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Abstract

We consider the problem of approximately reconstructing a partially-observed, approxi-
mately low-rank matrix. This problem has received much attention lately, mostly using
the trace-norm as a surrogate to the rank. Here we study low-rank matrix reconstruction
using both the trace-norm, as well as the less-studied max-norm, and present reconstruc-
tion guarantees based on existing analysis on the Rademacher complexity of the unit balls
of these norms. We show how these are superior in several ways to recently published
guarantees based on specialized analysis.

Keywords: Matrix completion, low-rank matrices, trace norm, nuclear norm, max norm,
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1. Introduction

We consider the problem of (approximately) reconstructing an (approximately) low-rank
matrix based on observing a random subset of entries. That is, we observe s randomly
chosen entries of an unknown matrix Y ∈ Rn×m, where we assume either Y is of rank at
most r, or there exists X ∈ Rn×m of rank at most r that is close to Y . Based on these s
observations, we would like to construct a matrix X̂ that is as close as possible to Y .

There has been much interest recently in computationally efficient methods for recon-
structing a partially-observed, possibly noisy, low-rank matrix, and on accompanying guar-
antees on the quality of the reconstruction and the required number of observations. Since
directly searching for a low-rank matrix minimizing the empirical reconstruction error is
NP-hard (Chistov and Grigoriev, 1984), most work has focused on using the trace-norm
(a.k.a. nuclear norm, or Schatten-1-norm) as a surrogate for the rank. The trace-norm of a
matrix is the sum (i.e. `1-norm) of its singular values, and thus relaxing the rank (i.e. the
number of non-zero singular values) to the trace-norm is akin to relaxing the sparsity of a
vector to its `1-norm, as is frequently done in compressed sensing. The analysis of the qual-
ity of reconstruction has also been largely driven by ideas coming from compressed sensing,
typically studying the optimality conditions of the empirical optimization problem, and
often requiring various “incoherence”-type assumptions on the underlying low-rank matrix.

In this paper we provide simple guarantees on approximate low-rank matrix reconstruc-
tion using a different surrogate regularizer: the γ2:`1→`∞ norm, which we refer to simply as
the “max-norm”. This regularizer was first suggested by Srebro et al. (2005), though it has
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not received much attention since. Here we show how this regularizer can yield guarantees
that are superior in some ways to recent state-of-the-art. In particular, we show that when
the entries are uniformly bounded, i.e. |X|∞ = O(1) (this corresponds to the “no spikiness”
assumption of Negahban and Wainwright (2010), and is also assumed by Koltchinskii et al.
(2010) and in the approximate reconstruction guarantee of Keshavan et al. (2010)), then
the max-norm regularized predictor requires a sample size of

s = O

(
r(n+m)

ε
· σ

2 + ε

ε
· log3(1/ε)

)
(1)

to achieve mean-squared reconstruction error 1
nm |X̂ − Y |

2
2 = σ2 + ε, where σ2 is the the

mean-squared-error of the best rank-r approximation of Y—that is, σ2 = 1
nm |X − Y |22,

where X is the rank-r approximation. When Y is exactly low-rank (the noiseless case),

σ2 = 0 and the sample complexity is O
(
r(n+m)

ε · log3(1/ε)
)

. Compared to the three recent

similar bounds mentioned above, this guarantee avoids the extra logarithmic dependence
on the dimensionality, as well as the assumption of independent noise, but has a slightly
worse dependence on ε. We emphasize that we do not make any assumptions about the
noise, nor about incoherence properties of the underlying low-rank matrix X.

We also provide a guarantee on the mean-absolute-error of the reconstruction, and dis-
cuss guarantees for reconstruction using the trace-norm as a surrogate. Using the trace-norm
allows us to provide mean-absolute-error guarantees also for matrices where the magnitudes
are not uniformly bounded (i.e. “spiky” matrices). We further show that a spikiness as-
sumption is necessary for squared-error approximate reconstruction of low-rank matrices,
regardless of the estimator used.

Instead of focusing on optimality conditions as in previous work, our guarantees follow
from generic generalization guarantees based on the Rademacher complexity, and an anal-
ysis of the Rademacher complexity of the max-norm and trace-norm balls conducted by
Srebro and Shraibman (2005). To obtain the desired low rank reconstruction guarantees,
we combine these with bounds on the max-norm and trace-norm in terms of the rank. The
point we make here is that these fairly simple arguments, mostly based on the work of Sre-
bro and Shraibman (2005), are enough to obtain guarantees that are in many ways better
and more general than those presented in recent years.

Notation. We use |M | to denote the elementwise norms of a matrix M : |M |1 =
∑

ij |Mij |,
|M |2 is the Frobenius norm, and |M |∞ = maxij |Mij |. We discuss n × m matrices, and
without loss of generality always assume n ≥ m.

2. The Max-Norm and Trace-Norm

We will consider the following two matrix norms, which are both surrogates for the rank:

Definition 1 The trace-norm of a matrix X ∈ Rn×m is given by:

‖X‖Σ =
∑

(singular values of X) = min
U,V :X=UV T

|U |2|V |2 .
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Definition 2 The max-norm of a matrix X ∈ Rn×m is given by:

‖X‖max = min
U,V :X=UV T

(
max
i
|U(i)|2

)(
max
j
|V(j)|2

)
,

where U(i) and V(j) denote the ith row of U and the jth row of V , respectively.

Both the trace-norm and the max-norm are semi-definite representable (Fazel et al.,
2002; Srebro et al., 2005). Consequently, optimization problems involving a constraint on
the trace-norm or max-norm, a linear or quadratic objective, and possibly additional linear
constraints, are solvable using semi-definite programming. We will consider estimators
which are solutions to such problems.

Srebro and Shraibman (2005) and later Sherstov (2007) studied the max-norm and trace-
norm as surrogates for the rank in a classification setting, where one is only concerned with
the signs of the underlying matrix. They showed that a sign matrix might be realizable with
low rank, but realizing it with unit margin might require exponentially high max-norm or
trace-norm. Based on this analysis, they argued that the max-norm and trace-norm cannot
be used to obtain reconstruction guarantees for sign matrices of low rank matrices.

Here, we show that in a regression setting, the situation is quite different, and the max-
norm and trace-norm are good convex surrogates for the rank. The specific relationship
between these surrogates and the rank is determined by how we control the scale of the
matrix X (i.e. the magnitude of its entries). This will be made explicit in the next section,
but for now we state the bounds on the trace-norm and max-norm in terms of the rank
which we will leverage in Section 3.

By bounding the `1 norm of the singular values (i.e. the trace-norm) by their `2 norm
(i.e. the Frobenius norm) and the number of non-zero values (the rank), we obtain the
following relationship between the trace-norm and Frobenius norm:

|X|2 ≤ ‖X‖Σ ≤
√

rank(X) · |X|2 . (2)

Interpreting the Frobenius norm as specifying the average entry magnitude, 1
nm |X|

2
2, we

can view the above as upper bounding the trace-norm with the square root of the rank,
when the average entry magnitude is fixed.

An analagous bound for the max norm, substituting `∞ norm (maximal entry magni-
tude) for Frobenius norm (average entry magnitude), can be obtained as follows:

Lemma 3 For any X ∈ Rn×m, |X|∞ ≤ ‖X‖max ≤
√

rank(X) · |X|∞.

Proof Consider the minimizing factorization X = UV T and let Xij be the largest magni-
tude entry in X, then: ‖X‖max ≥

∣∣U(i)

∣∣ · ∣∣V(j)

∣∣ ≥ |Xij | = |X|∞.
To obtain the upper bound we first write the max-norm as (Lee et al., 2008):

‖X‖max = sup
p,q
‖diag(p)Xdiag(q)2‖Σ , (3)

where the supremum is over nonnegative unit vectors p, q. We can now continue using (2):

≤ sup
p,q

√
rank(diag(p)Xdiag(q)) · |diag(p)Xdiag(q)|2

≤ sup
p,q

√
rankX ·

√∑
ij

p2
i q

2
jX

2
ij =
√

rankX |X|∞ .
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3. Reconstruction Guarantees

The theorems below provide reconstructions guarantees, first under the a mean-absolute-
error reconstruction measure (Theorem 4) and then under a mean-squared-error recon-
struction measure (Theorem 6). Since the guarantees are for approximate reconstruction,
we must impose some notion of scale. In other words, we can think of measuring the error
relative to the scale of the data—if Y is multiplied by some constant, then obviously the
reconstruction error would also be multiplied by this constant. In the theorems below we
refer to two notions of scale: the average squared magnitude of matrix entries, i.e. 1

nm |X|
2
2,

and the maximal magnitude of matrix entries, i.e. |X|∞. For simplicity and without loss of
generality, the results are stated for unit scale.

