
JMLR: Workshop and Conference Proceedings 19 (2011) 187–205 24th Annual Conference on Learning Theory

Tight conditions for consistent variable selection in high
dimensional nonparametric regression
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Abstract

We address the issue of variable selection in the regression model with very high ambient
dimension, i.e., when the number of covariates is very large. The main focus is on the sit-
uation where the number of relevant covariates, called intrinsic dimension, is much smaller
than the ambient dimension. Without assuming any parametric form of the underlying
regression function, we get tight conditions making it possible to consistently estimate the
set of relevant variables. These conditions relate the intrinsic dimension to the ambient
dimension and to the sample size. The procedure that is provably consistent under these
tight conditions is simple and is based on comparing the empirical Fourier coefficients with
an appropriately chosen threshold value.

Keywords: List of keywords

1. Introduction

Real-world data such as those obtained from neuroscience, chemometrics, data mining, or
sensor-rich environments are often extremely high-dimensional, severely underconstrained
(few data samples compared to the dimensionality of the data), and interspersed with a
large number of irrelevant or redundant features. Furthermore, in most situations the data
is contaminated by noise making it even more difficult to retrieve useful information from
the data. Relevant variable selection is a compelling approach for addressing statistical
issues in the scenario of high-dimensional and noisy data with small sample size. Starting
from Mallows (1973), Akaike (1973); Schwarz (1978) who introduced respectively the famous
criteria Cp, AIC and BIC, the problem of variable selection has been extensively studied
in the statistical and machine learning literature both from the theoretical and algorithmic
viewpoints. It appears, however, that the theoretical limits of performing variable selection
in the context of nonparametric regression are still poorly understood, especially in the case
where the ambient dimension of covariates, denoted by d, is much larger than the sample
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size n. The purpose of the present work is to explore this setting under the assumption
that the number of relevant covariates, hereafter called intrinsic dimension and denoted by
d∗, may grow with the sample size but remains much smaller than the ambient dimension
d.

In the important particular case of linear regression, the latter scenario has been the
subject of a number of recent studies. Many of them rely on `1-norm penalization (as for
instance in Tibshirani (1996); Zhao and Yu (2006); Meinshausen and Bhlmann (2010)) and
constitute an attractive alternative to iterative variable selection procedures proposed by
Alquier (2008); Zhang (2009); Ting et al. (2010) and to marginal regression or correlation
screening explored in Wasserman and Roeder (2009); Fan et al. (2009). Promising results
for feature selection are also obtained by minimax concave penalties in Zhang (2010), by
Bayesian approach in Scott and Berger (2010) and by higher criticism in Donoho and Jin
(2009). Extensions to other settings including logistic regression, generalized linear model
and Ising model have been carried out in Bunea and Barbu (2009); Ravikumar et al. (2010);
Fan et al. (2009), respectively. Variable selection in the context of groups of variables with
disjoint or overlapping groups has been studied by Jenatton et al. (2009); Lounici et al.
(2010); Obozinski et al. (2011). Hierarchical procedures for selection of relevant covariates
have been proposed by Bach (2009); Bickel et al. (2010) and Zhao et al. (2009).

It is now well understood that in the high-dimensional linear regression, if the Gram
matrix satisfies some variant of irrepresentable condition, then consistent estimation of the
pattern of relevant variables—also called the sparsity pattern—is possible under the condi-
tion d∗ log(d/d∗) = o(n) as n → ∞. Furthermore, it is well known that if (d∗ log(d/d∗))/n
remains bounded from below by some positive constant when n→∞, then it is impossible
to consistently recover the sparsity pattern. Thus, a tight condition exists that describes
in an exhaustive manner the interplay between the quantities d∗, d and n that guarantees
the existence of consistent estimators. The situation is very different in the case of non-
linear regression, since, to our knowledge, there is no result providing tight conditions for
consistent estimation of the sparsity pattern.

The papers Lafferty and Wasserman (2008) and Bertin and Lecué (2008), closely re-
lated to the present work, consider the problem of variable selection in nonparametric
Gaussian regression model. They prove the consistency of the proposed procedures under
some assumptions that—in the light of the present work—turn out to be suboptimal. More
precisely, in Lafferty and Wasserman (2008), the unknown regression function is assumed
to be four times continuously differentiable with bounded derivatives. The algorithm they
propose, termed Rodeo, is a greedy procedure performing simultaneously local bandwidth
choice and variable selection. Under the assumption that the density of the sampling design
is continuously differentiable and strictly positive, Rodeo is shown to converge when the
ambient dimension d is O(log n/log logn) while the intrinsic dimension d∗ does not increase
with n. On the other hand, Bertin and Lecué (2008) propose a procedure based on the
`1-penalization of local polynomial estimators and prove its consistency when d∗ = O(1)
but d is allowed to be as large as log n, up to a multiplicative constant. They also have
a weaker assumption on the regression function which is merely assumed to belong to the
Holder class with smoothness β > 1.
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This brief review of the literature reveals that there is an important gap in consistency
conditions for the linear regression and for the non-linear one. For instance, if the intrinsic
dimension d∗ is fixed, then the condition guaranteeing consistent estimation of the sparsity
pattern is (log d)/n→ 0 in linear regression whereas it is d = O(log n) in the nonparametric
case. While it is undeniable that the nonparametric regression is much more complex than
the linear one, it is however not easy to find a justification to such an important gap between
two conditions. The situation is even worse in the case where d∗ →∞. In fact, for the linear
model with at most polynomially increasing ambient dimension d = O(nk), it is possible to
estimate the sparsity pattern for intrinsic dimensions d∗ as large as n1−ε, for some ε > 0.
In other words, the sparsity index can be almost on the same order as the sample size. In
contrast, in nonparametric regression, there is no procedure that is proved to converge to
the true sparsity pattern when both n and d∗ tend to infinity, even if d∗ grows extremely
slowly.

