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Abstract

We consider the problem of online linear regression on arbitrary deterministic sequences
when the ambient dimension d can be much larger than the number of time rounds T . We
introduce the notion of sparsity regret bound, which is a deterministic online counterpart of
recent risk bounds derived in the stochastic setting under a sparsity scenario. We prove such
regret bounds for an online-learning algorithm called SeqSEW and based on exponential
weighting and data-driven truncation. In a second part we apply a parameter-free version
of this algorithm on i.i.d. data and derive risk bounds of the same flavor as in Dalalyan
and Tsybakov (2008, 2011) but which solve two questions left open therein. In particular
our risk bounds are adaptive (up to a logarithmic factor) to the unknown variance of the
noise if the latter is Gaussian.
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1. Introduction

We consider the problem of online linear regression on arbitrary deterministic sequences. A
forecaster has to predict in a sequential fashion the values yt ∈ R of an unknown sequence
of observations given some input data xt ∈ X and some base forecasters ϕj : X → R,
1 6 j 6 d, on the basis of which he outputs a prediction ŷt ∈ R. The quality of the
predictions is assessed by the square loss. The goal of the forecaster is to predict almost as
well as the best linear forecaster u ·ϕ ,

∑d
j=1 ujϕj , where u ∈ Rd, i.e., to satisfy, uniformly

over all individual sequences (xt, yt)16t6T , a regret bound of the form

T∑
t=1

(
yt − ŷt

)2
6 inf

u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+ ∆T,d(u)

}
,

for some regret term ∆T,d(u) that should be as small as possible and, in particular, sublinear
in T .

In this setting the variant of the sequential Ridge regression forecaster studied by Azoury
and Warmuth (2001) and Vovk (2001) has a regret of order at most d lnT . When the ambi-
ent dimension d is much larger than the number of time rounds T , the latter regret bound
may unfortunately be larger than T and is thus somehow trivial. Since the regret bound
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d lnT is optimal in a certain sense (see Vovk 2001, Theorem 2), additional assumptions are
needed to get interesting theoretical guarantees.

A natural assumption, which has already been extensively studied in the stochastic
setting, is that there is a sparse linear combination u∗ (i.e., with s � T/(lnT ) non-zero
coefficients) which has a small cumulative square loss. If the forecaster knew in advance the
support J(u∗) , {j : u∗j 6= 0} of u∗, he could apply the same forecaster as above but only

to the s-dimensional linear subspace
{
u ∈ Rd : ∀j /∈ J(u∗), uj = 0

}
. The regret bound of

this “oracle” would be roughly of order s lnT and thus sublinear in T . Under this sparsity
scenario, a sublinear regret thus seems possible, though, of course, the aforementioned regret
bound s lnT can only be used as an ideal benchmark (since the support of u∗ is unknown).

In this paper, we prove that a regret bound proportional to s is achievable (up to
logarithmic factors). In Corollary 2 and its refinements (Proposition 4 combined with
Remark 6, and Theorem 8) we indeed derive regret bounds of the form

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+
(
‖u‖0 + 1

)
gT,d

(
‖u‖1 , ‖ϕ‖∞

)}
, (1)

where ‖u‖0 denotes the number of non-zero coordinates of u and where g is increasing but

grows at most logarithmically in T , d, ‖u‖1 ,
∑d

j=1 |uj |, and ‖ϕ‖∞ , sup
x∈X

max
16j6d

|ϕj(x)|.

We call regret bounds of the above form sparsity regret bounds.

This work is in connection with several papers that appeared at previous COLT confer-
ences, either in the stochastic setting (Bunea et al., 2006; Dalalyan and Tsybakov, 2007,
2009) or in online convex optimization (Duchi et al., 2010). Next we discuss these papers
and some related references.