An issue to take note of is whether the s observed entries of Y are chosen with or without
replacement, i.e. whether we choose a set S of entries uniformly at random over all sets of
exactly s entries (no replacements), or whether we make s independent uniform choices of
entries, possibly observing the same entry twice. Our results apply in both cases.

Theorem 4 For any M,Y ∈ Rn×m where M is of rank at most r:

a. Entry magnitudes bounded on-average. Consider the estimator1

X̂(S) = arg min
‖X‖Σ≤

√
rnm

∑
(i,j)∈S

|Yij −Xij | .

If 1
nm |M |

2
2 ≤ 1 and s ≥ O

(
r(n+m) log(n)

ε2

)
, then in expectation over a sample S chosen

either uniformly over sets of size s (without replacements) or by choosing s entries
uniformly and independently (with replacements):

1

nm
|Y − X̂(S)|1 ≤

1

nm
|Y −M |1 + ε .

b. Entry magnitudes bounded uniformly. Consider the estimator

X̂(S) = arg min
‖X‖max≤

√
r

∑
(i,j)∈S

|Yij −Xij | .

If |M |∞ ≤ 1 and s ≥ O
(
r(n+m)

ε2

)
, then in expectation over a sample S of size s

chosen either with or without replacements as above:

1

nm
|Y − X̂(S)|1 ≤

1

nm
|Y −M |1 + ε .

Remark 5 The above results can also be shown to hold in high probability over the sam-
ple S, rather than in expectation. Specifically, to ensure that the results of Theorem 4
hold with probability at least 1 − n−β (for sampling with replacement) or 1 − n−(β−2) (for
sampling without replacement), it is sufficient to change the sample size requirement to

s ≥ O
(
r(n+m) log(n)+β log(n)

ε2

)
(in the trace-norm case) or s ≥ O

(
r(n+m)+β log(n)

ε2

)
(in the

max-norm case).

1. If S is chosen with replacements, it is a multiset, and the summation
∑

(i,j)∈S should be interpreted as
summation with repetitions.
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Theorem 6 For any Y = M + Z ∈ Rn×m where |Z|∞ ≤
√

rn
logn and M is of rank at most

r with |M |∞ ≤ 1, denote σ2 = 1
nm |Z|

2
2. Consider the estimator

X̂(S) = arg min
‖X‖max≤

√
r

∑
(i,j)∈S

(Yij −Xij)
2 . (4)

If s ≥ O
(
r(n+m)

ε · σ2+ε
ε · (log3(r/ε) + β)

)
, then, with probability at least 1 − n−β over a

sample S of size s chosen with replacement, or with probability at least 1− n−(β−2) over a
sample S of size s chosen without replacement,

1

nm
|Y − X̂(S)|22 ≤ σ2 + ε . (5)

If we instead use the estimator:

X̂(S) = arg min
‖X‖max≤

√
r

|X|∞≤1

∑
(i,j)∈S

(Yij −Xij)
2 , (6)

then we obtain (5) when s ≥ O
(
r(n+m)

ε · σ2+ε
ε · (log3(1/ε) + β)

)
.

The estimator (6) is SDP-representable, though potentially more cumbersome.

Remark 7 The requirement on the maximal magnitude of the error in Theorem 6, |Z|∞ ≤√
rn

logn , is very generous, and easily holds with high probability for sub-exponential noise. A

stricter requirement, e.g. O(
√
r log n), which still holds with high probability for subgaussian

noise, yields a guarantee with exponentially high probability 1− e−n/ logn, without a sample-
complexity dependence on β.

Remark 8 A guarantee similar to Theorem 6 can be obtained if we can ensure ‖M‖max ≤
A, for some A, without requiring |M |∞ ≤ 1. For X̂(S) = arg min‖X‖max≤A

∑
ij∈S(Yij −

Xij)
2, we have (5) with a sample of size

s ≥ O

(
A2(n+m)

ε
· σ

2 + ε

ε
· (log3(A2/ε) + β)

)
.

In Section 4.2.3, we will see how certain incoherence assumptions used in previous bounds
yield a bound on ‖M‖max, and compare the max-norm based reconstruction guarantee to the
previously published results.

In Theorems 4 and 6 we do not assume the noise, i.e. the entries of Z = Y − M ,
are independent or zero-mean—in fact, we make no assumption on Z, other than the very

generous upper bound |Z|∞ ≤
√

rn
logn discussed above. When entries of Z can be arbitrary,

it is not possible to ensure reconstruction of M (e.g. we can set things up so Y actually has
lower rank then M , and so it is impossible to identify M). Consequently, in Theorems 4 and
6 we instead bound the excess error in predicting Y itself. If entries of Z are independent and
zero-mean, then we may give the following guarantee about reconstructing the underlying
matrix M :
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Theorem 9 For (i, j) ∈ [n] × [m], let F(i,j) be any mean-zero distribution. Suppose that
the observed entries of Y are given by Y(it,jt) = M(it,jt) + Zt for t = 1, 2, . . . , s, where

(it, jt)
iid∼ Unif([n] × [m]) and Zt|(it, jt) ∼ F(it,jt) independently for each t. That is, the

noise is independent and zero-mean (though its distribution is allowed to depend on the
location of the observation), the sample is drawn with replacement, and if an entry of the
matrix is observed more than once, then the noise on the entry is drawn independently each
time.

Assume |M |∞ ≤ 1, rank(M) ≤ r, and supt∈[s] |Zt| ≤ o
(√

rn
logn

)
with high probability.

Denote

σ2 =
1

nm

∑
i,j

EZij∼Fij (Z
2
ij) .

For the estimator given in Equation (4), with high probability over the sample S of size

s ≥ O
(
r(n+m)

ε · σ2+ε
ε · log3(r/ε)

)
,

1

nm
|M − X̂(S)|22 ≤ ε . (7)

Alternatively, is S is sampled uniformly without replacements, with the same assumptions

and sample size, and as long as s ≤ K+1
e (nm)

1− 1
K+1 , we have 1

nm |M − X̂(S)|22 ≤ 4Kε.

Remark 10 When sampling without replacement, we imposed both a lower bound and an
upper bound on the sample size. For these two bounds to be compatible (in an asymp-
totic sense) for a fixed K, we need m = Ω (na) for some positive power a, and make
ε arbitrarily small. Alternately, we can set K = O(log n), ensuring the upper bound
on s always holds (since s ≤ nm necessarily), yielding 1

nm |M − X̂(S)|22 ≤ ε whenever

s ≥ O
(
r(n+m) log(n)

ε · σ2+ε
ε · log3(r/ε)

)
.

The remainder of this Section is organized as follows: In Section 3.1, we prove Theo-
rems 4 and 6 in the case where the sample is drawn without replacement. In Section 3.2,
we discuss possible bounds of the mean-squared-error, as in Theorem 6, but using the
trace-norm. In Section 3.3, we compare sampling with and without replacement, establish-
ing Theorems 4 and 6 also for sampling with replacement. In Section 3.4, we turn to the
setting of independent mean-zero noise, and prove Theorem 9 in both the sampling-with-
replacement and sampling-without-replacement settings.

