown in [1]. In this paper, we show closeness tests based on maximum likelihood of joint
patterns that perform almost as good as any test can, without making any assumptions on
the underlying distributions. These tests can be used as good classifiers as well.

1.4. Closeness tests based on pattern maximum likelihood

The pattern of a sequence is defined as follows. Let x = x1x2 · · ·xn = xn1 ∈ An be a
sequence of length n and A(x) denote the set of symbols that appear in x. The index ıx(a)
of a symbol a ∈ A(x) is

ıx(a)
def
= min{|A(xi1)| : 1 ≤ i ≤ n and xi = a},

i.e., one more than the number of distinct symbols that have appeared before the first
appearance of a in x. The pattern of x is the sequence

Ψ(x)
def
= ıx(x1)ıx(x2) · · · ıx(xn)
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obtained by replacing the symbols in x by their respective indices. For example, if
x = abracadabra, then ıx(a) = 1, ıx(b) = 2, ıx(r) = 3, ıx(c) = 4 and ıx(d) = 5.
Hence, Ψ(abracadabra) = 12314151231. The set of all possible patterns of different
length-n sequences is represented by Ψn. For example, Ψ1 = {1}, Ψ2 = {11, 12} and
Ψ3 = {111, 112, 121, 122, 123}.

We extend the definition of patterns to two or more sequences. The joint pattern of

a pair of sequences (x1, x2) ∈ An1 × An2 is Ψ(x1, x2)
def
= (ψ1, ψ2), where ψ1 = Ψ(x1) and

ψ1ψ2 = Ψ(x1x2). For example, for bab and abca, the first pattern is Ψ(bab) = 121
and that of the concatenated sequence is Ψ(bababca) = 1212132, hence the joint pattern is
Ψ(bab, abca) = (121, 2132). Clearly, the joint pattern conveys the patterns of the individual
sequences and the association between the symbols of the sequences. The joint pattern
of a list of three or more sequences is defined similarly. We use Ψn1,n2 to denote the
set of all possible joint patterns of pairs of sequences of length (n1, n2). For example,
Ψ2,1 = {(11, 1), (11, 2), (12, 1), (12, 2), (12, 3)}.

The probability of a single pattern ψ ∈ Ψn under a distribution p is the probability that
a length-n sequence X generated i.i.d. according to p has pattern ψ, i.e.,

p(ψ)
def
= p

(
Ψ(X) = ψ

)
=

∑
x:Ψ(x)=ψ

p(x).

Similarly, the probability of a joint pattern (ψ1, ψ2) ∈ Ψn1,n2 under a pair of distributions
(p1, p2) is the probability that two sequences X1 and X2 of length n1 and n2 generated
i.i.d. according to p1 and p2 respectively have joint pattern (ψ1, ψ2) and is denoted by

p1,2(ψ1, ψ2) = p1,2

(
Ψ(X1, X2) = (ψ1, ψ2)

)
=

∑
(x1,x2):

Ψ(x1,x2)=(ψ1,ψ2)

p1(x1)p2(x2).

For example, if A = {a, b, c, d} and p = (pa, pb, pc, pd), then the probability of the pattern
1213 is

p(1213) = p(abac) + p(abad) + p(acab) + · · · = p2
apbpc + p2

apbpd + p2
apcpb + · · · .

Similarly, if p1 = (pa, pb, pc, pd) and p2 = (p′a, p
′
b, p
′
c, p
′
d), then probability of the pattern

(12, 13) is

p1,2(12, 13) = p1,2(ab, ac) + p1,2(ab, ad) + p1,2(ba, bc) + · · · = papbp
′
ap
′
c + papbp

′
ap
′
d + · · · .

Notice that if (ψ1, ψ2) ∈ Ψn1,n2 , then ψ1ψ2 ∈ Ψn1+n2 . Also, if p1 = p2 = p, then
p1,2(ψ1, ψ2) = p1,1(ψ1, ψ2) = p1(ψ1ψ2).

The maximum likelihood of a pattern ψ under all i.i.d. distributions is P̂ (ψ)
def
= max

p
p(ψ).

Similarly, the maximum likelihood of a joint pattern (ψ1, ψ2) under all pairs of i.i.d. and

independent distributions is denoted by P̂ (ψ)
def
= max

p1,p2
p1,2(ψ).

Since joint patterns contain all the relevant information for closeness testing, con-
sider a simple hypothesis testing problem where a sequence pair (X1, X2) ∈ An × An
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is generated according to either (p1, p2) or (p, p), but we are given only the joint pat-
tern Ψ(X1, X2) and not the actual sequences. In this case, the likelihood ratio test

p1,2(Ψ(X1, X2))
diff

same

>< p(Ψ(X1X2)) is a test with minimum error probability. Hence, simi-

lar to Subsection 1.2, viewing closeness testing as a composite hypothesis testing problem
with the joint pattern of the sequences given as the observations, we consider the test

∆P̂ (Ψ) def
= ∆

P̂ (Ψ)
n,δ defined as

∆
P̂ (Ψ)
n,δ (x1, x2)

def
=

diff if P̂ (Ψ(x1,x2))

P̂ (Ψ(x1x2))
> 1√

δ
,

same otherwise,

for all (x1, x2) ∈ An×An and for some δ < exp(−12n2/3). In other words, the test outputs
diff if the maximum likelihood of the pattern of the two sequences under two different
distributions is much higher than that under two identical distributions.

Without loss of generality, we consider only symmetric tests, namely those whose output
depends only on joint pattern of the sequences and not the specific symbols that have
appeared, since the property of closeness depends only on the probability multiset and not
the associated symbols. (See also Appendix C for a discussion along the lines of [4].) We
say that a pair of distributions (p1, p2) is (n, δ)-different if there exists a symmetric test that
can distinguish with error probability < δ, pairs of length n sequences generated according
to (p1, p2) from those generated by any pair of identical distributions (p, p). In other words,
there exists a test ∆ such that for all p,

Pne (∆, p1, p2) < δ and Pne (∆, p, p) < δ.