Related works in the stochastic setting

The above regret bound (1) can be seen as a deterministic online counterpart of the so-
called sparsity oracle inequalities introduced in the stochastic setting in the past decade.
The latter are risk bounds expressed in terms of the number of non-zero coefficients of
the oracle vector. Such inequalities were introduced by Bunea et al. (2004, 2006) for the
regression model with random design. The same authors prove similar results for the case of
a fixed design in Bunea et al. (2007) through general model selection arguments of Birgé and
Massart (2001). As we do not have the space to thoroughly review the extensive literature
related to sparsity oracle inequalities, we refer the reader to the full version of this paper
(Gerchinovitz, 2011) for further references.

We only mention that, recently, sparsity oracle inequalities with leading constant equal
to 1 have been proved for procedures based on exponential weighting; see Dalalyan and Tsy-
bakov (2007) and the other references given in Gerchinovitz (2011). These papers show that
a trade-off can be reached between strong theoretical guarantees (as with `0-regularization)
and computational efficiency (as with `1-regularization). They indeed propose aggrega-
tion algorithms which satisfy sparsity oracle inequalities under almost no assumption on
the base forecasters (ϕj)j , and which can be approximated numerically at a reasonable
computational cost for large values of the ambient dimension d.
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Our online-learning algorithm SeqSEW is inspired from Dalalyan and Tsybakov (2008,
2011). Following the same lines as in Dalalyan and Tsybakov (2009), it is possible to
slightly adapt its statement to make it computationally tractable by means of Langevin
Monte-Carlo approximation while not affecting its statistical properties. The technical
details are however omitted in this paper, which only focuses on the theoretical guarantees
of the algorithm SeqSEW.

Previous works on sparsity in the framework of individual sequences

To the best of our knowledge, Corollary 2 and its refinements (Proposition 4 combined
with Remark 6, and Theorem 8) provide the first examples of sparsity regret bounds in the
sense of (1). To comment on the optimality of such regret bounds and compare them to
related results in the framework of individual sequences, note that (1) can be rewritten in
the equivalent form:

For all s ∈ N and all U > 0,

T∑
t=1

(yt − ŷt)2 − inf
‖u‖06s
‖u‖16U

T∑
t=1

(
yt − u ·ϕ(xt)

)2
6
(
s+ 1

)
gT,d

(
U, ‖ϕ‖∞

)
,

where g grows at most logarithmically in T , d, U , and ‖ϕ‖∞. When s � T , this upper
bound matches (up to logarithmic factors) the lower bound of order s lnT that follows in
a straightforward manner from Vovk (2001, Theorem 2) or Cesa-Bianchi and Lugosi (2006,
Chapter 11). Indeed, if s � T , X = Rd, and ϕj(x) = xj , then for any forecaster, there
is an individual sequence (xt, yt)16t6T such that the regret of this forecaster on

{
u ∈ Rd :

‖u‖0 6 s and ‖u‖1 6 d
}

is bounded from below by a quantity of order s lnT . Therefore,
up to logarithmic factors, any algorithm satisfying a sparsity regret bound of the form (1)
is minimax optimal on intersections of `0-balls (of radii s � T ) and `1-balls. This is
in particular the case for our algorithm SeqSEW, but this contrasts with related works
discussed below.

Recent works in the field of online convex optimization addressed the sparsity issue in
the online deterministic setting, but from a quite different angle. They focus on algorithms
which output sparse linear combinations, while we are interested in algorithms whose regret
is small under a sparsity scenario, i.e., on `0-balls of small radii. See, e.g., Langford et al.
(2009); Shalev-Shwartz and Tewari (2009); Xiao (2010); Duchi et al. (2010) and the refer-
ences therein. All these articles focus on convex regularization. In the particular case of
`1-regularization under the square loss, the aforementioned works propose algorithms which
predict as a sparse linear combination ŷt = ût · ϕ(xt) of the base forecasts (i.e., ‖ût‖0 is
small), while no such guarantee can be proved for our algorithm SeqSEW. However they
prove bounds on the `1-regularized regret of the form

T∑
t=1

(
(yt − ût · xt)2 + λ ‖ût‖1

)
6 inf

u∈Rd

{
T∑
t=1

(
(yt − u · xt)2 + λ ‖u‖1

)
+ ∆̃T,d(u)

}
, (2)

for some regret term ∆̃T,d(u) which is suboptimal on intersections of `0- and `1-balls as
explained below. The truncated gradient algorithm of Langford et al. (2009, Corollary 4.1)
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satisfies1 such a regret bound with ∆̃T,d(u) at least of order ‖ϕ‖∞
√
dT when the base

forecasts ϕj(xt) are dense in the sense that max16t6T
∑d

j=1 ϕ
2
j (xt) ≈ d ‖ϕ‖2∞. This regret

bound grows as a power of and not logarithmically in d as is expected for sparsity regret
bounds (recall that we are interested in the case when d� T ).