3.1. Proof of Theorems 4 and 6 when S is drawn with replacement

We first establish the Theorems for a sample chosen i.i.d. with replacements. In this case,
following Srebro and Shraibman (2005), we may view matrix reconstruction as a prediction
problem, by regarding a matrix X ∈ Rn×m as a function [n]× [m]→ R. Each observation
in the training set consists of a covariate (i, j) ∈ [n] × [m] and an observed noisy response
Yij ∈ R. Here, we assume that the distribution over [n] × [m] is uniform, and the joint
distribution over (i, j) and its response is determined by the unknown Y . The hypothesis
class is then a set of matrices bounded in either trace-norm or max-norm, and for a particular
hypothesis X ∈ Rn×m, the averaged error 1

nm |Y − X|1 or 1
nm |Y − X|22 is equal to the
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expected loss L(X) = Eij [loss(Xij , Yij)] under either the absolute-error or squared-error
loss, respectively.

Srebro and Shraibman (2005) established bounds on the Rademacher complexity of
the trace-norm and max-norm balls. For any sample of size s, the empirical Rademacher
complexity of the max-norm ball is bounded by

R̂s
({
X ∈ Rn×m

∣∣ ‖X‖max ≤ A
})
≤ 12

√
A2(n+m)

s
. (8)

Although the empirical Rademacher complexity of the trace-norm ball might be fairly high,
the expected Rademacher complexity, for a random sample of s independent uniformly
chosen index pairs (with replacements) can be bounded as

E
[
R̂s
({
X ∈ Rn×m

∣∣ ‖X‖Σ ≤ A})] ≤ K
√

A2

nm(n+m) log(n)

s
(9)

for some numeric constant K (this is a slightly better bound then the one given by Srebro
and Shraibman (2005), and is proved in Appendix B).

Since the absolute error loss, loss(x, y) = |x− y|, is 1-Lipschitz, these Rademacher
complexity bounds immediately imply (Bartlett and Mendelson, 2001):

1

nm

∣∣∣Y − X̂(S)
∣∣∣
1
≤ inf
‖X‖max≤A

(
1

nm
|Y −X|1

)
+ 24

√
A2(n+m)

s
(10)

for X̂(S) = arg min‖X‖max≤A
∑

(i,j)∈S |Yij −Xij |, and:

1

nm

∣∣∣Y − X̂(S)
∣∣∣
1
≤ inf
‖X‖Σ≤A

(
1

nm
|Y −X|1

)
+ 2K

√
A2

nm(n+m) log(n)

s
(11)

for X̂(S) = arg min‖X‖Σ≤A
∑

(i,j)∈S |Yij −Xij |. These provide guarantees on reconstructing

matrices with bounded max-norm or trace-norm. Choosing A =
√
r for the max-norm and

A =
√
rnm for the trace-norm, Theorem 4 (for sampling with replacement) follows from

Equation (2) and Lemma 3. (Remark 5 follows from the results of Bartlett and Mendelson
(2001) with identical arguments for the sampling-with-replacement case.)

In order to obtain Theorem 6, we use a recent bound on the excess error with respect
to a smooth (rather then Lipschitz) loss function, such as the squared loss. Specifically,
Theorem 1 of Srebro et al. (2010) states that, for a class of predictors X : I → [−B,B] and
a loss function bonded by b with second derivative bounded by H, with probability at least
1− δ over a random sample of size s,

L(X̂) ≤ L∗ +O

(√
L∗R̃s + R̃s

)
, (12)

L∗ = inf
X
L(X) ,

R̃s = HR2
s log3

(
B

Rs

)
+
b log(log(s)/δ)

s
, (13)
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where the infimum is over predictors in the class, X̂ is the empirical error minimizer in the
class, and Rs is an upper bound on the Rademacher complexity for all samples of size s.

In our case, for the class {X| ‖X‖max ≤ A} and the squared loss, we have B =

supX supij |Xij | = supX |X|∞ ≤ supX ‖X‖max ≤ A and b = supX |X − Y |
2
∞ ≤

√
4A2(n+m)
log(n+m) ,

when we assume |Z|∞ ≤ A
√

n+m
log(n+m) . Applying the bound (8) on the Rademacher com-

plexity yields:

R̃s = O

(
A2(n+m)

s
log3

( s
n

)
+
A2(n+m) log log s

s log(n+m)
+
A2(n+m) log(1/δ)

s log n

)
(14)

= O

(
A2(n+m)

s

(
log3

(
s

n+m

)
+

log(1/δ)

log n

))
. (15)

Here the last inequality uses the fact that s ≤ n2, while the next-to-last inequality assumes
s ≥ e3(n+m), and applies the fact that x2 log3(1/x) is an increasing function for x < e−1.5,

where in this case x =
√

n+m
s .

Remark 8 follows immediately. The first claim in Theorem 6 follows when we assume
|M |∞ ≤ 1 and rank(M) ≤ r and set A =

√
r (since, by Lemma 3, ‖M‖max ≤ A). If we

instead consider the class {X : ‖X‖max ≤
√
r, |X|∞ ≤ 1}, then in the notation of (12), we

may define B = 1 instead of B = A =
√
r, and thus obtain

R̃s = O

(
r(n+m)

s

(
log3

(
s

r(n+m)

)
+

log(1/δ)

log n

))
, (16)

which yields the second claim of Theorem 6.
Finally, we prove the claim Remark 7. If instead we assume |Z|∞ ≤

√
r log n, then in

the the notation of (12), we may define b = r log n instead of b = 4A2n
logn = 4rn

logn , and thus
obtain

R̃s = O

(
r(n+m)

s

(
log3

(
s

(n+m)

)
+

log n · log(1/δ)

n+m

))
. (17)

For δ ≤ e−n/logn, the second term is dominated by the first; therefore the sample complexity
no longer depends on β.

3.2. Bounds on `2 error using the trace norm

In Theorem 4, we saw that for mean-absolute-error matrix reconstruction, using the trace-
norm instead of the max-norm allows us to forgo a bound on the spikiness, and rely only
on the average squared magnitude 1

nm |Y |
2
2. One might hope that we can similarly get a

squared-error reconstruction guarantee using the trace-norm and without a spikiness bound
that was required in Theorem 6. Unfortunately, this is not possible.

In fact, as the following example demonstrates, it is not possible to reconstruct a low-
rank matrix to within much-better-then-trivial squared-error without a spikiness assump-
tion, and relying only on 1

nm |Y |2 ≤ 1. Specifically, consider an n×m matrix

Y =
√
m/r

(
A | 0n×(m−r)

)
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where A ∈ {±1}n×r is an arbitrary sign matrix. The matrix Y has rank at most r and
average squared magnitude 1

nm |Y |
2
2 = 1 (but maximal squared magnitude |Y |2∞ = m/r).

Now, with even half the entries observed (i.e. s = nm/2), we have no way of reconstructing
the unobserved entries of A, as any values we choose for these entries would be consistent
with the rank-r assumption, yielding an expected average squared error of at least 1/2. We
can conclude that regardless of the estimator, controlling the average squared magnitude is
not enough here, and we cannot expect to obtain a squared-error reconstruction guarantee
based on 1

nm |Y |
2
2, even if we use the trace-norm.

We note that if |M |∞ , |Y |∞ = O(1), then the squared-loss in the relevant regime has
a bounded Lipschitz constants, and Theorem 4a applies. In particular, if |M |∞ , |Y |∞ ≤ 1,
then we can consider the estimator

X̂(S) = arg min
‖X‖Σ≤

√
rnm

|X|∞≤1

∑
(i,j)∈S

(Yij −Xij)
2 . (18)

Since we now only need to consider X where |Xij − Yij | ≤ 2, the squared-loss in the relevant
domain is 4-Lipschitz. We can therefore use the standard generalization results for Lipschitz
loss as in Theorem 4, and obtain that with high probability over a sample of size

s ≥ O

(
r(n+m) log n

ε2

)
, (19)

we have 1
nm |Y − X̂(S)|22 ≤ σ2 + ε. However, this result gives a dependence on ε that

is quadratic, as opposed to the more favorable dependence (at least when ε = Ω(σ2)) of
Theorem 6.