In the present work, we fill this gap by introducing a simple variable selection procedure
that selects the relevant variables by comparing some well chosen empirical Fourier coeffi-
cients to a prescribed significance level. Consistency of this procedure is established under
some conditions on the triplet (d∗, d, n) and the tightness of these conditions is proved. The
main take-away messages deduced from our results are the following:

• When the number of relevant covariates d∗ is fixed and the sample size n tends to
infinity, there exist positive real numbers c∗ and c∗ such that (a) if (log d)/n ≤ c∗
the estimator proposed in Section 3 is consistent and (b) no estimator of the sparsity
pattern may be consistent if (log d)/n ≥ c∗.

• When the number of relevant covariates d∗ tends to infinity with n→∞, then there
exist real numbers ci and c̄i, i = 1, . . . , 4 such that ci > 0, c̄i > 0 for i = 1, 2, 3 and
(a) if c1d

∗ + c2 log d∗ + c3 log log d − log n < c4 the estimator proposed in Section 3
is consistent and (b) no estimator of the sparsity pattern may be consistent if c̄1d

∗ +
c̄2 log d∗ + c̄3 log log d− log n > c̄4.

• In particular, if d grows not faster than a polynomial in n, then there exist positive real
numbers c0 and c0 such that (a) if d∗ ≤ c0 log n the estimator proposed in Section 3
is consistent and (b) no estimator of the sparsity pattern may be consistent if d∗ ≥
c0 log n.

Very surprisingly, the derivation of these results required from us to apply some tools from
complex analysis, such as the Jacobi θ-function and the saddle point method, in order to
evaluate the number of lattice points lying in a ball of an Euclidean space with increasing
dimension.

The rest of the paper is organized as follows. The notation and assumptions necessary
for stating our main results are presented in Section 2. In Section 3, an estimator of the
set of relevant covariates is introduced and its consistency is established. The principal
condition required in the consistency result involves the number of lattice points in a ball of
a high-dimensional Euclidean space. An asymptotic equivalent for this number is obtained
in Section 4 via the Jacobi θ-function and the saddle point method. Results on impossibility
of consistent estimation of the sparsity pattern are derived in Section 5, while the relation
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between consistency and inconsistency results are discussed in Section 6. The technical
parts of the proofs are postponed to the Appendix.

2. Notation and assumptions

We assume that n independent and identically distributed pairs of input-output variables
(Xi, Yi), i = 1, . . . , n are observed that obey the regression model

Yi = f(Xi) + σεi, i = 1, . . . , n.

The input variables X1, . . . ,Xn are assumed to take values in Rd while the output variables
Y1, . . . , Yn are scalar. As usual, the noise ε1, . . . , εn is such that E[εi|Xi] = 0, i = 1, . . . , n;
some additional conditions will be imposed later. Without requiring from f to be of a special
parametric form, we aim at recovering the set J ⊂ {1, . . . , d} of its relevant covariates.

It is clear that the estimation of J cannot be accomplished without imposing some
further assumptions on f and the distribution PX of the input variables. Roughly speaking,
we will assume that f is differentiable with a squared integrable gradient and that PX admits
a density which is bounded from below. More precisely, let g denote the density of PX w.r.t.
the Lebesgue measure.

[C1] We assume that g(x) = 0 for any x 6∈ [0, 1]d and that g(x) ≥ gmin for any x ∈ [0, 1]d.

To describe the smoothness assumption imposed on f, let us introduce the Fourier basis

ϕk(x) =


1, k = 0,√

2 cos(2π k · x), k ∈ (Zd)+,√
2 sin(2π k · x), −k ∈ (Zd)+,

(1)

where (Zd)+ denotes the set of all k ∈ Zd \ {0} such that the first nonzero element of k
is positive and k · x stands for the the usual inner product in Rd. In what follows, we
use the notation 〈·, ·〉 for designing the scalar product in L2([0, 1]d;R), that is 〈h, h̃〉 =∫

[0,1]d h(x)h̃(x) dx for every h, h̃ ∈ L2([0, 1]d;R). Using this orthonormal Fourier basis, we
define

ΣL =

{
f :

∑
k∈Zd

k2
j 〈f, ϕk〉2 ≤ L; ∀j ∈ {1, . . . , d}

}
.

To ease notation, we set θk[f] = 〈f, ϕk〉 for all k ∈ Zd. In addition to the smoothness, we
need also to require that the relevant covariates are sufficiently relevant for making their
identification possible. This is done by means of the following condition.

[C2(κ, L)] The regression function f belongs to ΣL. Furthermore, for some subset J ⊂
{1, . . . , d} of cardinality ≤ d∗, there exists a function f̄ : R|J | → R such that f(x) =
f̄(xJ), ∀x ∈ Rd and it holds that

Qj [f] ,
∑

k:kj 6=0

θk[f]2 ≥ κ, ∀j ∈ J. (2)

Hereafter, we will refer to J as the sparsity pattern of f.
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One easily checks that Qj [f] = 0 for every j that does not lie in the sparsity pattern. This
provides a characterization of the sparsity pattern as the set of indices of nonzero coefficients
of the vector Q[f] = (Q1[f], . . . , Qd[f]).

The next assumptions imposed to the regression function and to the noise require their
boundedness in an appropriate sense. These assumptions are needed in order to prove, by
means of a concentration inequality, the closeness of the empirical coefficients to the true
ones.

[C3(L∞, L2)] The L∞([0, 1]d,R, PX) and L2([0, 1]d,R, PX) norms of the function f are
bounded from above respectively by L∞ > 0 and L2, i.e., PX

(
x ∈ [0, 1]d : |f(x)| ≤

L∞
)

= 1 and
∫

[0,1]d f(x)2g(x) dx ≤ L2
2.