The three other papers mentioned above do prove (some) regret bounds with a logarith-
mic dependence in d, but these bounds do not have the dependence in ‖u‖1 and T we are
looking for. For p−1 ≈ 1/(ln d), the p-norm RDA method of Xiao (2010) and the algorithm
SMIDAS of Shalev-Shwartz and Tewari (2009) – the latter being a particular case of the
algorithm COMID of Duchi et al. (2010) specialized to the p-norm divergence – satisfy re-
gret bounds of the above form (2) with ∆̃T,d(u) ≈ µ ‖u‖1

√
T ln d, for some gradient-based

constant µ. Therefore, in all three cases, the function ∆̃ grows at least linearly in ‖u‖1
and as

√
T . This is in contrast with the logarithmic dependence in ‖u‖1 and the fast rate

O(lnT ) we are looking for and prove, e.g., in Corollary 2.

Note that the suboptimality of the aforementioned algorithms is specific to the goal we
are pursuing, i.e., prediction on `0-balls (intersected with `1-balls). On the contrary the
rate ‖u‖1

√
T ln d is more suited and actually optimal for learning on `1-balls (see Raskutti

et al. 2009). Moreover, the predictions output by our algorithm SeqSEW are not necessarily
sparse linear combinations of the base forecasts. A question left open is thus whether it
is possible to design an algorithm which both ouputs sparse linear combinations (which is
statistically useful and sometimes essential for computational issues) and satisfies a sparsity
regret bound of the form (1).

PAC-Bayesian analysis in the framework of individual sequences

To derive our sparsity regret bounds, we follow a PAC-Bayesian approach combined with
the choice of a sparsity-favoring prior. We do not have the space to review the PAC-
Bayesian literature in the stochastic setting and only refer the reader to Catoni (2004)
for a thorough introduction to the subject. As for the online deterministic setting, PAC-
Bayesian inequalities were proved in the framework of prediction with expert advice, e.g., in
Freund et al. (1997) and Kivinen and Warmuth (1999), or in the same setting as ours with
a Gaussian prior in Vovk (2001). More recently, Audibert (2009) proved a PAC-Bayesian
result on individual sequences for general losses and prediction sets. The latter result relies
on a unifying assumption called the online variance inequality, which holds true, e.g., when
the loss function is exp-concave. In the present paper, we only focus on the particular case
of the square loss. We first use Theorem 4.6 of Audibert (2009) to derive a non-adaptive
sparsity regret bound. We then provide an adaptive online PAC-Bayesian inequality to
automatically adapt to the unknown range of the observations max16t6T |yt|.

1. The bound stated in Langford et al. (2009, Corollary 4.1) differs from (2) in that the constant before
the infimum is equal to C = 1/(1 − 2c2dη), where c2d ≈ max16t6T

∑d
j=1 ϕ

2
j (xt) 6 d ‖ϕ‖2∞, and where a

reasonable choice for η can easily be seen to be η ≈ 1/
√

2c2dT . If the base forecasts ϕj(xt) are dense in

the sense that c2d ≈ d ‖ϕ‖2∞, then we have C ≈ 1 +
√

2c2d/T , which yields a regret bound with leading

constant 1 as in (2) and with ∆̃T,d(u) at least of order
√
c2dT ≈ ‖ϕ‖∞

√
dT .
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Open questions by Dalalyan and Tsybakov

In Section 4 we apply a parameter-free version of our algorithm SeqSEW on i.i.d. data
and derive a risk bound of the same flavor as in Dalalyan and Tsybakov (2008, 2011).
However, our risk bound holds on the whole Rd space instead of `1-balls of finite radii,
which solves one question left open by Dalalyan and Tsybakov (2011, Section 4.2). Besides,
our algorithm does not need the a priori knowledge of the variance factor of the noise when
the latter is subgaussian, which solves a second question raised in Dalalyan and Tsybakov
(2011, Section 5.1, Remark 6).