We believe that, when |M |∞, |Y |∞ ≤ O(1), it is possible to improve the dependence
on ε to a dependence similar to that of Theorem 6 (this would require a more delicate
analysis then that of Srebro et al. (2010), as their techniques rely on bounding the worst-
case Rademacher complexity). But even this would not give any advantage over the max-
norm, since the bound on |M |∞ could not be relaxed, while an additional factor of log n
would be introduced into the sample complexity (coming from the Rademacher complexity
calculation for the trace-norm). It seems then, that at least in terms of the quantities and
conditions considered in this paper, as well as elsewhere in the low-rank reconstruction
literature we are familiar with, there is no theoretical advantage for the trace-norm over the
max-norm in terms of squared-error approximate reconstruction, though there could be an
advantage for the max-norm in avoiding a logarithmic factor.

3.3. Sampling with or without replacement in Theorems 4 and 6

Theorems 4 and 6 give results that hold for either sampling with replacement or sampling
without replacement. When an entry of the matrix Y is sampled twice, the same value is
observed each time—no new information about the matrix is observed, and so intuitively,
sampling without replacement should yield strictly better results than sampling with re-
placement. The two lemmas below, proved in the Appendix, establish that sampling without
replacement is indeed as at least as good as sampling with replacement (up to a constant).

Before stating the lemmas, we briefly introduce some notation. Let L(X) denote the
loss for an estimated matrix X; that is, L(X) = 1

nm |Y −X|1 or L(X) = 1
nm |Y −X|

2
2, as
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appropriate. Let L̂S(X) denote the empirical loss, L̂S(X) =
∑

(i,j)∈S |Yij − Xij |p (where
p ∈ {1, 2} and the sum includes repeated elements in S). Let Ds and Dsw/o denote the
distributions of a sample of size s drawn uniformly at random from the matrix, either with
or without replacement, respectively.

Lemma 11 Let X denote any class of matrices, with Ds and Dsw/o defined as above. Then

ES∼Ds
w/o

[
sup
X∈X

L(X)− L̂S(X)

]
≤ ES∼Ds

[
sup
X∈X

L(X)− L̂S(X)

]
.

Lemma 12 Let X denote any class of matrices, with Ds and Dsw/o defined as above. Then
for any c ∈ R, and for any function g,

PS∼Ds
w/o

{(
sup
X∈X

g(L(X))− L̂S(X)

)
≥ c
}
≤ 4s ·PS∼Ds

{(
sup
X∈X

g(L(X))− L̂S(X)

)
≥ c
}
.

For the `1-loss case, the Rademacher bounds (10) and (11) are derived from Bartlett and

Mendelson (2001) by bounding ES∼Ds

(
supX∈X L(X)− L̂S(X)

)
(or by bounding

PS∼Ds

(
supX∈X L(X)− L̂S(X) ≥ c

)
, for the proof of Remark 5). By Lemma 11, the same

bound then holds for the same expectation taken over S ∼ Dsw/o, and therefore (10) and (11)

must hold for this case as well. This implies that the results of Theorem 4 (and Remark 5)
hold for sampling without replacement as well as sampling with replacement.

Similarly, for the `2-loss case, the Rademacher bound (12) is derived in Srebro et al.
(2010) by bounding supX∈X L(X)−

√
a · L(X)−L̂S(X) for some constant a, with probability

at least 1 − δ over S ∼ Ds. Defining g(L) = L −
√
a · L, the same bound must therefore

hold with probability at least 1 − 4sδ ≥ 1 − 4n2δ over S ∼ Dsw/o, and therefore (12) holds

for this case also. This implies that the results of Theorem 6 (and the subsequent remarks)
hold for sampling without replacement as well as sampling with replacement.

3.4. Proof of Theorem 9: independent errors in the `2-loss setting.

First, we prove the theorem when sampling with replacement. For a matrix X, let L(X)
denote the expected squared error for a randomly sampled entry, that is,

L(X) =
1

nm

∑
(i,j)

E((Yij −Xij)
2) =

1

nm

∑
(i,j)

EZ∼F(i,j)
((Z +Mij −Xij)

2) .

Now write σ2 = 1
nm

∑
(i,j)EZ∼F(i,j)

(Z2). Then L(M) = σ2.

Then, for any sample S, given X̂(S) which is a random matrix depending on some
observed sample, the expected loss (over a future observation of an entry in the matrix) of
X̂(S) satisfies the following (due to the fact that noise in a future observation of the matrix
has zero mean and is independent from X̂(S)):

L(X̂(S)) = E(i,j)

(
(Yij − X̂(S)ij)

2
∣∣∣X̂(S)

)
= E(i,j),Z∼Fij

(
(Z +Mij − X̂(S)ij)

2
∣∣∣X̂(S)

)
= E(i,j),Z∼Fij

(
Z2 + (Mij − X̂(S)ij)

2
∣∣∣X̂(S)

)
= E(i,j),Z∼Fij

(
Z2
)

+
1

nm
|M − X̂(S)|22

= σ2 +
1

nm
|M − X̂(S)|22 .
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Therefore, following the same reasoning as the proof of Theorem 6 (and Remark 7, we

have that if s ≥ O
(
r(n+m)

ε · σ2+ε
ε · log3(r/ε)

)
, then with high probability,

L(X̂) ≤ σ2 + ε .

Applying the work above, we obtain

1

nm
|M − X̂(S)|22 ≤ ε . (20)

Now we turn to sampling without replacement. We first state a lemma which is proved
in the appendix. (Notation: here Ds and Dsw/o again denote sampling with or without
replacement, but in this context Ds represents sampling with replacement when the noise
is added independently each time an entry is sampled, as in the statement of Theorem 9.)

Lemma 13 Let X denote any class of matrices, with Ds and Dsw/o defined as above. For

any c, if s satisfies s ≤ K+1
e (nm)

1− 1
K+1 , then

PS∼Ds
w/o

(
sup
X∈X

g(L(X))− L̂S(X) ≥ c
)
≤ 4K·PS∼Ds

(
sup
X∈X

g(L(X))− L̂S(X) ≥ (2K)−1c

)
.

As in the proof of the sampling-without-replacement case of Theorem 6, this is sufficient
to show that 1

nm |M−X̂(S)|22 ≤ 4K ·ε with high probability for the stated sample complexity,

as long as we also have that s ≤ K+1
e (nm)

1− 1
K+1 .

4. Comparison to prior work

Suppose Y = M + Z where rank(M) ≤ r and Z is a “noise” matrix of average squared
magnitude σ2 = 1

nm |Z|
2
2, and we observe random entries of Y . One might then consider

different types of reconstruction guarantees, requiring different assumptions on M , Z and
the sampling distribution:

Exact recovery of M : X̂(S) = M .

Near-exact recovery of M : 1
nm |X̂(S)−M |22 ≤ ε · σ2 .

Approximate recovery of M : 1
nm |X̂(S)−M |22 ≤ ε · scale(M) .

Approximate recovery of Y : 1
nm |X̂(S)− Y |22 ≤ σ2 + ε · scale(M) .

Exact or near-exact recovery require strong incoherence-type assumptions on the matrix
M , and is not possible for arbitrary low-rank matrices (see, e.g. Candès and Recht (2009)).
Here we do not make any such assumptions, and show that approximate recovery is still
possible. Such approximate recovery must be relative to some measure of the scale of M ,
and we discuss results relative to both the maximal magnitude, scale(M) = |M |2∞, and
the average squared magnitude scale(M) = 1

nm |M |
2
2. Although not actually guaranteeing

the same type of “recovery”, in Section 4.2 we nevertheless compare the sample complexity
required for our approximate recovery results to the best sample complexity guarantee
for exact and near-exact recovery (obtained by Recht (2009) and Keshavan et al. (2010),
respectively), and comment on the differences between the required assumptions on M .
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More directly comparable to our results are recent results by Keshavan et al. (2010),
Negahban and Wainwright (2010) and Koltchinskii et al. (2010) on approximate recovery
of M . These give essentially the same type of guarantee as in Theorem 9, and also rely
on |M |2∞ as a measure of scale. In Section 4.1 we compare our guarantee to these results,
discussing the different dependence on the various parameters and different assumptions on
the noise. (Note that both types of results appear in Keshavan et al. (2010); in Section 4.1,
we refer to the approximate recovery result stated in Theorem 1.1 of their paper, while in
Section 4.2, we refer to the near-exact recovery result stated in Theorem 1.2 of their paper.)