[C4] The noise variables satisfy a.e. E[etεi |Xi] ≤ et
2/2 for all t > 0.

Remark 1 The primary aim of this work is to understand when it is possible to estimate
the sparsity pattern (with theoretical guarantees on the convergence of the estimator) and
when it is impossible. The estimator that we will define in the next section is intended
to show the possibility of consistent estimation, rather than being a practical procedure for
recovering the sparsity pattern. Therefore, the estimator will be allowed to depend on the
parameters gmin, L, κ and M appearing in conditions [C1-C3].

3. Consistent estimation of the set of relevant variables

The estimator of the sparsity pattern J that we are going to introduce now is based on
the following simple observation: if j 6∈ J then θk[f] = 0 for every k such that kj 6= 0. In
contrast, if j ∈ J then there exists k ∈ Zd with kj 6= 0 such that |θk[f]| > 0. To turn this
observation into an estimator of J , we start by estimating the Fourier coefficients θk[f] by
their empirical counterparts:

θ̂k =
1

n

n∑
i=1

ϕk(Xi)

g(Xi)
Yi, k ∈ Zd.

Then, for every ` ∈ N and for any γ > 0, we introduce the notation Sm,` =
{
k ∈ Zd :

‖k‖2 ≤ m, ‖k‖0 ≤ `
}

and N(d∗, γ) = Card{k ∈ Zd∗ : ‖k‖22 ≤ γd∗& k1 6= 0}. Finally our
estimator is defined by

Ĵn(m,λ) =
{
j ∈ {1, . . . , d} : max

k∈Sm,d∗ : kj 6=0
|θ̂k| > λ

}
, (3)

where m and λ are some parameters to be defined later. The notation a ∧ b, for two real
numbers a and b, stands for min(a, b).

Theorem 2 Let conditions [C1-C4] be fulfilled with some known constants gmin, L, κ and
L2. Assume furthermore that the design density g and an upper estimate on the noise
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magnitude σ are available. Set m = (2Ld∗/κ)1/2 and λ = 4(σ+L2)
(
d∗ log(6md)/ng2

min)1/2.
If

L2
∞d
∗ log(6md)

n
≤ L2

2, and
128(σ + L2)2d∗N(d∗, 2L/κ) log(6md)

ng2
min

≤ κ, (4)

then the estimator Ĵ(m,λ) satisfies P
(
Ĵ(m,λ) 6= J

)
≤ 3(6md)−d

∗
.

If we take a look at the conditions of Theorem 2 ensuring the consistency of the estimator
Ĵ , it becomes clear that the strongest requirement is the second inequality in (4). To some
extent, this condition requires that (d∗N(d∗, 2L/κ) log d)/n is bounded from above by some
constant. To further analyze the interplay between d∗, d and n implied by this condition,
we need an equivalent to N(d∗, 2L/κ) as the intrinsic dimension d∗ tends to infinity. As
proved in the next section, N(d∗, 2L/κ) diverges exponentially fast, making inequality (4)
impossible for d∗ larger than log n up to a multiplicative constant.

It is also worth stressing that although we require the PX -a.e. boundedness of f by some
constant L∞, this constant is not needed for computing the estimator proposed in The-
orem 2. Only constants related to some quadratic functionals of the sequence of Fourier
coefficients θk[f] are involved in the tuning parameters m and λ. This point might be
important for designing practical estimators of J , since the estimation of quadratic func-
tionals is more realistic, see for instance Laurent and Massart (2000), than the estimation
of sup-norm.

The result stated above can be reformulated to provide also a level of relevance κ for
the covariates of X making their identification possible. In fact, an alternative way of
stating Theorem 2 is the following: if conditions [C1-C4] and L2

∞d
∗ log(6md) ≤ nL2

2 are

fulfilled, then the estimator Ĵ(m,λ)—with arbitrary tuning parameters m and λ—satisfies
P(Ĵ(m,λ) 6= J) ≤ 3(6md)−d

∗
provided that the smallest level of relevance κ for components

Xj of X with j ∈ J is not smaller than 8λ2N(d∗,m2/d∗). This statement can be easily
deduced from the proof presented in Appendix A.

4. Counting lattice points in a ball

The aim of the present section is to investigate the properties of the quantity N(d∗,m2/d∗)
that is involved in the conditions ensuring the consistency of the proposed procedure. Quite
surprisingly, the asymptotic behavior of N(d∗,m2/d∗) turns out to be related to the Jacobi
θ-function. In order to show this, let us introduce some notation. For a positive number γ,
we set

C1(d∗, γ) =
{
k ∈ Zd

∗
: k2

1 + ...+ k2
d∗ ≤ γd∗

}
,

C2(d∗, γ) =
{
k ∈ Zd

∗
: k2

2 + ...+ k2
d∗ ≤ γd∗ & k1 = 0

}
along with N1(d∗, γ) = CardC1(d∗, γ) and N2(d∗, γ) = CardC2(d∗, γ). In simple words,
N1(d∗, γ) is the number of (integer) lattice points lying in the d∗-dimensional ball with
radius (γd∗)1/2 and centered at the origin, while N2(d∗, γ) is the number of (integer) lattice
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points with the first coordinate equal to zero and lying in the d∗-dimensional ball with
radius (γd∗)1/2 and centered at the origin. With this notation, the quantity N(d∗, 2L/κ) of
Theorem 2 can be written as N1(d∗, 2L/κ)−N2(d∗, 2L/κ).