Our first main result, Theorem 7, states that for all δ ≤ exp(−12n2/3). the test ∆P̂ (Ψ)

has error probability ≤
√
δ exp(6n2/3) both when the two distributions are identical and

when they are (n, δ)-different.
Revisiting Example 1, in the case when (X1, X2) ∼ (p1, p2), consider the typical se-

quence pair (X1, X2) = (an1 , a
n
2
1 a2a3 · · · an

2
+1). Then, P̂ (Ψ(X1, X2)) = P̂ (1n, 1

n
2 23 · · · (n2 +

1)) ≥ 1 · (1
2)

n
2 (1

2)
n
2 = (1

2)n, since the distributions (p′1, p
′
2) assign Ψ(X1, X2) such a like-

lihood, where p′1(a1) = 1, p′2(a1) = 1
2 , and the remaining probability 1

2 of p′2 is spread

over a continuous alphabet or a large tail, similar to p2. Also, from [13], P̂ (Ψ(X1X2)) =

P̂ (1
3n
2 23 · · · (n2 +1)) = (3

4)
3n
2 (1

4)
n
2 , which is attained by the distribution p such that p(a1) = 3

4
and has the remaining probability 1

4 spread over a continuous alphabet. Hence,

P̂ (Ψ(X1, X2))

P̂ (Ψ(X1X2))
≥

(1
2)n

(3
4)

3n
2 (1

4)
n
2

=

(
4

3

) 3n
2

> 1.53n,

and the test ∆P̂ (Ψ) outputs diff for δ = exp(−14n2/3). When (X1, X2) ∼ (p2, p2), for the

typical sequence pair (X1, X2) = (a
n
2
1 a2a3 · · · an

2
+1, a

n
2
1 an2 +2 · · · an+1), again as shown by

[13], P̂ (Ψ(X1, X2)) ≤ P̂ (Ψ(X1)P̂ (Ψ(X2)) = P̂ (1
n
2 23 · · · (n2 + 1))2 =

(
(1

2)
n
2 (1

2)
n
2

)2
= (1

2)2n,

and P̂ (Ψ(X1X2)) = P̂ (1n23 · · · (n+ 1)) = (1
2)n(1

2)n = (1
2)2n . Hence, in this case

P̂ (Ψ(X1, X2))

P̂ (Ψ(X1X2))
= 1,
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and the output of ∆P̂ (Ψ) is same . We note that the maximum likelihood distributions of
Ψ(X1, X2) and of Ψ(X1X2) are consistent, i.e., same, unlike in the case of ∆emp.

As evident from the previous example, the computation of pattern maximum likelihood
(PML) is difficult in general and hence we show an efficient test based on pattern probability
estimators that also has low error probability. Several such estimators were shown in [14]
which can compute maximum likelihood of patterns to within a subexponential factor. In
particular, we consider the following estimator. The profile of a pattern or a sequence
conveys the number of symbols appearing a given number of times in it. For example, the
profile of abdb is ϕ(abdb) = (ϕ1, ϕ2, ϕ3, ϕ4) = (2, 1, 0, 0), indicating that there are ϕ1 = 2
symbols that appear once in abdb and ϕ2 = 1 symbol that appears 2 times and so on.
The sequences abdb and dcca for example have the same profile, though their patterns are
different. The definition of a profile can be similarly extended to joint patterns or pairs of
sequences and consists of entries ϕµ1,µ2 that are the number of symbols that have appeared
µ1 times in first sequence and µ2 times in the second sequence. For example,

ϕ(dac, adbda) = ϕ(123, 21412) =

0 1 2

0 0 1 0
1 1 0 2

,

where the prevalances ϕµ1,µ2 are arranged in a matrix with the rows indexed with µ1 and
columns with µ2. As seen in the matrix, ϕ1,2 = 2, since there are 2 symbols, namely d

and a that appear µ1 = 1 times in dac and µ2 = 2 times in adbda. By convention, we set
ϕ0,0 ≡ 0.

Let N(ϕ) be the number of patterns with the same profile ϕ and Φn be the set of all
distinct profiles of sequences of length n. It was shown in [14] that the probability estimator
for ψ ∈ Ψn,

q(ψ)
def
=

1

|Φn|
1

N(ϕ(ψ))
,

which assigns equal probability estimate to all profiles and equal estimate to all pat-
terns within a profile, is a good estimate for patten maximum likelihood, i.e., q(ψ) ≥
p̂(ψ) exp(−π

√
2n/3).

We consider a similar estimator for maximum likelihood of joint patterns. Namely,
denoting the number of joint patterns with the same profile ϕ by N(ϕ) and the set of all
distinct profiles of length-(n, n) sequences by Φn,n, we estimate the probability of a joint
pattern (ψ1, ψ2) ∈ Ψn,n as

qjp(ψ1, ψ2)
def
=

1

|Φn,n|
1

N(ϕ(ψ1, ψ2))
.

We use the estimators q and qjp instead of the pattern maximum likelihoods in ∆P̂ (Ψ)

and consider the test ∆
N(ϕ)
n,δ defined for δ < exp(−14n2/3) and (x1, x2) ∈ An ×An by

∆
N(ϕ)
n,δ (x1, x2)

def
=

{
diff if N(ϕ(x1x2))

N(ϕ(x1,x2)) >
1√
δ
,

same otherwise.
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Our second main result, Theorem 12, shows that (p1, p2) are identical and when they
are (n, δ)-different, the test ∆N(ϕ) error probability is upper bounded by

Pe,sym(∆N(ϕ), p1, p2) ≤
√
δ exp(7n2/3).

In the process, we show a convexity result for profile probabilities, that resembles the
convexity of KL-divergence.

For ϕ ∈ Φn, N(ϕ) can be calculated by the expressions [14]

N(ϕ) =
n!∏n

µ=1(µ!)ϕµϕµ!
.

As shown in Appendix B, for ϕ ∈ Φn,n,

N(ϕ) =
(n!)2∏n

µ1,µ2
(µ1!µ2!)ϕµ1,µ2ϕµ1,µ2 !