Outline of the paper

This paper is organized as follows. In Section 2 we describe our deterministic setting and
main notations. In Section 3 we prove the aforementioned sparsity regret bounds for our
algorithm SeqSEW, first when the forecaster has access to some a priori knowledge on the
observations (Sections 3.1 and 3.2), and then when no a priori information is available
(Section 3.3), which yields a fully automatic algorithm. Finally, in Section 4, we apply
one version of the algorithm SeqSEW on i.i.d. data and provide positive answers to two
questions left open by Dalalyan and Tsybakov (2011).

2. Setting and notations

The main setting considered in this paper is an equivalent variant of an extension of the
game of prediction with expert advice called prediction with side information (under the
square loss) or, more simply, online linear regression; see Cesa-Bianchi and Lugosi (2006,
Chapter 11) for references on this setting. We give in Figure 1 a detailed description of our
repeated game.

We now define some notations. Vectors in Rd will be denoted by bold letters. For all
u,v ∈ Rd, the standard inner product in Rd between u = (u1, . . . , ud) and v = (v1, . . . , vd)
will be denoted by u · v =

∑d
i=j uj vj ; the `0-, `1-, and `2-norms of u = (u1, . . . , ud) are

respectively defined by

‖u‖0 ,
d∑
j=1

I{uj 6=0} =
∣∣{j : uj 6= 0}

∣∣ , ‖u‖1 ,
d∑
j=1

|uj | , and ‖u‖2 ,

 d∑
j=1

u2
j

1/2

.

The set of all probability distributions on a set Θ (endowed with some σ-algebra, e.g., the
Borel σ-algebra when Θ = Rd) will be denoted by M+

1 (Θ). For all ρ, π ∈ M+
1 (Θ), the

Kullback-Leibler divergence between ρ and π is defined by

K(ρ, π) ,


∫
Rd

ln

(
dρ

dπ

)
dρ if ρ is absolutely continuous with respect to π;

+∞ otherwise,

where dρ
dπ

denotes the Radon-Nikodym derivative of ρ with respect to π.
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Parameters: input data set X , base forecasters ϕ = (ϕ1, . . . , ϕd) with ϕj : X → R,
1 6 j 6 d.

Initial step: the environment choosesa a sequence of observations (yt)t>1 in R and a
sequence of input data (xt)t>1 in X but the forecaster has not access to them.

At each time round t ∈ N∗,

1. The environment reveals the input data xt ∈ X .

2. The forecaster chooses a prediction ŷt ∈ R
(possibly as a linear combination of the ϕj(xt), but this is not necessary).

3. The environment reveals the observation yt ∈ R.

4. Each linear forecaster u ·ϕ ,
∑d

j=1 ujϕj , u ∈ Rd, incurs the loss
(
yt−u ·ϕ(xt)

)2
and the forecaster incurs the loss (yt − ŷt)2.

a. The game is described as if the environment were oblivious to the forecaster’s predictions. Actually,
since we only consider deterministic forecasters, our results also hold when (xt)t>1 and (yt)t>1 are
chosen by an adversarial environment.

Figure 1: Description of the repeated game of online linear regression.

For all x ∈ R and B > 0, we denote by dxe the smallest integer larger than or equal
to x, and by [x]B its thresholded value:

[x]B ,


−B if x < −B;

x if −B 6 x 6 B;

B if x > B.

Finally, we will use the (natural) convention 0 ln(1 + U/0) = 0 for all U > 0.

3. Sparsity regret bounds for individual sequences

In this section we prove sparsity regret bounds for different variants of our algorithm Se-
qSEW. We first assume in Section 3.1 that the forecaster has access in advance to a bound
By on the observations |yt| and a bound BΦ on the trace of the empirical Gram matrix. We
then remove these requirements one by one in Sections 3.2 and 3.3.