In order to determine the asymptotic behavior of N1(d∗, γ) and N2(d∗, γ) when d∗ tends
to infinity, we will rely on their integral representation through Jacobi’s θ-function. Recall
that the latter is given by h(z) =

∑
r∈Z z

r2 , which is well defined for any complex number
z belonging to the unit ball |z| < 1. To briefly explain where the relation between Ni(γ)
and the θ-function comes from, let us denote by {ar} the sequence of coefficients of the
power series of h(z)d

∗
, that is h(z)d

∗
=
∑

r≥0 arz
r. One easily checks that ∀r ∈ N, ar =

Card{k ∈ Zd∗ : k2
1 + ... + k2

d∗ = r}. Thus, for every γ such that γd∗ is integer, we have

N1(d∗, γ) =
∑γd∗

r=0 ar. As a consequence of Cauchy’s theorem, we get :

N1(d∗, γ) =
1

2πi

∮
h(z)d

∗

zγd∗
dz

z(1− z)
.

where the integral is taken over any circle |z| = w with 0 < w < 1. Exploiting this
representation and applying the saddle-point method thoroughly described in Dieudonné
(1968), we get the following result.

Proposition 3 Let γ > 0 be such that γd∗ is an integer and let lγ(z) = log h(z)− γ log z.

1. There is a unique solution zγ in (0, 1) to the equation l′γ(z) = 0. Furthermore, the
function γ 7→ zγ is increasing and l′′γ(z) > 0.

2. The following equivalences hold true:

N1(d∗, γ) =

(
h(zγ)

zγγ

)d∗ 1 + o(1)

zγ(1− zγ)(2l′′γ(zγ)πd∗)1/2
,

N2(d∗, γ) =

(
h(zγ)

zγγ

)d∗ 1 + o(1)

h(zγ)zγ(1− zγ)(2l′′γ(zγ)πd∗)1/2
,

as d∗ tends to infinity.

Furthermore, the convergence to zero of the terms replaced by o(1) in the previous formulae
is uniform in γ on any compact set [γ, γ] ⊂ (0,∞).

In the sequel, it will be useful to remark that the second part of Proposition 3 yields

logN(d∗, γ) = d∗lγ(zγ)− 1

2
log d∗ − log

{
h(zγ)zγ(1− zγ)(2l′′γ(zγ)π)1/2

h(zγ)− 1

}
+ o(1). (5)

In order to get an idea of how the terms zγ and lγ(zγ) depend on γ, we depicted in Figure 1
the plots of these quantities as functions of γ > 0.

5. Tightness of the assumptions

In this section, we assume that the errors εi are i.i.d. Gaussian with zero mean and variance
1 and we focus our attention on the functional class Σ̃(κ, L) of all functions satisfying

193



Comminges Dalalyan

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

γ

z γ

0 100 200 300 400 500
0

1

2

3

4

5

γ

l γ
(z

γ
)

Figure 1: The plots of mappings γ 7→ zγ and γ 7→ lγ(zγ).

assumption [C2(κ, L)]. In order to avoid irrelevant technicalities and to better convey the
main results, we assume that κ = 1 and denote Σ̃L = Σ̃(1, L). Furthermore, we will assume
that the design X1, . . . ,Xn is fixed and satisfies

1

n

n∑
i=1

ϕk(Xi)ϕk′(Xi) ≤
n

N1(d∗, L)2
(6)

for all distinct k, k′ ∈ S(d∗L)1/2,d∗ ⊂ Zd. The goal in this section is to provide conditions
under which the consistent estimation of the sparsity support is impossible, that is there
exists a positive constant c > 0 and an integer n0 ∈ N such that, if n ≥ n0,

inf
J̃

sup
f∈Σ̃L

Pf(J̃ 6= Jf) ≥ c,

where the inf is over all possible estimators of Jf . To lower bound the LHS of the last
inequality, we introduce a set of M + 1 probability distributions µ0, . . . , µM on Σ̃L and use
the fact that

inf
J̃

sup
f∈Σ̃L

Pf(J̃ 6= Jf) ≥ inf
J̃

1

M + 1

M∑
`=0

∫
Σ̃L

Pf(J̃ 6= Jf)µ`(df). (7)

These measures µ` will be chosen in such a way that for each ` ≥ 1 there is a set J`
of cardinality d∗ such that µ`{Jf = J`} = 1 and all the sets J1, . . . , JM are distinct. The
measure µ0 is the Dirac measure in 0. Considering these µ`s as “prior” probability measures
on Σ̃L and defining the corresponding “posterior” probability measures P0,P1, . . . ,PM by

P`(A) =

∫
Σ̃L

Pf(A)µ`(df), for every measurable set A ⊂ Rn,

we can write the inequality (7) as

inf
J̃

sup
f∈Σ̃L

Pf(J̃ 6= Jf) ≥ inf
ψ

1

M + 1

M∑
`=0

P`(ψ 6= `), (8)
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where the inf is taken over all random variables ψ taking values in {0, . . . ,M}. The latter
inf will be controlled using a suitable version of the Fano lemma, see Fano (1961). In what
follows, we denote by K(P,Q) the Kullback-Leibler divergence between two probability
measures P and Q defined on the same probability space.

Lemma 4 (Cor. 2.6 of Tsybakov (2009)) Let (X ,A) be a measurable space and let
P0, . . . , PM be probability measures on (X ,A). Let us set p̄e,M = infψ(M+1)−1

∑M
`=0 P`

(
ψ 6=

`
)
, where the inf is taken over all measurable functions ψ : X →

{
0, . . . ,M

}
. If for some

0 < α < 1

1

M + 1

M∑
`=0

K
(
P`, P0

)
≤ α logM,

then

p̄e,M ≥
log(M + 1)− log 2

logM
− α.

It follows from this lemma that one can deduce a lower bound on p̄e,M , which is the
quantity we are interested in, from an upper bound on the average Kullback-Leibler diver-
gence between the measures P` and P0. This roughly means that the measures µ` should
not be very far from µ0 but the probability measures µ` should be very different one from
another in terms of the sparsity pattern of a function f randomly drawn according to µ`.
This property is ensured by the following result.