Recovery of M , whether exact, near-exact, or approximate, also requires the noise to
be independent and zero-mean, otherwise M might not be identifiable. All prior matrix
reconstruction results we are aware of work in this setting. Approximate recovery of M also
immediately implies an excess error bound on approximate recovery of Y . However, we also
provide excess error bounds for approximate recovery of Y , that do not assume independent
nor zero-mean noise (Theorems 4 and 6). That is, we provide reconstruction guarantees in
a significantly less restrictive setting compared to other matrix reconstruction guarantees.

Another difference between different results is whether entries are sampled with or with-
out replacement, and if replacement is allowed, whether the error is per-entry (i.e. repeat
observations of the same entry are identical) or per-observation (i.e. repeat observations of
the same entry are each corrupted independently). However, as we show in Sections 3.3
and 3.4, and as has also been shown for exact recovery (Recht, 2009), these differences do
not significantly alter the quality of reconstruction or the required sample size.

The most common algorithm for low-rank matrix recovery in the literature is squared-
error minimization subject to a penalty on trace norm. All the methods cited here prove
results about some variation of this approach, with the exception of a recent result by
Keshavan et al. (2010), which applies to the output of the local search procedure OptSpace.
In contrast, our results are mostly for error minimization subject to a max-norm constraint.

4.1. Comparison With Recent Approximate Recovery Guarantees

Negahban and Wainwright (2010) and Koltchinskii et al. (2010) recently presented guaran-
tees on approximate recovery using trace-norm regularization, in a setting very similar to
our Theorem 9. Earlier work by Keshavan et al. (2010) uses a low-rank SVD approximation
to ỸS in the same setting to also obtain an approximate recovery guarantee. (Here YS is
the matrix consisting of all observed entries of Y , with zeros elsewhere, and ỸS is the same
matrix with overrepresented rows and columns removed.) In particular, each of the three
guarantees provide an ε-approximate reconstruction of M relative to |M |2∞. That is, when

|M |∞ ≤ 1 as in Theorem 9, they provide the exact same guarantee 1
nm

∣∣∣X̂(S)−M
∣∣∣ ≤ ε.

(Negahban and Wainwright state the result relative to 1
nm |M |

2
2, but have a linear depen-

dence on the “spikiness”
|M |∞

|M |2/
√
nm

, effectively giving a guarantee relative to |M |2∞).

Specifically, assuming |M |∞ = 1 without loss of generality, Negahban and Wainwright
and Koltchinskii et al. assume the noise is independent and subgaussian (or subexponential)
with variance O(σ2), and require a sample size of:

s ≥ O

(
rn log(n)

ε
· (1 + σ2)

)
. (21)
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where the sample is drawn with replacement—in particular, an entry (i, j) of the matrix
which is sampled multiple times gives multiple independent estimates of Mij .

Keshavan et al. give a result on approximate recovery which holds with no assumption on
the noise, but requires additional assumptions such as i.i.d. noise to be a meaningful bound.
The estimator used is the rank-r SVD approximation to ỸS , defined above. Specifically,
they show that, for sufficiently large sample size, with high probability, 1√

nm
|X̂(S)−M |2 ≤

O

(
nr
√
n/m

s + nmr
s2
‖Z̃S‖22

)
, where Z̃S is defined in the same way as ỸS . For this bound to be

meaningful, there must be some distributional assumption on Z—otherwise, we could have
‖ZS‖2 ≈ |ZS |2 = O(

√
s), and the bound on mean error would actually increase with nm

s ,
and is thus not a meaningful bound. In the presence of i.i.d. subgaussian noise, however,

Keshavan et al. show that with high probability, ‖Z̃S‖22 ≤
σ2(
√
n/m)s log(s)

m . Using this,
approximate recovery of M is obtained for sample complexity

s ≥ O
(rn
ε
· (
√
n/m) ·

(
1 + log(n)σ2

))
, (22)

where the sample is drawn without replacement. Therefore we may regard Keshavan et al.’s
result as bounding error under the assumption of i.i.d. subgaussian noise (or perhaps some
weaker assumption that gives the same result, such as independent subgaussian noise that
might not be i.i.d., or similar). The guarantees (22) and (21) are therefore quite similar,
even though they are for fairly different methods, with (22) being better when σ2 = o(1)
but worse for highly rectangular matrices.

Comparing our Theorems 6 and 9 to the above, the advantages of our results are:

• We avoid the extra logarithmic dependence on n.

• Even in order to guarantee recovery of M , we assume only a much milder condition on

the noise: that noise is mean-zero, and that with high probability, |ZS |∞ ≤
√

rn
logn . We

do not assume the noise is identically distributed, nor subgaussian or subexponential.

• We provide a guarantee on the excess error of recovering Y , even when the noise is
not zero-mean nor independent.

The deficiency of our result is a possible slower rate of error decrease: when σ > 0 and
ε = o(σ2) (i.e. to get “estimation error” significantly lower then the “approximation error”),
our sample complexity scales as Õ(1/ε2) compared to just O(1/ε) in the other results. We
do not know if this difference represents a real consequence of not assuming zero-mean
independent noise in our analysis, or just looseness in the proof. Our results also include
an additional log3(1/ε) factor, which we believe is purely an artifact of the proof technique.

A strength of our analysis, as compared to that of Negahban and Wainwright and
Koltchinskii et al., is that the cases of sampling with and without replacement are both
covered, including the case of per-entry noise when sampling with replacement, while the
results of Negahban and Wainwright and Koltchinskii et al. are for sampling with re-
placement with per-observation noise. This is an important improvement because in many
applications, the observed entries are drawn from a fixed matrix which was randomly gen-
erated, meaning that it is not possible to obtain multiple independent observations of any
Mij .
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4.2. Comparison of results on exact and near-exact recovery

The results of Recht and of Keshavan et al. show that exact or near-exact recovery of
the underlying low-rank matrix M can be obtained with high probability, when strong
conditions on M are assumed, and when the observations are either noiseless (for Recht’s
exact recovery result) or are corrupted by i.i.d. subgaussian noise (for Keshavan et al.’s
near-exact recovery result).

These results cannot be directly compared to the results we obtain in this paper, because
the guarantees on recovery given by this work and by our work are fundamentally different—
for instance, the error bound ε has completely different meanings in our definitions of
near-exact recovery and approximate recovery above. These two incomparable types of
guarantees are linked to very different conditions on the data—exact and near-exact recovery
cannot be obtained without strict assumptions about how the observations are generated.

Nonetheless, one comparison between these methods which can be made, is in the magni-
tude of the required sample complexities to obtain some meaningful bound via each result—
exact recovery for Recht’s result, near-exact recovery for Keshavan et al.’s result, and ap-
proximate recovery relative to |M |2∞ for our result. The rest of this section is organized
as follows: we summarize the results in the literature in Section 4.2.1, compare sample
complexities in Section 4.2.2, and describe how incoherence is sufficient but not necessary
for approximate recovery relative to 1

nm |M |
2
2 (instead of |M |2∞) in Sections 4.2.3 and 4.2.4.