3.1. Known bounds By on the observations and BΦ on the trace of the
empirical Gram matrix

To simplify the analysis, we first assume that, at the beginning of the game, the number
of rounds T is known to the forecaster and that he has access to a bound By on all the
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observations y1, . . . , yT and to a bound BΦ on the trace of the empirical Gram matrix, i.e.,

y1, . . . , yT ∈ [−By, By] and
d∑
j=1

T∑
t=1

ϕ2
j (xt) 6 BΦ .

The first version of the algorithm studied in this paper is defined in Figure 2 (adaptive
variants will be introduced later). We name it SeqSEW for it is a variant of the Sparse
Exponential Weighting algorithm introduced in the stochastic setting by Dalalyan and Tsy-
bakov (2007, 2008) which is tailored for the prediction of individual sequences.

The choice of the heavy-tailed prior πτ is due to Dalalyan and Tsybakov (2007). The
role of heavy-tailed priors to tackle the sparsity issue was already pointed out earlier; see,
e.g., the discussion in Seeger (2008, Section 2.1). In high dimension, such heavy-tailed pri-
ors favor sparsity: sampling from these prior distributions (or posterior distributions based
on them) typically results in approximately sparse vectors, i.e., vectors having most coor-
dinates almost equal to zero and the few remaining ones with quite large values.

Parameters: threshold B > 0, inverse temperature η > 0, and prior scale τ > 0 with
which we associate the sparsity prior πτ ∈M+

1 (Rd) defined by

πτ (du) ,
d∏
j=1

(3/τ) duj

2
(
1 + |uj |/τ

)4 . (3)

Initialization: p1 , πτ .

At each time round t > 1,

1. Get the input data xt and predict as ŷt ,
∫
Rd

[
u ·ϕ(xt)

]
B
pt(du) ;

2. Get the observation yt and compute the posterior distribution pt+1 ∈M+
1 (Rd) as

pt+1(du) ,

exp

(
−η

t∑
s=1

(
ys −

[
u ·ϕ(xs)

]
B

)2
)

Wt+1
πτ (du) ,

where

Wt+1 ,
∫
Rd

exp

(
−η

t∑
s=1

(
ys −

[
v ·ϕ(xs)

]
B

)2
)
πτ (dv) .

Figure 2: Definition of the algorithm SeqSEWB,η
τ .
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Proposition 1 Assume that, for a known constant By > 0, the (x1, y1), . . . , (xT , yT ) are
such that

y1, . . . , yT ∈ [−By, By] .

Then, for all B > By, all η 6 1/(8B2), and all τ > 0, the algorithm SeqSEWB,η
τ satisfies

T∑
t=1

(yt− ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+

4

η
‖u‖0 ln

(
1 +

‖u‖1
‖u‖0 τ

)}
+τ2

d∑
j=1

T∑
t=1

ϕ2
j (xt) .

(4)

Corollary 2 Assume that, for some known constants By > 0 and BΦ > 0, the

(x1, y1), . . . , (xT , yT ) are such that y1, . . . , yT ∈ [−By, By] and
∑d

j=1

∑T
t=1 ϕ

2
j (xt) 6 BΦ .

Then, when used with B = By, η =
1

8B2
y

, and τ =

√
16B2

y

BΦ
, the algorithm SeqSEWB,η

τ

satisfies

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+ 32B2

y ‖u‖0 ln

(
1 +

√
BΦ ‖u‖1

4By ‖u‖0

)}
+ 16B2

y .

(5)

To prove Proposition 1, we first need the following deterministic PAC-Bayesian inequal-
ity which is at the core of our analysis. It is a straightforward consequence of Theorem 4.6
of Audibert (2009) when applied to the square loss. An adaptive variant of this inequality
will be provided in Section 3.2.