Lemma 5 Suppose µ0 = δ0, the Dirac measure at 0∈ ΣL. Let S be a subset of Zd of
cardinality |S| and A be a constant. Define µS as a discrete measure supported on the finite
set of functions {fω =

∑
k∈S Aωkϕk : ω ∈ {±1}S} such that µS(f = fω) = 2−|S| for every

ω ∈ {±1}S, i.e., the ωk’s are i.i.d. Rademacher random variables under µS. If, for some
ε ≥ 0, the condition

1

n

n∑
i=1

ϕk(Xi)ϕk′(Xi) ≤ ε ∀k,k′ ∈ S

is fulfilled, then

K(P1,P0) ≤ log

[ ∫ (dP1

dP0
(y)
)2

P0(dy)

]
≤ 4|S|A4n2

{
1 +

|S|ε
4nA2

}
.

These evaluations lead to the following theorem, that tells us that the conditions to
which we have resorted for proving the consistency in Section 3 are nearly optimal.

Theorem 6 Let the design X1, . . . ,Xn ∈ [0, 1]d be deterministic and satisfy (6). Let γ∗

the largest real number such that d∗γ∗ is integer and L ≥ γ∗(1+1/2zγ∗). If for some positive
number α < (log 3− log 2)/log 3

(N1(d∗, γ∗)−N2(d∗, γ∗))2 log
(
d
d∗

)
n2N1(d∗, γ∗)

≥ α

5
, (9)

then there exists a positive constant c > 0 and a d0 ∈ N such that, if d∗ ≥ d0,

inf
J̃

sup
f∈Σ̃L

Pf(J̃ 6= Jf) ≥ c.
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Proof We apply the Fano lemma with M =
(
d
d∗

)
. We choose µ0, . . . , µM as follows.

µ0 is the Dirac measure δ0, µ1 is defined as in Lemma 5 with S = C1(d∗, γ∗) and A =[
N1(d∗, γ∗)−N2(d∗, γ∗)

]−1/2
. The measures µ2, . . . , µM are defined similarly and corre-

spond to the M − 1 remaining sparsity patterns of cardinality d∗.

In view of inequality (8) and Lemma 4, it suffices to show that the measures µ` satisfy
µ`(Σ̃L) = 1 and

∑M
`=0K(P`,P0) ≤ (M + 1)α logM . Combining Lemma 5 with Card(S) =

N1(d∗, γ∗) and condition (6), one easily checks that equation (9) implies the desired bound
on
∑M

`=0K(P`,P0).

Let us show now that µ1(Σ̃L) = 1. By symmetry, this will imply that µ`(Σ̃L) = 1 for
every `. Since µ1 is supported by the set {fω : ω ∈ {±1}C1(d∗,γ∗)}, it is clear that∑

k1 6=0

θ2
k[fω] = A2[N1(d∗, γ∗)−N2(d∗, γ∗)] = 1

and, for every j = 1, . . . , d∗,

∑
k∈Zd

k2
j θ

2
k[fω] =

∑
k∈C1(d∗,γ∗)

k2
jA

2 =
1

d∗

d∗∑
j=1

∑
k∈C1(d∗,γ∗)

k2
jA

2 ≤ A2γ∗N1(d∗, γ∗).

By virtue of Proposition 3, as d∗ tends to infinity, N1(d∗, γ∗)/N2(d∗, γ∗) is asymptotically
equivalent to h(zγ∗) > 1 + 2zγ∗ . Hence, for d∗ large enough,

A2N1(d∗, γ∗) =
N1(d∗, γ∗)

N1(d∗, γ∗)−N2(d∗, γ∗)
<

1

2zγ∗
+ 1.

As a consequence, for every j = 1, . . . , d∗,∑
k∈Zd

k2
j θ

2
k[fω] ≤ γ∗

( 1

2zγ∗
+ 1
)
≤ L,

where the last inequality follows from the definition of γ∗.

Note that Theorem 6 is concerned by the case where the intrinsic dimension is not too
small, which is the most interesting case in the present context. However, a much simpler
result can be established showing that the conditions of Theorem 2 are tight in the case of
fixed intrinsic dimension as well.

Proposition 7 Let the design X1, . . . ,Xn ∈ [0, 1]d be either deterministic or random. If
for some positive α < (log 3− log 2)/log 3, the inequality

d∗
(

log d− log d∗
)

n
≥ α−1

holds true, then there is a constant c > 0 such that inf
J̃n

sup
f∈Σ̃L

Pf(J̃n 6= Jf) ≥ c.
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6. Discussion

The results proved in previous sections almost exhaustively answer the questions on the
existence of consistent estimators of the sparsity pattern in the problem of nonparametric
regression. In fact as far as only rates of convergence are of interest, the result obtained
in Theorem 2 is shown in Section 5 to be unimprovable. Thus only the problem of finding
sharp constants remains open. To make these statements more precise, let us consider the
simplified set-up σ = κ = 1 and define the following two regimes:

• The regime of fixed sparsity, i.e., when the sample size n and the ambient dimension
d tend to infinity but the intrinsic dimension d∗ remains constant or bounded.

• The regime of increasing sparsity, i.e., when the intrinsic dimension d∗ tends to infinity
along with the sample size n and the ambient dimension d. For simplicity, we will
assume that d∗ = O(d1−ε) for some ε > 0.

In the fixed sparsity regime, in view of Theorem 2, consistent estimation of the sparsity
pattern can be achieved using the estimator Ĵ as soon as (log d)/n ≤ c?, where c? is the
constant defined by

c? = min
( L2

2

2d∗L2
∞
,

g2
min

28(1 + L2)2d∗N(d∗, 2L)

)
.