4.2.1. Details on exact and near-exact results in the literature

Let M = UΣV T be a reduced SVD of M . Let κ be the condition number of Σ. Define also
the incoherence parameters for matrix M (Candès and Recht, 2009):

µ0 = max

{
n

r
·max

i
|U(i)|22,

m

r
·max

j
|V(j)|22

}
,

µ1 =

√
nm

r
·max
i,j
|UT(i)V(j)| ,

where U(i) denotes the ith row of U and V(j) denotes the jth row of V .
Suppose that M has low incoherence parameters and Z = 0. Improving on the earlier

results of Candès and Recht (2009) and Candes and Tao (2010), Recht proves that X̂(S) =
M (that is, exact recovery is obtained) with high probability if

s ≥ O
(
rnmax{µ0, µ

2
1} log2 n

)
. (23)

In the case of noisy observations, Keshavan et al. give conditions on low `2 error in
recovery (with high probability) in the setting of i.i.d. subgaussian noise with incoherent
M , improving on Candes and Plan (2010) earlier work on the noisy case. (More precisely,
Keshavan et al. give a result which holds with no assumption on the noise, but requires
additional assumptions such as i.i.d. noise to be a meaningful bound. We therefore regard
their result as assuming i.i.d. subgaussian noise—see the discussion of their approximate
reconstruction result above in Section 4.1.) Their OptSpace algorithm is a method for
finding the rank-r matrix X̂ minimizing squared error on the observed entries. Let X̂(S)
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denote the matrix recovered by this algorithm. When the entries of Z are i.i.d. subgaussian,
Keshavan et al. show that, with high probability, if s satisfies

s ≥ O

(
rnκ4 ·max

{
1

ε
log

(
rnκ4

ε

)
, rκ2µ2

0, rκ
2µ2

1

})
, (24)

then |X̂(S)−M |22 ≤ |Z|22 ·ε. (For simplicity of the comparison, we use a slightly relaxed form
of their required sample complexity, and ignore

√
n/m in their error and sample bounds.)

4.2.2. Comparing sample complexities

Ignoring the dependence on ε, which as we discussed earlier is in any case incomparable
between approximate and exact and near-exact recovery, our sample complexity for approx-
imate recovery using the max-norm is O(rn). Even with “perfect” incoherence parameters,
this a factor of log2(n) less then the sample complexity established by Recht for exact re-
covery (23), and a factor of r less then the sample complexity established by Keshavan
et al. for near-exact recovery (24). Of course, “bad” incoherence parameters may sharply
increase the sample complexity for exact or near-exact recovery, but do not affect our sample
complexity for approximate recovery.

4.2.3. Approximate recovery relative to average signal magnitude, in the
presence of incoherence conditions

It is interesting to note that the incoherence assumptions, used by Recht and by Keshavan
et al., enable approximate recovery with the max-norm relative to the average magnitude

1
nm |M |

2
2, and not only the maximal magnitude, as in Theorem 6. This is based on the

following observation:

Lemma 14 Let M ∈ Rn×m and let κ and µ0 be defined as before. Then

‖M‖max ≤ min{κ,
√
r}µ0

√
r · |M |2√

nm
.

In particular, by Lemma 3, the above expression is also an upper bound for |M |∞.

Proof First, observe that

‖M‖max ≤ max
i,j
|(UΣ)(i)|2 · |V(j)|2 ≤ σ1 ·max

i,j
|U(i)|2 · |V(j)|2 ≤ σ1 ·

µ0r√
nm

.

Also,

σ1 ≤ κ
√
σ2
r ≤

κ√
r

√
σ2

1 + · · ·+ σ2
r =

κ|M |2√
r

and σ1 ≤
√
σ2

1 + · · ·+ σ2
r = |M |2 .

Now, based on Remark 8, if 1
nm |M |

2
2 ≤ 1 (and with a mild bound on |Z|∞), with high

probability over a sample of size

s ≥ O

(
rn

ε
· σ

2 + ε

ε
·min{κ2, r}µ2

0 · log3

(
µ2

0r

ε

))
, (25)
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we have |Y − X̂(S)|22 ≤ σ2 + ε. Up to log factors and the dependence on ε, this sample
complexity is at most as much as the sample complexity required by Keshavan et al., given
in (24).

4.2.4. Approximate recovery relative to average signal magnitude, in the
absence of incoherence conditions

We make note of several special cases where using max-norm and the concentration re-
sult, and bounding excess error relative to 1

nm |M |
2
2, may compare more favorably to other

methods than the results above would indicate.

• If U = V (that is, M is symmetric), then µ1 = µ0
√
r and so our sample complexity

compares more favorably to the sample complexities obtained by Recht and Keshavan
et al. (which both involve µ2

1).

• Our sample complexity uses Lemma 14 to bound ‖M‖max relative to 1√
nm
|M |2. An

example where κ = 1 and ‖M‖max � µ0
√
r|M |2√
nm

(i.e. the bound in Lemma 14 is

extremely loose) is the case where the spiky columns of U do not align with the spiky
columns of V , for example writing n = m = N + 1 we have:

M =


1 0

0 N−1/2

0 N−1/2

. . . . . .

0 N−1/2

·


0 1

N−1/2 0

N−1/2 0
. . . . . .

N−1/2 0


T

=


N−1/4 0

0 N−1/4

0 N−1/4

. . . . . .

0 N−1/4

·


0 N−1/4

N−1/4 0

N−1/4 0
. . . . . .

N−1/4 0


T

.

Since the left-hand factorization is an SVD of M (omitting Σ = I2), we therefore have

µ0
√
r · |M |2√

nm
= 1 while the right-hand factorization shows that ‖M‖max ≤ 1√

n−1
.

• Large condition numbers κ can often lead to the same situation, in which the max
norm is far lower than the bound implied by Lemma 14. For example, if low-rank

M is a matrix where ‖M‖max ≈ κµ0
√
r·|M |2√
nm

, but if we perturb M slightly and add an

extremely low singular value, then κ becomes extremely high while ‖M‖max is only
slightly perturbed.

5. Summary

We presented low rank matrix reconstruction guarantees based on an existing analysis of
the Rademacher complexity of low trace-norm and low max-norm matrices, and carefully
compared these to other recently presented results. We view the main contributions of this
papers as:

• Following a string of results on low-rank matrix reconstruction, showing that an ex-
isting Rademacher complexity analysis combined with simple arguments on the rela-
tionship between the rank, max-norm, and trace-norm, can yield guarantees that are
in several ways better, and relying on weaker assumptions.
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• Pointing out that the max-norm can yield superior reconstruction guarantees over the
more commonly used trace-norm.

• Studying the issue of sampling with and without replacement, and establishing rig-
orous generic results relating the two settings. This has been done before for exact
recovery (Recht, 2009), but is done here for the more delicate situation of approximate
recovery of either M or Y .

The main deficiency of our approach is a worse dependence on the approximation parameter
ε, when σ > 0 (i.e. the approximately low rank case) and ε = o(σ2) (i.e. estimation error
less then approximation error). Although this dependence is tight for general classes with
bounded Rademacher complexity, we do not know if it can be improved in Theorem 6.
In particular, we do not know whether the less favorable dependence is a consequence of
not relying on zero-mean i.i.d. noise, or not relying on M having low-rank (instead of only
assuming low max-norm), or on relying only on the Rademacher complexity of the class
of low max-norm matrices—perhaps better bounds can be obtained with a more careful
analysis.
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Appendix A. Proof of Sampling-Without-Replacement Lemmas

Proof (Lemmas 11 and 12). Let Sr = {S ∈ X s : each x ∈ X appears at most r times in S}.
Let S ∼ Dsr denote a sample S drawn uniformly from Sr. In particular, Ds0 = Dsw/o and

Dss = Ds. By Lemma 15 (proved below), for any r,

ES∼Ds
w/o

(
sup
h∈H

L(h)− L̂S(h)

)
≤ ES∼Ds

r

(
sup
h∈H

L(h)− L̂S(h)

)
,

PS∼Ds
w/o

(
sup
h∈H

g(L(h))− L̂S(h) ≥ c
)
≤ r! · PS∼Ds

r

(
sup
h∈H

g(L(h))− L̂S(h) ≥ c
)
.

Taking the first inequality with r = s, this completes the proof for Lemma 11.
Now we complete the proof of Lemma 12. Take S ∼ Ds and write S = {e1, . . . , es}. For

any i1 < i2 < · · · < iK+1,

P
(
ei1 = ei2 = · · · = eiK+1

)
=

1

(nm)K
,

and so for any K with (K + 1)! ≥ 2s, the probability that any entry of the matrix appears
at least (K + 1) times in S is bounded by(

s

K + 1

)
· 1

(nm)K
≤ sK+1

(K + 1)!(nm)K
≤ s

(K + 1)!
≤ 1

2 .