Lemma 3 Assume that for some known constant By > 0, we have y1, . . . , yT ∈ [−By, By].
For all τ > 0, if the algorithm SeqSEWB,η

τ is used with B > By and η 6 1/(8B2), then

T∑
t=1

(yt − ŷt)2 6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
B

)2
ρ(du) +

K(ρ, πτ )

η

}
(6)

6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt − u ·ϕ(xt)

)2
ρ(du) +

K(ρ, πτ )

η

}
. (7)

Proof (of Lemma 3) Inequality (6) is a straightforward consequence of Theorem 4.6 of
Audibert (2009) when applied to the square loss, the set of prediction functions G ,

{
x 7→[

u ·ϕ(x)
]
B

: u ∈ Rd
}

, and the prior2 π on G induced by the prior πτ on Rd via the mapping

u ∈ Rd 7→
[
u ·ϕ(·)

]
B
∈ G.

To apply the aforementioned theorem, recall from Vovk (2001, Remark 3) that the
square loss is 1/(8B2)-exp-concave on [−B,B] and thus η-exp-concave3 (since η 6 1/(8B2)

2. The set G is endowed with the σ-algebra generated by all the coordinate mappings g ∈ G 7→ g(x) ∈ R,
x ∈ X (where R is endowed with its Borel σ-algebra).

3. This means that for all y ∈ [−B,B], the function x 7→ exp
(
−η(y − x)2

)
is concave on [−B,B].
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by assumption). Therefore, by Theorem 4.6 of Audibert (2009) with the variance function
δη ≡ 0 (see the comments following Remark 4.1 therein), we get

T∑
t=1

(yt − ŷt)2 6 inf
µ∈M+

1

(
G
)
{∫
G

T∑
t=1

(
yt − g(xt)

)2
µ(dg) +

K(µ, π)

η

}

6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
B

)2
ρ(du) +

K(ρ̃, π)

η

}
,

where the last inequality follows by restricting the infimum over M+
1

(
G
)

to the subset{
ρ̃ : ρ ∈ M+

1 (Rd)
}
⊂ M+

1

(
G
)
, where ρ̃ ∈ M+

1

(
G
)

denotes the probability distribution
induced by ρ ∈ M+

1 (Rd) via the mapping u ∈ Rd 7→
[
u · ϕ(·)

]
B
∈ G. Inequality (6) then

follows from the fact that for all ρ ∈M+
1 (Rd), we have K(ρ̃, π) 6 K(ρ, πτ ) by joint convexity

of K(·, ·).

As for Inequality (7), it follows from (6) by noting that

∀y ∈ [−B,B], ∀x ∈ R,
∣∣y − [x]B

∣∣ 6 |y − x| .
Therefore, truncation to [−B,B] can only improve prediction under the square loss if the ob-
servations are [−B,B]-valued, which is the case here since by assumption yt ∈ [−By, By] ⊂
[−B,B] for all t = 1, . . . , T .

Proof (of Proposition 1) Our proof mimics the proof of Theorem 5 in Dalalyan and
Tsybakov (2008). We thus only write the outline of the proof and stress the minor changes
that are needed to derive Inequality (4).

Let u∗ ∈ Rd. Since B > By and η 6 1/(8B2), we can apply Lemma 3 and get

T∑
t=1

(yt − ŷt)2 6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt − u ·ϕ(xt)

)2
ρ(du) +

K(ρ, πτ )

η

}

6
∫
Rd

T∑
t=1

(
yt − u ·ϕ(xt)

)2
ρu∗,τ (du) +

K(ρu∗,τ , πτ )

η
. (8)

In the last inequality, ρu∗,τ is taken as the translated of πτ at u∗, namely,

ρu∗,τ (du) ,
dπτ
du

(u− u∗) du =

d∏
j=1

(3/τ) duj

2
(
1 + |uj − u∗j |/τ

)4 .

The two terms of the right-hand side of (8) can be upper bounded as in the proof of
Theorem 5 in Dalalyan and Tsybakov (2008). It is proved therein that, by a symmetry
argument,∫

Rd

T∑
t=1

(
yt − u ·ϕ(xt)

)2
ρu∗,τ (du) =

T∑
t=1

(
yt − u∗ ·ϕ(xt)

)2
+ τ2

d∑
j=1

T∑
t=1

ϕ2
j (xt) ,
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and, by elementary calculations,

K(ρu∗,τ , πτ )

η
6

4

η
‖u∗‖0 ln

(
1 +

‖u∗‖1
‖u∗‖0 τ

)
.