This follows from the fact that the tuning parameter m is fixed and that the probability of
the error, bounded by 3(6md)d

∗
tends to zero as d → ∞. On the other hand, by virtue of

Proposition 7, consistent estimation of the sparsity pattern is impossible if (log d)/n > c?,
where c? = 2 log 3/(d∗ log(3/2)). Thus, up to multiplicative constants c? and c? (which are
clearly not sharp), the result of Theorem 2 cannot be improved.

In the regime of increasing sparsity, the second inequality in (4) is the most stringent
one. Taking the logarithm of both sides and using formula (5) for N(d∗, 2L) = N1(d∗, 2L)−
N2(d∗, 2L), we see that consistent estimation of J is possible when

c1d
∗ +

1

2
log d∗ + log log d− log n < c2, (10)

with c1 = l2L(z2L) and c2 = 2(log(gmin)−log(17(σ+L2))+log
{

h(z2L)z2L(1−z2L)(2l′′2L(z2L)π)1/2

h(z2L)−1

}
.

On the other hand, by virtue of (5), log
{

[N1(d∗,γ)−N2(d∗,γ)]2

N1(d∗,γ)

}
= d∗lγ(zγ) − 1

2 log d∗ −

log
{

h(zγ)2zγ(1−zγ)(2l′′γ(zγ)π)1/2

(h(zγ)−1)2

}
+ o(1). Therefore, Theorem 6 yields that it is impossible

to consistently estimate J if

c̄1d
∗ +

1

2
log d∗ + log log d− 2 log n > c̄2, (11)

where c̄1 = lγ∗(zγ∗) and c̄2 = log
{

h(zγ∗ )2zγ∗ (1−zγ∗ )(2l′′
γ∗ (zγ∗ )π)1/2

(h(zγ∗ )−1)2

}
+ log log(3/2) − log 5 −

log log 3. A very simple consequence of inequalities (10) and (11) is that the consistent
recovery of the sparsity pattern is possible under the condition d∗/ log n→ 0 and impossible
for d∗/ log n→∞ as n→∞, provided that log log d = o(log n).
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Let us stress now that, all over this work, we have deliberately avoided any discussion on
the computational aspects of the variable selection in nonparametric regression. The goal in
this paper was to investigate the possibility of consistent recovery without paying attention
to the complexity of the selection procedure. This lead to some conditions that could be
considered a benchmark for assessing the properties of sparsity pattern estimators. As for
the estimator proposed in Section 3, it is worth noting that its computational complexity
is not always prohibitively large. A recommended strategy is to compute the coefficients θ̂k
in a stepwise manner; at each step K = 1, 2, . . . , d∗ only the coefficients θ̂k with ‖k‖0 = K
need to be computed and compared with the threshold. If some θ̂k exceeds the threshold,
then all the covariates Xj corresponding to nonzero coordinates of k are considered as
relevant. We can stop this computation as soon as the number of covariates classified as
relevant attains d∗. While the worst-case complexity of this procedure is exponential, there
are many functions f for which the complexity of the procedure will be polynomial in d.
For example, this is the case for additive models in which f(x) = f1(xi1) + . . .+ fd∗(xid∗ ) for
some univariate functions f1, . . . , fd∗ .

Note also that in the present study we focused exclusively on the consistency of variable
selection without paying any attention to the consistency of regression function estimation.
A thorough analysis of the latter problem being left to a future work, let us simply remark
that in the case of fixed d∗, under the conditions of Theorem 2, it is straightforward to
construct a consistent estimator of the regression function. In fact, it suffices to use a
projection estimator with a properly chosen truncation parameter on the set of relevant
variables. The situation is much more delicate in the case when the sparsity d∗ grows to
infinity along with the sample size n. Presumably, condition (10) is no longer sufficient for
consistently estimating the regression function. The rationale behind this conjecture is that
the minimax rate of convergence for estimating f in our context, if we assume in addition that
the set of relevant variables is known, is equal n−2/(2+d∗) = exp(−2 log n/(2 + d∗)). If the
left hand side of (10) is equal to a constant and log log d = o(log n), then the aforementioned
minimax rate does not tend to zero, making thus the estimator inconsistent. This heuristical
argument shows that there is still some work to do for getting tight conditions ensuring the
consistent estimation of the regression function in the high dimensional set-up.

Acknowledgments

The authors acknowledge the support of the French Agence Nationale de la Recherche
(ANR) under the grant PARCIMONIE.

References

Hirotsugu Akaike. Information theory and an extension of the maximum likelihood principle.
In Second International Symposium on Information Theory (Tsahkadsor, 1971), pages
267–281. Akadémiai Kiadó, Budapest, 1973.
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Appendix A. Proof of Theorem 2

The empirical Fourier coefficients can be decomposed as follows:

θ̂k = θ̃k + zk, where θ̃k =
1

n

n∑
i=1

ϕk(Xi)

g(Xi)
f(Xi) and zk =

σ

n

n∑
i=1

ϕk(Xi)

g(Xi)
εi. (12)

If, for a multi index k, θk = 0, then the corresponding empirical Fourier coefficient will be
close to zero with high probability. To show this, let us first look at what happens with
zk’s. We have, for every real number x,

P
(
|zk| > x

∣∣X1, . . . ,Xn

)
≤ exp

(
− x2

2σ2
k

)
∀k ∈ Sm,d∗
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with

σ2
k =

σ2

n2

n∑
i=1

ϕk(Xi)
2

g(Xi)2
≤ 2σ2

g2
minn

.

Therefore, for every k ∈ Sm,d∗ , it holds that

P
(
|zk| > x|X1, . . . ,Xn

)
≤ exp(−ng2

minx
2/4σ2).

This entails that by setting λ1 = (8σ2d∗ log(6md)/ng2
min)1/2 and by using the inequalities

Card(Sm,d∗) =

d∗∑
i=0

(
d

i

)
(2m)i ≤ (2m)d

∗
d∗∑
i=0

di

i!