,

Hence, for (ψ1, ψ2) ∈ Ψn,n, the quantity N(ϕ(ψ1ψ2))

N(ϕ(ψ1,ψ2))
can be evaluated efficiently with time

and space complexity both O(n).
Consider Example 1 again, this time using the test ∆N(ϕ). When (X1, X2) ∼ (p1, p2)

and Ψ(X1, X2) = (ψ1, ψ2) = (1n, 1
n
2 23 · · · (n2 + 1)), the profile ϕ = ϕ(ψ1, ψ2) has ϕ0,1 = n

2 ,
ϕn,n

2
= 1 and all other ϕµ1,µ2 = 0. And the profile ϕ′ = ϕ(ψ1ψ2) has ϕ′1 = n

2 , ϕ′3n
2

= 1 and

all other ϕ′µ = 0. Hence, by Stirling approximation,

N(ϕ(X1X2))

N(ϕ(X1, X2))
= N(ϕ′)/N(ϕ) =

(2n)!

(3n
2 )! · (n2 )!

/ (n!)2

n!(n2 )! · (n2 )!
≈
(

4

3

) 3
2n

> 1.53n,

and the test ∆
N(ϕ)
n,δ outputs diff for a suitable δ as in the case of ∆P̂ (Ψ), say δ =

exp(−16n2/3). When (X1, X2) ∼ (p2, p2), and Ψ(X1, X2) = (ψ1, ψ2) = (1
n
2 23 · · · an

2
+1, 1

n
2 (n2 +

2) · · · (n+ 1)),
N(ϕ(X1X2))

N(ϕ(X1, X2))
=

(2n)!

n!n!

/ (n!)2

(n2 )!(n2 )! · (n2 )! · (n2 )!
≈
√
πn

2

and the output of ∆
N(ϕ)
n,δ is same for δ = exp(−16n2/3).

While the error probability results that we show for the tests ∆
N(ϕ)
n,δ and ∆

P̂ (Ψ)
n,δ are useful

only when δ < exp(−14n2/3), for higher values of δ, we can characterize their performance
in terms of sample complexity. Corollary 14 shows that if (p1, p2) are (n, δ)-different for

some δ < 1
4 , then for δ′ = δ2 exp(−14n′2/3), the test ∆

N(ϕ)
n′,δ′ also has error probability less

than δ when given sequences of length

n′ = max
{

19n,
120000n3

(log2
1
4δ )3

}
.

In particular, if δ < exp(−19n2/3), the error probability of ∆N(ϕ) is less than δ when
given n′ = 19n samples.
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2. Error analysis of the test ∆P̂ (Ψ)

In order to analyze the error probability of ∆
P̂ (Ψ)
n,δ , we show some ancillary results on profiles

of joint patterns and their probabilities.
We begin by showing that |Φn,n|, the number of profiles of joint patterns, is subex-

ponential in the sequence length. To count the number of profiles |Φn1,n2,...,nd |, we re-
late it to partitions of (n1, n2, . . . , nd). We say that a multiset of d-tuples of non-
negative integers {(µ1,i, µ2,i, . . . , µd,i)}mi=1 is an (unordered) partition of (n1, n2, . . . , nd) if∑m

i=1 µj,i = nj for j = 1, 2, . . . , d. The sum of two d-tuples denotes their component-

wise sum, i.e., (µ1, µ2, . . . , µd) + (µ′1, µ
′
2, . . . , µ

′
d)

def
= (µ1 + µ′1, µ2 + µ′2, . . . , µd + µ′d).

The product of a scalar with a d-tuple is component-wise product with the scalar, i.e.,

α · (µ1, µ2, . . . , µd)
def
= (α · µ1, α · µ2, . . . , α · µd). For example, {(0, 1), (0, 1), (2, 1)} is an

unordered partition of (2, 3), because 2 · (0, 1) + (2, 1) = (2, 3).
We denote the number of partitions of (n1, n2, . . . , nd) by the joint partition function

P (n1, n2, . . . , nd). For example, P (2, 1) = 4, since

(2, 1) = (1, 0) + (1, 1) = (2, 0) + (0, 1) = 2 · (1, 0) + (0, 1).

Observation 1 For all d ≥ 1 and non-negative integers n1, n2, . . . , nd,

|Φn1,n2,...,nd | = P (n1, n2, . . . , nd).
�

It is a well known result due to Hardy and Ramanujan [8, 9] that for all n, the partition
function P (n) is bounded as

exp
(
π

√
2

3

√
n(1− o(1))

)
≤ P (n) < exp

(
π

√
2

3

√
n
)
.

The following lemma shows an upper bound on P (n1, n2, . . . , nd), similar to [20, 6].

Lemma 2 For all d ≥ 1 and all n1, n2, . . . , nd ≥ 2d+1,

P (n1, n2, . . . , nd) ≤ exp
(

2
(

1 +
1

d

) d∑
j=1

n
d/(d+1)
j

)
.

Proof See for example Appendix A. �

Corollary 3 For all d ≥ 1 and n ≥ 2d+1,

|Φn,n,... (d times)| = P (n, . . . n︸ ︷︷ ︸
d

) < exp
(

2(d+ 1)nd/(d+1)
)
.

�
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Let (X1, X2) ∈ An1 × An2 be generated i.i.d. and independently according to (p1, p2)
respectively. The probability of a profile ϕ ∈ Φn1,n2 under (p1, p2) is the probability of
observing a pair of sequences with that profile, i.e.,

p1,2(ϕ)
def
= p1,2

(
ϕ(X1, X2) = ϕ

)
=

∑
(ψ1,ψ2):ϕ(ψ1,ψ2)=ϕ

p1,2(ψ1, ψ2).

Joint patterns with the same profile have the same probability when the sequences are
generated by i.i.d. distributions. Hence, for all (ψ1, ψ2),

p1,2(ϕ(ψ1, ψ2)) = N(ϕ(ψ1, ψ2)) · p1,2(ψ1, ψ2).

The following lemma provides a simple bound on the probability of generating sequences
whose profile has low probability.

Observation 4 Let (X1, X2) ∈ An1 ×An2 be generated i.i.d. according to (p1, p2) respec-
tively, where n1, n2,≥ 8. Then, for all 0 < δ ≤ 1,

Pr
(
p1,2(ϕ(X1, X2)) < δ

)
< δ exp

(
3(n

2/3
1 + n

2/3
2 )

)
.