Combining (8) with the last two equations, which all hold for all u∗ ∈ Rd, we get Inequal-
ity (4).

Proof (of Corollary 2) Applying Proposition 1, we have, since B > By and η 6 1/(8B2),

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+

4

η
‖u‖0 ln

(
1 +

‖u‖1
‖u‖0 τ

)}
+ τ2

d∑
j=1

T∑
t=1

ϕ2
j (xt)

6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+

4

η
‖u‖0 ln

(
1 +

‖u‖1
‖u‖0 τ

)}
+ τ2BΦ , (9)

since
∑d

j=1

∑T
t=1 ϕ

2
j (xt) 6 BΦ by assumption. The particular choices4 for η and τ given in

the statement of the corollary then yield the desired inequality (5).

3.2. Unknown bound By on the observations but known bound BΦ on the
trace of the empirical Gram matrix

In the previous section, to prove the upper bounds stated in Lemma 3 and Proposition 1,
we assumed that the forecaster had access to a bound By on the observations |yt|. In this
section, we remove this requirement and prove a sparsity regret bound for a variant of the
algorithm SeqSEWB,η

τ which is adaptive to the unknown bound By = max16t6T |yt|; see
Proposition 4 and Remark 5 below.

For this purpose we consider the following algorithm called SeqSEW∗
τ thereafter. It

differs from SeqSEWB,η
τ defined in the previous section in that the threshold B and the

inverse temperature η are now allowed to vary over time and are chosen at each time round
as a function of the data available to the forecaster. More precisely, the algorithm SeqSEW∗

τ

outputs at time t the prediction

ŷt ,
∫
Rd

[
u ·ϕ(xt)

]
Bt
pt(du) , (10)

where

Bt ,
(

2dlog2 max16s6t−1 y
2
se
)1/2

, ηt ,
1

8B2
t

,

4. The best choice of (B, η) that satisfies the assumptions of Proposition 1 is B = By and η = 1/(8B2
y).

As for the choice of τ , it minimizes the function τ 7→ C1 ln(C2/τ) + C3τ
2 with C1 = 4/η = 32B2

y and
C3 = BΦ.
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and where, for a normalizing constant Wt, the posterior distribution pt ∈M+
1 (Rd) is defined

by

pt(du) ,

exp

(
−ηt

t−1∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2
)

Wt
πτ (du) .

Note that max16s6t−1 |ys| 6 Bt 6
√

2 max16s6t−1 |ys|.

The idea of truncating the base forecasts was already used in the past; see, e.g., Györfi
et al. (2002) for the case of least squares regression and Györfi and Ottucsák (2007); Biau
et al. (2010) for sequential prediction of unbounded time series under the square loss. A
key ingredient in the present paper is to perform truncation with respect to a data-driven
threshold. The online tuning of this threshold is based on a pseudo-doubling-trick technique
provided in Cesa-Bianchi et al. (2007) (we use the prefix pseudo since the algorithm does
not restart at the beginning of each new regime).

Proposition 4 For all τ > 0, the algorithm SeqSEW∗
τ satisfies

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+ 32B2

T+1 ‖u‖0 ln

(
1 +

‖u‖1
‖u‖0 τ

)}
(11)

+ τ2
d∑
j=1

T∑
t=1

ϕ2
j (xt) + 16B2

T+1 ,

where
B2
T+1 , 2dlog2 max16t6T y

2
t e 6 2 max

16t6T
y2
t .

Remark 5 In view of Proposition 1, the algorithm SeqSEW∗
τ satisfies a sparsity regret

bound which is adaptive to the unknown bound By = max16t6T |yt|. The price for the
automatic tuning with respect to By consists only of a multiplicative factor smaller than 2
and the additive factor 16B2

T+1 which is smaller than 32B2
y .