≤ 3(2md)d
∗ ≤ (6md)d

∗
,

we get

P
(

max
k∈Sm,d∗

|zk| > λ1 |X1, . . . ,Xn

)
≤

∑
k∈Sm,d∗

P
(
|zk| > λ1 |X1, . . . ,Xn

)
≤ Card(Sm,d∗)e

−ng2minλ
2
1/4σ

2 ≤ (6md)−d
∗
.

Next, we use a concentration inequality for controlling large deviations of θ̃k’s from θk’s.
Recall that in view of the definition θ̃k = 1

n

∑n
i=1

ϕk(Xi)
g(Xi)

f(Xi), we have E(θ̃k) = θk. By

virtue of the boundedness of f, it holds that |ϕk(Xi)
g(Xi)

f(Xi)| ≤
√

2L∞/gmin. Furthermore, the

bound V , Var
(ϕk(Xi)

g(Xi)
f(Xi)

)
≤
∫
f2(x)

ϕ2
k(x)

g(x) dx ≤ 2L2
2/g

2
min combined with Bernstein’s

inequality yields

P
(
|θ̃k − θk| > t

)
≤ 2 exp

(
− nt2

2(V + t
√

2L∞/3gmin)

)
≤ 2 exp

(
− g2

minnt
2

4L2
2 + tL∞gmin

)
, ∀t > 0.

Let us define λ2 = 4L2

(
d∗ log(6md)
ng2min

)1/2
. Then,

P
(
|θ̃k − θk| > λ2

)
≤ 2 exp

(
− 4L2

2d
∗ log(6md)

L2
2 + L∞L2

(d∗ log(6md)
n

)1/2).
The first inequality in condition (4) implies that the denominator in the exponential is not
larger than 2L2

2. Hence,

P
(

max
k∈Sm,d∗

|θ̃k − θk| > λ2

)
≤ 2/(6md)d

∗
.

Let A1 =
{

maxk∈Sm,d∗ |zk| ≤ λ1

}
and A2 =

{
maxk∈Sm,d∗ |θ̃k| ≤ λ2

}
. One easily checks

that
P
(
Jc 6⊂ Ĵc

)
≤ P

(
Ac1
)

+ P
(
Ac2
)
≤ 3/(6md)d

∗
.

201



Comminges Dalalyan

As for the converse inclusion, we have

P(J 6⊂ Ĵ) ≤ P
(
∃j ∈ J s.t. max

k∈Sm,d∗ : kj 6=0
|θ̂k| ≤ λ

)
≤ 1

{
∃j ∈ J s.t. max

k∈Sm,d∗ :kj 6=0
|θk| ≤ 2λ

}
+ P

(
Ac1
)

+ P
(
Ac2
)
.

We show now that the first term in the last line is equal to zero. If this was not the case,
then for some value j0 we would have Qj0 ≥ κ and |θk| ≤ 2λ, for all k ∈ Sm,d∗ such that
kj0 6= 0. This would imply that

Qj0,m,d∗,
∑

k∈Sm,d∗ :kj0 6=0

θ2
k ≤ 4λ2N(d∗,m2/d∗).

On the other hand,

Qj0 −Qj0,m,d∗ ≤
∑
‖k‖2≥m

θ2
k ≤ m−2

∑
‖k‖2≥m

∑
j∈J

k2
j θ

2
k ≤

Ld∗

m2
.

Remark now that the choice of the truncation parameter m proposed in the statement
of the proposition implies that Qj0 − Qj0,m,d∗ ≤ κ/2. Combining these estimates, we get
Qj0 ≤ κ

2 + 4λ2N(d∗,m2/d∗), which is impossible since Qj0 ≥ κ.

Appendix B. Proof of Proposition 3

Proof of the first assertion. This proof can be found in Mazo and Odlyzko (1990), we
repeat here the arguments therein for the sake of keeping the paper self-contained. Recall
that N1(d∗, γ) admits an integral representation with the integrand:

h(z)d
∗

zγd∗
1

z(1− z)
=

1

z(1− z)
exp

[
d∗ log

(
h(z)

zγ

)]
.

For any real number y > 0, we define

φ(y) = e−yh′(e−y)/h(e−y) =
k=+∞∑
k=−∞

k2e−yk
2
/
k=+∞∑
k=−∞

e−yk
2

in such a way that

φ(y) = γ ⇐⇒ h′(e−y)

h(e−y)
=

γ

e−y
⇐⇒ l′γ(e−y) = 0.

By virtue of the Cauchy-Schwarz inequality, it holds that∑
k4e−yk

2
∑

e−yk
2
>
(∑

k2e−yk
2
)2
, ∀y ∈ (0,∞),

implying that φ′(y) < 0 for all y ∈ (0,∞), i.e., φ is strictly decreasing. Furthermore, φ
is obviously continuous with limy→0 φ(y) = +∞ and limy→∞ φ(y) = 0. These properties
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imply the existence and the uniqueness of yγ ∈ (0,∞) such that φ(yγ) = γ. Furthermore,
as the inverse of a decreasing function, the function γ 7→ yγ is decreasing as well. We set
zγ = e−yγ so that γ 7→ zγ is increasing.

We also have

l′′γ(zγ) =
h′′h− (h′)2

h2
(zγ) +

γ

z2
γ

= z−2
γ

{∑
k(k

4 − k2)zk
2

γ∑
k z

k2
γ

−
(∑

k k
2zk

2

γ∑
k z

k2
γ

)2

+ γ

}
= z−2

γ

{
− φ′(yγ)− φ(yγ) + γ

}
= −z−2

γ φ′(yγ) > 0.