Proof From Lemma 15,

Pr
(
p1,2(ϕ(X1, X2)) < δ

)
=

∑
ϕ:p1,2(ϕ)<δ

p1,2(ϕ) < |Φn1,n2 | · δ ≤ δ exp
(
3(n

2/3
1 + n

2/3
2 )

)
.

�

Observation 5 Let (X1, X2) ∈ An × An be generated i.i.d. according to (p1, p2), where
n ≥ 8. Then, for all 0 < δ ≤ 1,

Pr
(
p1,2(ϕ(X1, X2)) < δ

)
< δ exp(6n2/3). �

We make the following observation on (n, δ)-different distributions before we proceed to

analyze the error probability of ∆P̂ (Ψ).

Observation 6 Let (p1, p2) be (n, δ)-different distributions over A, and let ϕ ∈ Φn,n be a
profile such that p1,2(ϕ) ≥ δ. Then, for all distributions p3 over A, p3,3(ϕ) < δ.

Proof Suppose on the contrary, there exists a distribution p3 such that p3,3(ϕ) ≥ δ. Any
symmetric test ∆ labels all sequence pairs with profile ϕ either same or diff . If it labels
them same , then Pne (∆, p1, p2) ≥ δ and if it labels them diff , then Pne (∆, p3, p3) ≥ δ,
i.e., one of the error probabilities is ≥ δ, which contradicts the fact that (p1, p2) are (n, δ)-
different. �

The following theorem upper bounds the error probability of the test ∆
P̂ (Ψ)
n,δ .

Theorem 7 For all n ≥ 8, all 0 < δ < exp(−12n2/3), and all pairs distributions (p1, p2)
that are either same or (n, δ)-different,

Pne (∆
P̂ (Ψ)
n,δ , p1, p2) <

√
δ exp(6n2/3).

56



Competitive Closeness Testing

Proof Let (X1, X2) ∼ pn1 ×pn2 . Consider the case when the (p1, p2) are same, i.e., p1 = p2.
Then,

Pne (∆P̂ (Ψ), p1, p1) = Pr
( p̂(Ψ(X1, X2))

p̂(Ψ(X1X2))
>

1√
δ

)
(a)
= Pr

( p̂(Ψ(X1, X2))

p3,3(Ψ(X1, X2))
>

1√
δ

)
(b)
= Pr

( p̂(ϕ(X1, X2))

p3,3(ϕ(X1, X2))
>

1√
δ

)
(c)

≤ Pr
( 1

p1,1(ϕ(X1, X2))
>

1√
δ

)
(d)
<
√
δ exp(6n2/3),

where in (a), p3 = arg maxp p(Ψ(X1X2)) and in (b), we convert pattern probabilities
to profile probabilities by multiplying and dividing by N(ϕ(X1, X2)) and using p(ϕ) =
N(ϕ)p(ψ1, ψ2). For (c), we use that p̂(ϕ(X1, X2)) ≤ 1 and we use Observation 5 for (d).

Now consider the case when (p1, p2) are (n, δ)-different. For a sequence pair (X1, X2),
let p3 = arg maxp p(Ψ(X1X2)). Then,

Pr
( p̂(Ψ(X1, X2))

p̂(Ψ(X1X2))
≤ 1√

δ

)
≤ Pr

(p1,2(Ψ(X1, X2))

p3,3(Ψ(X1, X2))
≤ 1√

δ

)
= Pr

(p1,2(ϕ(X1, X2))

p3,3(ϕ(X1, X2))
≤ 1√

δ

)
<
√
δ exp(6n2/3).

For the last step, in the case when p1,2(ϕ) ≥
√
δ, there is no error since Observation 6

implies that for all p3, p3,3(ϕ) < δ and hence
p1,2(ϕ(X1,X2))

p3,3(ϕ(X1,X2))
>
√
δ
δ = 1√

δ
. Hence, the error

probability is bounded by the probability of the case when p1,2(ϕ) <
√
δ, which by Obser-

vation 5 is <
√
δ exp(6n2/3). �

3. Error analysis of the test ∆N(ϕ)

As mentioned in Section 1, direct computation of maximum likelihood of patterns in the

test ∆P̂ (Ψ) may be difficult and hence we look at a computationally easier test ∆N(ϕ). We
now show a few more useful results for analyzing the error probability of ∆N(ϕ), which
relate the quantities N(ϕ), the number of patterns in a profile and P̂ (ϕ), the maximum
likelihood of the profile under i.i.d. distributions.

The type of a sequence x ∈ An is the vector of multiplicities τ(x)
def
=
(
µ(a1), µ(a2), . . . , µ(ak)

)
,

where µ(ai) is the number of appearances of ai in x for i = 1, 2, . . . , k. Similarly, the
joint type∗ of a pair of sequences (x1, x2) ∈ An1 × An2 is the vector of multiplicity

∗. This definition of joint type is different from that used in the method of types in information theory.
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pairs τ(x1, x2)
def
=
(
(µ1(a1), µ2(a1)), (µ1(a2), µ2(a2)), . . . , (µ1(ak), µ2(ak))

)
, where µ1(ai) and

µ2(ai) are the number of appearances of ai in x1 and x2 for i = 1, 2, . . . , k. The set of all
possible distinct types of sequences in An is denoted by T n and the set of all possible
distinct joint types of sequences in An1 ×An2 is denoted by T n1,n2 .

The probability of a type τ =
(
µ(ai)

)k
i=1
∈ T n under a distribution p over A is

p(τ)
def
=

∑
τ(x)=τ

p(x) =

(
n

µ(a1), µ(a2), · · · , µ(ak)

) k∏
i=1

p(ai)
µ(ai),

i.e., the probability of observing a sequence whose type is τ . Similarly, the probability of a

joint type τ =
(
(µ1(ai), µ2(ai))

)k
i=1
∈ T n1,n2 under a pair of distributions (p1, p2) over A is

p1,2(τ)
def
=

∑
τ(x1,x2)=τ

p1,2(x1, x2)

=

(
n1

µ1(a1), µ1(a2), · · · , µ1(ak)

)(
n2

µ2(a1), µ2(a2), · · · , µ2(ak)

) k∏
i=1

p1(ai)
µ1(ai)p2(ai)

µ2(ai).