Fix the smallest K such that (K + 1)! ≥ 2s. This implies K! < 2s. We then have

PS∼Ds
w/o

(
sup
h∈H

g(L(h))− L̂S(h) ≥ c
)

≤ K! · PS∼Ds
K

(
sup
h∈H

g(L(h))− L̂S(h) ≥ c
)

≤ K! · (PS∼Ds (each x ∈ X appears ≤ K times in S))−1 · PS∼Ds

(
sup
h∈H

g(L(h))− L̂S(h) ≥ c
)

≤ 2K! · PS∼Ds

(
sup
h∈H

g(L(h))− L̂S(h) ≥ c
)

≤ 4s · PS∼Ds

(
sup
h∈H

g(L(h))− L̂S(h) ≥ c
)
.

This is completes the proof for Lemma 12.

Lemma 15 Using the notation of the proof above, for any r,

ES∼Ds
w/o

(
sup
h∈H

L(h)− L̂S(h)

)
≤ ES∼Ds

r

(
sup
h∈H

L(h)− L̂S(h)

)
,

PS∼Ds
w/o

(
sup
h∈H

g(L(h))− L̂S(h) ≥ c
)
≤ r! · PS∼Ds

r

(
sup
h∈H

g(L(h))− L̂S(h) ≥ c
)
.
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Proof
Write Ω = [n] × [m]. Let α(S) be any function of the sample S, where S may contain

repeated entries. Assume that, for any S, S1, . . . , Sr of equal size such that r · S = S1 +
· · ·+ Sr, α(·) satisfies the following for some function a(r):

a(r) · α(S) ≤
r∑
i=1

α(Si) . (26)

Consider all samples from Ω, drawn with replacement. For a sample set S of size s, for
i = 1, . . . , s, let Ni(S) equal the number of elements of Ω appearing exactly i times in S,
which obeys

∑
i iNi(S) = s. We call N(S) = (N1(S), . . . , Ns(S)) the multiplicity vector of

S; note that, when convenient, we might write N(S) to have length greater than s (filling
the last terms with zeros). From this point on, we will regard these samples as ordered lists,
and assume that in any sample, S is ordered in the format

(ω1
1, . . . , ω

1
N1(S), ω

2
1, ω

2
1, . . . , ω

2
N2(S), ω

2
N2(S), ω

3
1, ω

3
1, ω

3
1, . . . ) ,

where for any i we might permute the ωij ’s.
Let N be any multiplicity vector, of the form (N1, . . . , Nr, 0, . . . , 0) for some r ≤ s. Let

N′ and N′′ be multiplicity vectors derived from N as follows:

N ′i =


N1 + rNr, i = 1
Ni, 2 ≤ i ≤ r − 1
0, i ≥ r

, N ′′i =

{
Ni, 1 ≤ i ≤ r − 1
0, i ≥ r

Define s =
∑

i iNi. Note that
∑

i iN
′
i = s and

∑
i iN

′′
i = s− rNr.

Let S = {S : N(S) = N}, S′ = {S : N(S) = N′}, S′′ = {S : N(S) = N′′}. We will first
prove that ES′∼Unif(S′) [α(S′)] ≤ ES∼Unif(S) [α(S)], and then induct on r.

First consider S′. We have

|S′|ES′∼Unif(S′)
[
α(S′)

]
=
∑
S′∈S′

[
α(S′)

]
=
∑
S′′∈S′′

∑
A1,...,Ar⊂Ω\S′′

|Aj |=Nr

Aj ’s disjoint

[
α(S′′ +A1 + · · ·+Ar)

]
.

The last equality arises when, starting with some S′ ∈ S′, we recall that S′′ is an ordered
sample set beginning with the N1 + rNr elements which appear exactly once. Let S′′ be
the first N1 elements of S′, then let A1 be the next Nr elements of S′, let A2 be the next
Nr elements of S′, etc.

Next consider S. As before, we have

|S|ES∼Unif(S) [α(S)] =
∑
S∈S

[α(S)] =
∑
S′′∈S′′

∑
A⊂Ω\S
|A|=Nr

[
α(S′′ + r ·A)

]
.

By counting how many times each choice of A appears in the sum below, and then rescaling
accordingly, we get

=

(
(nm−N1 − · · · −Nr)!

(nm−N1 − · · · −Nr−1 − rNr)!

)−1

r−1
∑
S′′∈S′′

∑
A1,...,Ar⊂Ω\S′′

|Aj |=Nr

Aj ’s disjoint

∑
j

[
α(S′′ + r ·Aj)

]
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≥
(

(nm−N1 − · · · −Nr)!

(nm−N1 − · · · −Nr−1 − rNr)!

)−1 a(r)

r

∑
S′′∈S′′

∑
A1,...,Ar⊂Ω\S′′

|Aj |=Nr

Aj ’s disjoint

α(S′′ +A1 + · · ·+Ar) .

To summarize so far, we have

|S|ES∼Unif(S) [α(S)] ≥
(

(nm−N1 − · · · −Nr)!

(nm−N1 − · · · −Nr−1 − rNr)!

)−1

· a(r)

r
|S′|ES′∼Unif(S′)

[
α(S′)

]
.

Next, we see that (since sample sets are treated as ordered)

|S| = (nm)!

(nm−N1 − · · · −Nr)!
, |S′| = (nm)!

(nm−N1 − · · · −Nr−1 − rNr)!

Therefore,

ES∼Unif(S) [α(S)] ≥ a(r)

r
· ES′∼Unif(S′)

[
α(S′)

]
.

By inducting over r, we then see that

ES∼Unif(S) [α(S)] ≥
∏r
i=1 a(i)

r!
· ES∼Ds

w/o
[α(S)] ,

where S = {S : N(S) = N} for any multiplicity vector N = (N1, . . . , Nr, 0, . . . , 0). There-
fore,

ES∼Ds
r

[α(S)] ≥
∏r
i=1 a(i)

r!
· ES∼Ds

w/o
[α(S)] ,

Finally, we observe that if α(S) = suph∈H L(h) − L̂S(h), then α(S) satisfies (26) with

a(r) = r, while if α(S) = I
{

suph∈H g(L(h))− L̂S(h) ≥ c
}

, then α(S) satisfies (26) with

a(r) = 1. This concludes the proof.

Proof (Lemma 13.)

Suppose s ≤ K+1
e (nm)

1− 1
K+1 . Then, as in the proof of Lemma 12,

P (any entry is sampled more than K times) ≤
(
s

K

)
· 1

(nm)K−1

≤ sK+1

(K + 1)!(nm)K
≤ (K + 1)/e)K+1(nm)K

(K + 1)!(nm)K
≤ 1

2
, by Stirling’s approximation.

We show below that, for any c,

PS∼Ds
w/o

(
sup
X∈X

g(L(X))− L̂S(X) ≥ c
)
≤ 2K·PS∼Ds

K

(
sup
X∈X

g(L(X))− L̂S(X) ≥ (2K)−1c

)
,

where Dsw/o and DsK are defined as in the proof of Lemmas 11 and 12, except with the
independent noise model. As in the proof of Lemmas 11 and 12, this implies that

PS∼Ds
w/o

(
sup
X∈X

g(L(X))− L̂S(X) ≥ c
)
≤ 4K·PS∼Ds

(
sup
X∈X

g(L(X))− L̂S(X) ≥ (2K)−1c

)
.
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We now prove that, for any c,

PS∼Ds
w/o

(
sup
X∈X

g(L(X))− L̂S(X) ≥ c
)
≤ 2K·PS∼Ds

K

(
sup
X∈X

g(L(X))− L̂S(X) ≥ (2K)−1c

)
.

Write Ω = [n] × [m]. Consider all samples from Ω, drawn with replacement. When
a particular (i, j) is drawn multiple times, then the observed values at that entry of the
matrix follow the independent noise model as described in the statement of Theorem 9.

For a sample set S of size s, for i = 1, . . . , s, define N(S) as in the proof of Lemma 15.
Let N be any multiplicity vector, of the form (N1, . . . , Nr, 0, . . . , 0) for some r ≤ s. Let M
be a multiplicity vector defined from N as follows:

M = (Mi)i, where Mi = N2i−1 + 2Ni +Ni+1 .