Proof of the second assertion. We apply the saddle-point method to the integral
representing N1 see, e.g., Chapter IX in Dieudonné (1968). It holds that

N1(d∗, γ) =
1

2πi

∮
|z|=zγ

h(z)d
∗

zγd∗
dz

z(1− z)
=

1

2πi

∮
|z|=zγ

{z(1− z)}−1ed
∗lγ(z)dz. (13)

The first assertion of the proposition provided us with a real number zγ such that l′γ(zγ) = 0
and l′′γ(zγ) > 0. The tangent to the steepest descent curve at zγ is vertical. The path we
choose for integration is the circle with center 0 and radius zγ . As this circle and the
steepest descent curve have the same tangent at zγ , applying formula (1.8.1) of Dieudonné
(1968) (with α = 0 since l′′(zγ) is real and positive), we get that

1

2πi

∮
|z|=zγ

{z(1− z)}−1ed
∗lγ(z)dz =

1

2πi

√
2π

d∗l′′γ(zγ)
eiπ/2{zγ(1− zγ)}−1ed

∗lγ(zγ)(1 + o(1)),

when d∗ →∞, as soon as the condition1 <[lγ(z)− lγ(zγ)] ≤ −µ is satisfied for some µ > 0
and for any z belonging to the circle |z| = |zγ | and lying not too close to zγ . To check

that this is indeed the case, we remark that <[lγ(z)] = log
∣∣h(z)
zγ

∣∣. Hence, if z = zγe
iω with

ω ∈ [ω0, 2π − ω0] for some ω0 ∈]0, π[, then∣∣∣h(z)

zγ

∣∣∣ =
|1 + 2z + 2

∑
k>1 z

k2 |
zγγ

≤
|1 + z|+ zγ + 2

∑
k>1 z

k2
γ

zγγ

≤
|1 + eiω0zγ |+ zγ + 2

∑
k>1 z

k2
γ

zγγ
.

Therefore <[lγ(z) − <lγ(zγ)] ≤ −µ with µ = log
(

1+2zγ+
∑
k≥1 z

k2
γ

|1+zγeiω0 |+zγ+
∑
k≥1 z

k2
γ

)
> 0. This com-

pletes the proof for the term N1(d∗, γ). The term N2(d∗, γ) can be dealt in the same way.

Appendix C. Proof of Lemma 5

Let φ(·) be the density of N (0, 1) and let

pf(y) ,
n∏
i=1

φ
(
yi − f(Xi)

)
, ∀y ∈ Rn.

1. <u stands for the real part of the complex number u.
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Since the errors εi are Gaussian, the posterior probabilities P0 and P1 are absolutely con-
tinuous w.r.t. the Lebesgue measure on Rn and admit the densities

p0(y) =
n∏
i=1

φ(yi), and p1(y) = Ef∼µSpf(y), ∀y ∈ Rn.

Simple algebra yields:

pf(y) = Cfp0(y)
n∏
i=1

exp
{
yif(Xi)

}
, ∀y ∈ Rn,

where Cf =
∏n
i=1 exp

{
− f(Xi)

2/2
}

. Thus,

p1

p0
(y) = Ef∼µS

[
Cf

n∏
i=1

exp
{
yif(Xi)

}]
.

Therefore,∫
Rn

(p1

p0
(y)
)2
p0(y)dy = E(f,f′)∼µS⊗µS

[
CfCf′

∫
Rn

n∏
i=1

(
exp

{
yi(f + f ′)(Xi)

}
φ(yi)

)
dy
]

= E(f,f′)∼µS⊗µS

[
CfCf′

n∏
i=1

exp
(1

2
(f + f ′)2(Xi)

)]
= E(f,f′)∼µS⊗µS

[
exp

( n∑
i=1

f(Xi)f
′(Xi)

)]
=

1

22|S|

∑
ω,ω′∈{±1}S

∏
k,k′∈S

exp
(
ωkω

′
k′bkk′

)
,

where bkk′ = A2
∑n

i=1 ϕk(Xi)ϕk′(Xi), for all k,k′ ∈ S. Note that 0 ≤ bkk ≤ 2A2n and
|bkk′ | ≤ A2nε, for all k,k′ ∈ S such that k′ 6= k. Now, on the one hand, for a fixed pair
(ω,ω′), we have ∏

k 6=k′

exp
(
ωkω

′
k′bkk′

)
≤ exp

(
|S|2A2nε

)
.

On the other hand, if we are given a sequence of numbers (bkk) indexed by S, we have

1

22|S|

∑
ω,ω′

∏
k∈S

eωkω
′
kbkk =

∏
k∈S

ebkk + e−bkk

2
≤
∏
k∈S

eb
2
kk ≤ exp

(
4|S|A4n2

)
.

From these remarks it results that∫ d

R

(p1

p0
(y)
)2
p0(y)dy ≤ exp

(
4|S|A4n2

{
1 +

|S|ε
4nA2

})
,

and the claim of the lemma follows.
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Appendix D. Proof of Proposition 7

Let M =
(
d
d∗

)
and let {f0, f1, . . . , fM} be a set included in Σ̃L. Let I1, . . . , IM be all the

subsets of {1, . . . , d} containing exactly d∗ elements somehow enumerated. Let us set f0 ≡ 0
and define f`, for ` 6= 0, by its Fourier coefficients {θ`k : k ∈ Zd} as follows:

θ`k =

{
1, k = (k1, . . . , kd) = (11∈I` , . . . ,1d∈I`),

0, otherwise.

Obviously, all the functions f` belong to Σ and, moreover, each f` has I` as sparsity pattern.
One easily checks that our choice of f` implies K(Pf` ,Pf0) = n‖f` − f0‖22 = n. Therefore, if

α logM = α log
(
d
d∗

)
≥ n, the desired inequality is satisfied. To conclude it suffices to note

that log
(
d
d∗

)
is larger than or equal to d∗ log(d/d∗) = d∗

(
log d− log d∗

)
.
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