The sum type of a joint type τ =
(
(µ1(ai), µ2(ai))

)k
i=1
∈ T n,n is τs(τ)

def
=
(
µ(ai)

)k
i=1
∈

T 2n, where µ(ai)
def
= µ1(ai) + µ2(ai) for i = 1, 2, . . . , k. The probability of a (sum) type

τ ′ ∈ T 2n under a pair of distributions p1,2 = (p1, p2) is the probability of the set of all types
τ ∈ T n,n such that τs(τ) = τ ′, i.e.,

p1,2(τ ′)
def
=

∑
τ∈T n,n:
τs(τ)=τ ′

p1,2(τ).

For any pair of distributions (p1, p2) over A×A, p1/2
def
= (p1 +p2)/2 denotes the distribution

over A such that p1/2(ai) = (p1(ai) + p2(ai))/2 for i = 1, 2, . . . , k.

Observation 8 For all types τ ′ ∈ T 2n and all (p1, p2),∑
τ∈T n,n:
τs(τ)=τ ′

p1,2(τ) = p1,2(τ ′) ≤ p1/2(τ ′)
(n!)222n

(2n)!
< p1/2(τ ′)

√
πne

1
6n .

Proof Let τ ′ =
(
µ(ai)

)k
i=1

. Then,

p1,2(τ ′) =
∑

τ∈T n,n:
τs(τ)=τ ′

p1,2(τ)

=
∑

(µ1(a1),...,µ1(ak)):
0≤µ1(ai)≤µ(ai) for i=1,...,k,

and µ1(a1)+···+µ1(ak)=n

n!n!
k∏
i=1

1

µ1(ai)!(µ(ai)− µ1(ai))!
p1(ai)

µ1(ai)p2(ai)
µ(ai)−µ1(ai)

=
n!n!∏k

i=1 µ(ai)!

∑
(µ1(a1),...,µ1(ak)):

0≤µ1(ai)≤µ(ai) for i=1,...,k,
and µ1(a1)+···+µ1(ak)=n

k∏
i=1

(
µ(ai)

µ1(ai)

)
p1(ai)

µ1(ai)p2(ai)
µ(ai)−µ1(ai)
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≤ n!n!∏k
i=1 µ(ai)!

∑
(µ1(a1),...,µ1(ak)):

0≤µ1(ai)≤µ(ai) for i=1,...,k

k∏
i=1

(
µ(ai)

µ1(ai)

)
p1(ai)

µ1(ai)p2(ai)
µ(ai)−µ1(ai)

=
n!n!∏k

i=1 µ(ai)!

k∏
i=1

( µ(ai)∑
µ1(ai)=0

(
µ(ai)

µ1(ai)

)
p1(ai)

µ1(ai)p2(ai)
µ(ai)−µ1(ai)

)

=
n!n!∏k

i=1 µ(ai)!

k∏
i=1

(p1(ai) + p2(ai))
µ(ai)

=
(n!)222n

(2n)!

(
2n

µ(a1), µ(a2), . . . , µ(ak)

) k∏
i=1

(p1(ai) + p2(ai)

2

)µ(ai)

=
(n!)222n

(2n)!
p1/2(τ ′).

�

The profile of a type τ ∈ T n is ϕ(τ) = ϕ(x), where x is any sequence whose type is

τ(x) = τ . Similarly, for any τ ∈ T n1,n2 , ϕ(τ)
def
= ϕ(x1, x2), where (x1, x2) is any sequence

pair such that τ(x1, x2) = τ .

Observation 9 For all profiles ϕ ∈ Φn and all distributions p,

p(ϕ) =
∑

τ∈T n:ϕ(τ)=ϕ

p(τ).

Likewise, for all profiles ϕ ∈ Φn1,n2 and all pairs of distributions (p1, p2),

p1,2(ϕ) =
∑

τ∈T n1,n2 :ϕ(τ)=ϕ

p1,2(τ).

�

The sum profile of a profile ϕ ∈ Φn,n is ϕs(ϕ)
def
= ϕ(ψ1ψ2) ∈ Φ2n where (ψ1, ψ2) is any

joint pattern having profile ϕ(ψ1, ψ2) = ϕ. Hence, if ϕ = [ϕµ1,µ2 ], where µ1 = 0, 1, . . . , n
and µ2 = 0, 1, . . . , n, then ϕs(ϕ) = (ϕ1, ϕ2, . . . , ϕ2n) is given by ϕµ =

∑
µ1+µ2=µ ϕµ1,µ2 . The

probability of a (sum) profile ϕ′ ∈ Φ2n under a pair of distributions p1,2 is the probability
p1,2 assigns to the set of all profiles ϕ ∈ Φn,n such that ϕs(ϕ) = ϕ′, i.e.,

p1,2(ϕ′)
def
=

∑
ϕ∈Φn,n:
ϕs(ϕ)=ϕ′

p1,2(ϕ).

The following lemma on profile probabilities is analogous to the convexity of KL-
divergence.

Lemma 10 For all ϕ′ ∈ Φ2n and all (p1, p2),∑
ϕ∈Φn,n:
ϕs(ϕ)=ϕ′

p1,2(ϕ) = p1,2(ϕ′) ≤ p1/2(ϕ′)
(n!)222n

2n!
< p1/2(ϕ′)

√
πne

1
6n .
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Proof Using Observations 8 and 9,

p1,2(ϕ′) =
∑

ϕ∈Φn,n:
ϕs(ϕ)=ϕ′

p1,2(ϕ)

=
∑

τ∈T n,n:
ϕs(ϕ(τ))=ϕ(τs(τ))=ϕ′

p1,2(τ)

=
∑

τ ′∈T 2n:
ϕ(τ ′)=ϕ′

p1,2(τ ′)

≤
∑

τ ′∈T 2n:
ϕ(τ ′)=ϕ′

(n!)222n

(2n)!
p1/2(τ ′)

= p1/2(ϕ′)
(n!)222n

(2n)!
.

�

The following Lemma 11 relates the ratio of maximum likelihoods of any joint pattern

(ψ1, ψ2) and its concatenated pattern ψ1ψ2 which appear in the test ∆P̂ (Ψ), to the ratio
of counts of patterns in their respective profiles, i.e., N(ϕ(ψ1, ψ2)) and N(ϕ(ψ1ψ2)) that
appear in the test ∆N(ϕ).