Now take any A1, A2, . . . , A2r, B2, . . . , B2r ⊂ [n]× [m], all disjoint, with |Ai| = |Bi| = Ni

for all i. Define B1 = A1, and

SA =
2r∑
i=1

 i∑
j=1

A
(j)
i

 , SB =
2r∑
i=1

 i∑
j=1

B
(j)
i

 .

Note that N(SA) = N(SB) = N. Now define

T1 =

2r∑
i=1

b
i
2 c∑
j=1

A
(j)
i +

i∑
j=b i2 c+1

B
(j)
i

 , T2 =
2r∑
i=1

b
i
2 c∑
j=1

B
(j)
i +

i∑
j=b i2 c+1

A
(j)
i

 .

Note that N(T1) = N(T2) = M, and that up to reordering, SA + SB = T1 + T2. We treat
T1 and T2 as functions of (SA, SB).

Write αc(S) = I
{

supX∈X g(L(X))− L̂S(X) ≥ c
}

. Then α satisfies the following when-

ever |S1| = |S2|:

1

2
(α2c(S1) + α2c(S2)) ≤ αc(S1 + S2) ≤ αc(S1) + αc(S2) .
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Therefore,

2ES∼Unif(N) (αc(S))

= (#(SA, SB) pairs as above)−1
∑

(SA,SB) as above

αc(SA) + αc(SB)

≥ (#(SA, SB) pairs as above)−1
∑

(SA,SB) as above

αc(SA + SB)

= (#(SA, SB) pairs as above)−1
∑

(SA,SB) as above

αc(T1 + T2)

≥ (#(SA, SB) pairs as above)−1
∑

(SA,SB) as above

1

2
(α2c(T1) + α2c(T2))

= (#(SA, SB) pairs as above)−1
∑

(SA,SB) as above

α2c(T1)

= (#(SA, SB) pairs as above)−1
∑

T :N(T )=M

α2c(T ) · (#(SA, SB) pairs such that T = T1)

We also have the following (note that here we treat samples as unordered, unlike in the
proofs of Lemmas 11 and 12):

(#(SA, SB) pairs as above) =

(
nm

N1, N2, N2, N3, N3, . . . , N2r, N2r

)
,

and for any T with N(T ) = M,

(#(SA, SB) pairs such that T = T1) =
r∏
i=1

(
Mi

N2i−1, N2i, N2i, N2i+1

)
.

Finally,

(#T : N(T ) = M(T )) =

(
nm

M1,M2, . . . ,Mr

)
,

and therefore, continuing from above,

2ES∼Unif(N) (αc(S))

= (#(SA, SB) pairs as above)−1
∑

T :N(T )=M

α2c(T ) · (#(SA, SB) pairs such that T = T1)

= (#T : N(T ) = M)−1
∑

T :N(T )=M

α2c(T )

= ET∼Unif(M)(α2c(T )) .

Inducting over r, we see that for any N = (N1, . . . , Nr, 0, . . . , 0,

2K(r)ES∼Unif(N)(αc(S)) ≥ ES∼Ds
w/o

(α2K(r)(S)) ,
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where K(r) is the number of times that the operation x 7→ dx/2e must be applied iteratively
to r to obtain 1; note that 2K(r) ≤ 2r. Therefore,

PS∼Ds
w/o

(
sup
X∈X

g(L(x))− L̂S(X) ≥ c
)
≤ 2rPS∼Ds

r

(
sup
X∈X

g(L(x))− L̂S(X) ≥ (2r)−1c

)
.

Appendix B. The Rademacher Complexity of the Trace-Norm Ball

Srebro and Shraibman (2005) established that for a sample S = {(i1, j1), . . . , (is, js)} of s
index-pairs, the empirical Rademacher complexity of the trace-norm ball, viewed a predictor
of entries, is given by:

R̂s
({

(i, j) 7→ Xij

∣∣X ∈ Rn×m, ‖X‖Σ ≤ A
})

= Eξ

[
sup

‖X‖Σ≤A

1

s

s∑
t=1

ξtX(it,jt)

]

=
A

s
Eξ

[∥∥∥∥∥
s∑
t=1

ξteit,jt

∥∥∥∥∥
2

]
, (27)

where the expectations is over independent uniformly distributed random variables
ξ1, . . . , ξt ∈ ±1, ‖X‖2 is the spectral norm (maximal singular value) of X, and ei,j = eie

T
j is

a matrix with a single 1 at location (i, j) and zeros elsewhere. Analyzing the Rademacher
complexity then amounts to analyzing the expected spectral norm of the random matrix
Q =

∑s
t=1 ξteit,jt .

The worst-case Rademacher complexity, i.e. the supermum of (27) over all samples S, is
1√
s
, and does not lead to meaningful generalization results. Indeed, if we could meaningfully

bound the worst-case Rademacher complexity, we could guarantee learning under arbitrary
sampling distributions over index-pairs, but this is not the case—we know that trace-norm
regularization can fail when entries are not sampled uniformly (Salakhutdinov and Srebro,
2010).

Instead, we focus on bounding the expected Rademacher complexity, i.e. the expectation
of (27) when entries in S are chosen independently from a uniform distribution over index
pairs. Srebro and Shraibman (2005) bounded the expected Rademacher complexity by

O

(
A√
nm

√
(n+m) log3/2 n

s

)
using a bound of Seginer (2000) on the spectral norm of a matrix

with fixed magnitudes and random signs, combined with arguments bounding the number
of observations in each row and column. Here we present a much simpler analysis, reducing
the logarithmic factor from log3/2(n) to log(n), using a recent result of Tropp (2010).

We now proceed to bounding E [‖Q‖2], where the expectation is over the sample S and
the random signs ξt. Denote Pt = ξteit,jt , we have Q =

∑
t Pt and Pt are i.i.d. zero-mean

random matrices (recall that now both ξt and (it, jt) are random). Theorem 6.1 of Tropp
(2010), combined with Remarks 6.3 and 6.5, allows us to bound the expected spectral norm
of such a sum of independent random matrices by:

E [‖Q‖] = O
(
σ
√

log(n+m) +R log(n+m)
)
, (28)
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where ‖Pt‖2 ≤ R (almost surely) and

σ2 = max
(∥∥∥∑E

[
P Tt Pt

]∥∥∥
2
,
∥∥∥∑E

[
PtP

T
t

]∥∥∥
2

)
.

For each t, Pt is just a matrix with a single +1 or −1, hence ‖Pt‖ ≤ 1. The matrix PtP
T
t ∈

Rn×n is equal to ei,i with probability 1
n , hence E

[
PtP

T
t

]
= 1

nIn and
∥∥∑E

[
PtP

T
t

]∥∥
2

=∥∥ s
nIn
∥∥ = s

n . Symmetrically,
∥∥∑E

[
P Tt Pt

]∥∥
2

= s
m and so σ2 = s

nm max(n,m). Plugging σ
and T into (28) we have:

E [‖Q‖2] = O

(√
s(n+m) log(n+m)

nm
+ log(n+m)

)
= O

(√
s(n+m) log(n+m)

nm

)
(29)

where in the second inequality we assume s ≥ m. Plugging (29) into (27) we get:

E
[
R̂s
({

(i, j)→ Xij

∣∣X ∈ Rn×m, ‖X‖Σ ≤ A
})]

= O

(
A√
nm

√
(n+m) log(n+m)

s

)
(30)

339


	Introduction
	The Max-Norm and Trace-Norm
	Reconstruction Guarantees
	Proof of Theorems 4 and 6 when S is drawn with replacement
	Bounds on 2 error using the trace norm
	Sampling with or without replacement in Theorems 4 and 6
	Proof of Theorem 9: independent errors in the 2-loss setting.

	Comparison to prior work
	Comparison With Recent Approximate Recovery Guarantees
	Comparison of results on exact and near-exact recovery
	Details on exact and near-exact results in the literature
	Comparing sample complexities
	Approximate recovery relative to average signal magnitude, in the presence of incoherence conditions
	Approximate recovery relative to average signal magnitude, in the absence of incoherence conditions


	Summary
	Proof of Sampling-Without-Replacement Lemmas
	The Rademacher Complexity of the Trace-Norm Ball