Lemma 11 For all joint patterns (ψ1, ψ2) ∈ Ψn,n,

N(ϕ(ψ1ψ2))

N(ϕ(ψ1, ψ2))
≥ p̂(ψ1, ψ2)

p̂(ψ1ψ2)

(2n)!

(n!)222n
>

p̂(ψ1, ψ2)

p̂(ψ1ψ2)

1
√
πne

1
6n

.

Proof Let p1,2 = (p1, p2) be such that p̂(ψ1, ψ2) = p1,2(ψ1, ψ2). Note that ϕs(ϕ(ψ1, ψ2)) =
ϕ(ψ1ψ2). Using Lemma 10, we have

N(ϕ(ψ1, ψ2))p̂(ψ1, ψ2) = N(ϕ(ψ1, ψ2))p1,2(ψ1, ψ2)

= p1,2(ϕ(ψ1, ψ2))

≤ p1,2(ϕs(ϕ(ψ1, ψ2)))

≤ p1/2(ϕs(ϕ(ψ1, ψ2)))
(n!)222n

(2n)!

= p1/2(ϕ(ψ1ψ2))
(n!)222n

(2n)!

≤ p̂(ϕ(ψ1ψ2))
(n!)222n

(2n)!

= N(ϕ(ψ1ψ2))p̂(ψ1ψ2)
(n!)222n

(2n)!
.

�
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Theorem 12 For all n ≥ 8, all 0 < δ < 1
4πne1/3n

exp(−12n2/3), and all pairs distributions
(p1, p2) that are either same or (n, δ)-different,

Pne (∆N(ϕ), p1, p2) <
√
δ exp(6n2/3)

√
πne

1
6n .

Proof Let (X1, X2) ∼ pn1 × pn2 . Consider the case when p1 = p2. Then,

Pne (∆N(ϕ), p1, p1) = Pr
( N(ϕ(X1X2))

N(ϕ(X1, X2))
>

1√
δ

)
(a)
= Pr

( p1(ϕ(X1X2))

p1,1(ϕ(X1, X2))
>

1√
δ

)
≤ Pr

( 1

p1,1(ϕ(X1, X2))
>

1√
δ

)
<
√
δ exp(6n2/3),

where in (a), we used N(ϕ(ψ1ψ2))

N(ϕ(ψ1,ψ2)
= N(ϕ(ψ1ψ2))p1(ψ1ψ2)

N(ϕ(ψ1,ψ2)p1,1(ψ1,ψ2)
= p1(ϕ(ψ1ψ2))

p1,1(ϕ(ψ1,ψ2))
and the last inequal-

ity is due to Observation 5.
Consider the case when (p1, p2) are (n, δ)-different. For a sequence pair (X1, X2), let

p3 = arg maxp p(Ψ(X1X2)). Then,

Pne (∆N(ϕ), p1, p2) = Pr
( N(ϕ(X1X2))

N(ϕ(X1, X2))
≤ 1√

δ

)
(a)

≤ Pr
( 1
√
πne

1
6n

p̂(Ψ(X1, X2))

p̂(Ψ(X1X2))
≤ 1√

δ

)
≤ Pr

(p1,2(Ψ(X1, X2))

p3,3(Ψ(X1X2))
≤
√
πne

1
6n

√
δ

)
<
√
δ exp(6n2/3)

√
πne

1
6n ,

where in (a), we used Lemma 11 For the last inequality, we again consider the cases

p1,2(ϕ(X1, X2)) ≥
√
δ
√
πne

1
6n and <

√
δ
√
πne

1
6n separately similar to the proof of The-

orem 12. In the case when p1,2(ϕ(X1, X2)) ≥
√
δ
√
πne

1
6n > δ, Observation 6 implies

p3,3(ϕ(X1, X2)) < δ. Hence,
p1,2(ϕ(X1,X2))

p3,3(ϕ(X1,X2))
>
√
δ
√
πne

1
6n

δ =
√
πne

1
6n√
δ

and hence, this case

does not contribute to error probability. The error probability is therefore bounded by the

probability of the other case, which by Observation 5 is bounded as Pr
(
p1,2(ϕ(X1, X2)) <

√
δ
√
πne

1
6n

)
<
√
δ exp(6n2/3)

√
πne

1
6n . �

4. Sample complexity of closeness testing

The error analysis results of Theorems 7 and 12 can be rephrased in terms of sample
complexity. Also, Theorems 7 and 12 are applicable only when δ ≤ exp(−14n2/3), and this
section partially addresses the general case when δ < 1

2 .
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Observation 13 If (p1, p2) are (n, δ)-different distributions for some 0 < δ < 1
2 , then they

are also (n′, δ′)-different, where

n′ = min
{

20n,
15000n3

D(1
2 ||δ)3

}
and δ′ ≤ δ2 exp(14n′2/3),

where D(δ1||δ2)
def
= δ1 log δ1

δ2
+ (1− δ1) log 1−δ1

1−δ2 .

Proof sketch Since (p1, p2) are (n, δ)-different, for any p3 there is a test that can distinguish
(p1, p2) and (p3, p3) with error probability < δ. We can obtain another test for sequences of
length n′ = (2r+1)n such that the error probability of this test is δ′ =

∑2r+1
i=r+1 δ

i
(

2r+1
i

)
(1−

δ)2r+1−i by using the original test on (2r+1) pairs of length-n sequences and outputting the

majority decision. It can be verified that (2r + 1) ≥ min{19, 15000n2

D( 1
2
||δ)3 } suffices to guarantee

that
∑2r+1

i=r+1 δ
i
(

2r+1
i

)
(1− δ)2r+1−i ≤ δ2 exp(14((2r + 1)n)2/3). �

Corollary 14 If (p1, p2) are (n, δ)-different distributions for some 0 < δ < 1
4 , then they are

also (n′, δ′)-different where δ′ ≤ δ2 exp(14n′2/3) for n′ = max
{

19n, 120000n3

(log2
1
4δ

)3

}
. Furthermore

if δ < exp(−19n2/3), then n′ = 19n suffices. �

Hence, using Theorem 12 and Corollary 14, it follows that whenever (p1, p2) are identical

or (n, δ)-different, the error probability of the test ∆
N(ϕ)
n′,δ′ is less than δ, using sequences of

length n′ = max
{

19n, 120000n3

(log2
1
4δ

)3

}
, where δ′ = δ2 exp(14n′2/3).

5. Related and open problems

For the problem of classification described in 1.3, our results imply that whenever the

distributions of the classes, p1 and p2, are (n, δ)-different, the closeness tests ∆P̂ (Ψ) or
∆N(ϕ) can be used to construct classifiers whose error probability is ≤

√
δ exp(7n2/3). We

define two distributions (p1, p2) to be (n, δ)-classifiable if length-n sequence pairs generated
by (p1, p2) can be distinguished with error probability < δ from those generated by (p1, p1)
and (p2, p2) by a symmetric test. While (n, δ)-different implies (n, δ)-classifiable, it remains
to answer if the opposite is also true.

As mentioned earlier, our results are applicable when the error probabilities δ ≤
exp(−14n2/3), and while we partially address the case of general δ < 1

2 , and it remains to

perform a better analysis. We also hope to reduce the subexponential factor of exp(7n2/3)
in the right hand side of Theorems 7 and 12 using a tighter analysis.

Lastly, it remains to fully answer the question of when two distributions (p1, p2) are

(n, δ)-different. In many cases such as Example 1, the quantity N(ϕ(X1X2))

N(ϕ(X1,X2))
in the test

∆N(ϕ) can be shown to be exponentially large in n with high probability, that implies
(n, δ)-difference for a suitable δ. This question is also answered in part by [2] and [19]
where distributions are parametrized in terms of alphabet size.
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Appendix A. Number of profiles of a given length

Lemma 15 For all d ≥ 1 and all n1, n2, . . . , nd ≥ 2d+1,

P (n1, n2, . . . , nd) ≤ exp
(

2
(

1 +
1

d

) d∑
j=1

n
d/(d+1)
j

)
.

Proof The (ordinary) generating function of P (n1, n2, . . . , nd) is

G(x1, x2, . . . , xd) =
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nd=0

P (n1, n2, . . . , nd)x
n1
1 xn2

2 · · ·x
nd
d =

∏
(µ1,µ2,...,µd)

∈Nd\(0,0,...,0)

1

1− xµ11 xµ22 · · ·x
µd
d

,

where N = {0, 1, 2, · · · } and 0 < x1, x2, . . . , xd < 1. Hence,

logG(x1, x2, . . . , xd) =
∑

(µ1,µ2,...,µd)

∈Nd\(0,0,...,0)

− log
(

1−
d∏
j=1

x
µj
j

)

=
∑

(µ1,µ2,...,µd)

∈Nd\(0,0,...,0)

∞∑
l=1

1

l

( d∏
j=1

x
µj
j

)l

=

∞∑
l=1

1

l

∑
(µ1,µ2,...,µd)

∈Nd\(0,0,...,0)

d∏
j=1

(xlj)
µj

=
∞∑
l=1

1

l

(
1∏d

j=1(1− xlj)
− 1

)

=
∞∑
l=1

1

l

1−
∏d
j=1(1− xlj)∏d

j=1

(
(1− xj)

(∑l−1
i=0 x

i
j

))
<
∞∑
l=1

1

l

1−
∏d
j=1(1− xlj)(∏d

j=1(1− xj)
)(

1 +
∑d

j=1

∑l−1
i=1 x

i
j

)
(a)
<

1∏d
j=1(1− xj)

(
1 +

∞∑
l=2

1

l(l − 1)

)

=
2∏d

j=1(1− xj)
.

In the Inequality (a), we consider the cases l = 1 and l > 1 separately. When l > 1, in the

denominator,
(

1 +
∑d

j=1

∑l−1
i=1 x

i
j

)
> (l − 1)

∑d
j=1 x

i
j > (l − 1)

(
1−

∏d
j=1(1− xlj)

)
. Since

G(x1, x2, . . . , xd) > P (n1, n2, . . . , nd)x
n1xn2 · · ·xnd , we have

logP (n1, n2, . . . , nd) < logG(x1, x2, . . . , xd)−
d∑
j=1

nj log xj <
2∏d

j=1(1− xj)
−

d∑
j=1

nj log xj .
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Substituting xj = 1− n−1/(d+1)
j for j = 1, 2, . . . , d, we get

logP (n1, n2, . . . , nd) < 2
d∏
j=1

n
1/(d+1)
j +

d∑
j=1

nj log
(

1−n−1/(d+1)
j

)
≤ 2

(
1+

1

d

) d∑
j=1

n
d/(d+1)
j .

In the last step, we used AM-GM inequality, i.e.,
∏d
j=1 n

1/(d+1)
j =

(∏d
j=1 n

d/(d+1)
j

)1/d ≤
1
d

∑d
j=1 n

d/(d+1)
j , and log(1 − ε) < 2ε for ε ≤ 1

2 , hence log
(
1 − n−1/(d+1)

j

)
≤ 2n

−1/(d+1)
j for

nj > 2d+1 and j = 1, 2, . . . , d. �

Appendix B. Number of patterns of a given profile

The number of joint patterns with the same profile ϕ is denoted byN(ϕ). For example,
consider the profile ϕ = ϕ(1232, 13) which has ϕ1,1 = 2, ϕ2,0 = 1 and all other ϕµ1,µ2 = 0.
Then, N(ϕ) = 12 since the set of all joint patterns that have this profile is {(1123, 23),
(1123, 32), (1213, 23), (1213, 32), (1223, 13), (1223, 31), (1231, 23), (1231, 32), (1232, 13),
(1232, 31), (1233, 13), (1233, 21)}. The following lemma gives an expression for N(ϕ) and
extends Lemma 3 in [14].

Lemma 16 For all d ≥ 1 and all ϕ ∈ Φn1,n2,...,nd,

N(ϕ) =

d∏
j=1

nd!

n1∏
µ1=0

n2∏
µ2=0

· · ·
nd∏
µd=0

(µ1!µ2! · · ·µd!)ϕµ1,µ2,...,µdϕµ1,µ2,...,µd !
.

Proof We show the lemma for d = 2, and the proof is similar for any d ≥ 1. Let
ϕ ∈ Φn1,n2 . Any joint pattern (ψ1, ψ2) that has profile ϕ is a pair of sequences with
symbols from {1, 2, . . . ,m}, where m =

∑n1
µ1=0

∑n2
µ2=0 ϕµ1,µ2 is the total number of symbols

in ψ1ψ2. Let {µ1(i)}mi=1 and {µ2(i)}mi=1 be non-negative integers such that
∑m

i=1 µ1(i) = n1

and
∑m

i=1 µ2(i) = n2. The number of sequence pairs whose alphabet is {1, 2, . . . ,m}, and
the number of appearances of i in first sequence is µ1(i) and in second sequence is µ2(i),
for i = 1, 2, . . . ,m, is(

n1

µ1(1), µ1(2), . . . , µ1(m)

)(
n2

µ2(1), µ2(2), . . . , µ2(m)

)
=

n1!n2!
m∏
i=1

µ1(i)!µ2(i)!

.

The number of different ways of choosing {µ1(i)}mi=1 and {µ2(i)}mi=1 such it conforms to
profile is ϕ is (

m

ϕ0,0, ϕ0,1, . . . , ϕn1,n2

)
=

m!
n1∏
µ1=0

n2∏
µ2=0

ϕµ1,µ2 !

.

Thus, the number of sequence pairs whose alphabet is {1, 2, . . . ,m} and profile is ϕ is

N∗(ϕ) =
n1!n2!

m∏
i=1

µ1(i)!µ2(i)!

m!
n1∏
µ1=0

n2∏
µ2=0

ϕµ1,µ2 !

=
n1!n2!m!

n1∏
µ1=0

n2∏
µ2=0

(µ1!µ2!)ϕµ1,µ2ϕµ1,µ2 !

.
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Clearly, N∗(ϕ) = m! ·N(ϕ), since

≥: For each joint pattern having profile ϕ, the labels {1, 2, . . . ,m} can be permuted in
m! ways to generate m! different sequence pairs whose alphabet is {1, 2, . . . ,m} and
profile is ϕ. Furthermore, the sets of sequence pairs generated in this way by different
joint patterns are disjoint. So N∗(ϕ) ≥ m! ·N(ϕ).

≤: Given any pair of sequences (x1, x2) having alphabet {1, 2, . . . ,m} and profile ϕ, their
symbols can be permuted keeping the positions same to obtain a joint pattern with
profile ϕ, which is in fact Ψ(x1, x2). There are exactly m! sequence pairs having
alphabet {1, 2, . . . ,m} and profile ϕ that have the same joint pattern. Hence, N∗(ϕ) ≤
m! ·N(ϕ).

Thus,

N(ϕ) =
N∗(ϕ)

m!
=

n1!n2!
n1∏
µ1=0

n2∏
µ2=0

(µ1!µ2!)ϕµ1,µ2ϕµ1,µ2 !

.

�

Appendix C. Symmetric tests

We provide a formal treatment to the intuition that joint patterns of sequences contain
sufficient information for the problem of closeness testing, similar to [4].

We define the symmetric error probability of a test ∆ for (p1, p2) as its worst case error
probability over all possible permutations of the alphabet, i.e.,

Pne,sym(∆, p1, p2)
def
= max

σ∈SA
Pne (∆, pσ1 , p

σ
2 ),

where SA is the set of all permutations of A. Clearly, since separation between distributions
does not depend on the actual symbols, and depends only the probability multiset, it is
appropriate to look at the symmetric error probability.

A symmetric test is a test whose output does not change when the alphabet is permuted
and gives the same output for all sequence pairs which have the same joint pattern, i.e.,
∆(x1, x2) = ∆̃(Ψ(x1, x2)) for all (x1, x2), where ∆̃ : Ψn,n → {same , diff }. Hence, a
symmetric test depends only the joint pattern of the sequences. Note that for a symmetric
test ∆, Pe,sym(∆, p1, p2) = Pe(∆, p1, p2) for all distribution pairs (p1, p2). The following
observation shows that we may limit ourselves to considering only symmetric closeness
tests.

Observation 17 Let ∆ : An × An → {same, diff} be any test for closeness, possibly not
symmetric. Then, there exists a symmetric test ∆̃ : An ×An → {same, diff} such that for
all pairs of distributions (p1, p2) over A, Pne,sym(∆̃, p1, p2) ≤ 2 · Pne,sym(∆, p1, p2).

Proof Let ∆̃ be the test whose output for a sequence pair is same as that made
by ∆ for the majority of sequence pairs with the same joint pattern, i.e., ∆̃(x1, x2) =
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majority{∆(x′1, x
′
2) : Ψ(x′1, x

′
2) = Ψ(x1, x2)}. Clearly, Pne (∆̃, pσ1,2) is same for all permuta-

tions σ of A. Thus, if p1, p2 are similar,

Pne,sym(∆̃, p1, p2) = Pne (∆̃, p1, p2)

=
1

|A|!
∑
σ∈SA

Pne (∆̃, pσ1,2)

=
1

|A|!
∑
σ∈SA

∑
(x1,x2):

∆̃(x1,x2)=diff

pσ1 (x1)pσ2 (x2)

=
∑

(x1,x2):

∆̃(x1,x2)=diff

1

|A|!
∑
σ∈SA

pσ1 (x1)pσ2 (x2)

(a)

≤ 2
∑

(x1,x2):
∆(x1,x2)=diff

1

|A|!
∑
σ∈SA

pσ1 (x1)pσ2 (x2)

= 2 · 1

|A|!
∑
σ∈SA

∑
(x1,x2):

∆(x1,x2)=diff

pσ1 (x1)pσ2 (x2)

≤ 2 · max
σ∈SA

∑
(x1,x2):

∆(x1,x2)=diff

pσ1 (x1)pσ2 (x2)

= 2 · Pne,sym(∆, p1, p2),

where in (a), we note that all (x1, x2) having the same joint pattern have the same proba-
bility 1

|A|!
∑

σ∈SA
pσ1 (x1)pσ2 (x2). A similar argument can be shown for the case p1 6= p2. �
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