Remark 6 As in the previous section, several corollaries can be derived from Proposition 4.
If the forecaster has access beforehand to a quantity BΦ > 0 such that

∑d
j=1

∑T
t=1 ϕ

2
j (xt) 6

BΦ, then a suboptimal but reasonable choice of τ is given by τ = 1/
√
BΦ; see the full

version of this paper (Gerchinovitz, 2011, Corollary 3). We will also use the simpler choice
τ = 1/

√
dT for the stochastic setting in Section 4.

As in the previous section, to prove Proposition 4, we first need a key PAC-Bayesian
inequality. The next lemma is an adaptive variant of Lemma 3.
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Lemma 7 For all τ > 0, the algorithm SeqSEW∗
τ satisfies

T∑
t=1

(yt − ŷt)2 6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
ρ(du) + 8B2

T+1K(ρ, πτ )

}
+ 8B2

T+1

(12)

6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt − u ·ϕ(xt)

)2
ρ(du) + 8B2

T+1K(ρ, πτ )

}
+ 16B2

T+1 ,

(13)

where
B2
T+1 , 2dlog2 max16t6T y

2
t e 6 2 max

16t6T
y2
t .

Proof (of Lemma 7) The proof is based on similar arguments as for Lemma 3, except
that we now need to deal with B and η changing over time. In the same spirit as in Auer
et al. (2002); Cesa-Bianchi et al. (2007); Györfi and Ottucsák (2007), our analysis relies on
the control of (lnWt+1)/ηt+1 − (lnWt)/ηt where W1 , 1 and, for all t > 2,

Wt ,
∫
Rd

exp

(
−ηt

t−1∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2
)
πτ (du) .

On the one hand, we have

lnWT+1

ηT+1
− lnW1

η1
=

1

ηT+1
ln

∫
Rd

exp

(
−ηT+1

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
)
πτ (du) − 1

η1
ln 1

=
1

ηT+1
sup

ρ∈M+
1 (Rd)

{∫
Rd

(
−ηT+1

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
)
ρ(du) − K(ρ, πτ )

}
(14)

= − inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
ρ(du) +

K(ρ, πτ )

ηT+1

}
, (15)

where (14) follows from the fact that, for any measurable space (E,B), any probability
distribution π on (E,B), and any non-positive measurable function h : E → (−∞, 0], the
Legendre transform of the Kullback-Leibler divergence can be expressed as

ln

∫
E
ehdπ = sup

ρ∈M+
1 (E)

{∫
E
hdρ − K(ρ, π)

}
.

This convex duality argument for the KL divergence is proved, e.g., in Catoni (2004, p. 159).

On the other hand, we can rewrite (lnWT+1)/ηT+1 − (lnW1)/η1 as a telescopic sum and
get

lnWT+1

ηT+1
− lnW1

η1
=

T∑
t=1

(
lnWt+1

ηt+1
− lnWt

ηt

)
=

T∑
t=1

(
lnWt+1

ηt+1
−

lnW ′t+1

ηt︸ ︷︷ ︸
(1)

+
1

ηt
ln
W ′t+1

Wt︸ ︷︷ ︸
(2)

)
,

(16)
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where W ′t+1 is obtained from Wt+1 by replacing ηt+1 with ηt; namely,

W ′t+1 ,
∫
Rd

exp

(
−ηt

t∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2
)
πτ (du) .

Let t ∈ {1, . . . , T}. The first term (1) is non-positive by Jensen’s inequality (note that
x 7→ xηt+1/ηt is concave on R∗+ since ηt+1 6 ηt by construction). As for the second term (2),
by definition of W ′t+1,

1

ηt
ln
W ′t+1

Wt

=
1

ηt
ln

∫
Rd

exp

(
−ηt

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
)

exp

(
−ηt

t−1∑
s=1

(
ys −

[
u ·ϕ(xs)

]
Bs

)2
)

Wt
πτ (du)

=
1

ηt
ln

∫
Rd

exp

(
−ηt

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
)
pt(du) (17)

6

{
−(yt − ŷt)2 if Bt+1 = Bt;
−(yt − ŷt)2 + (2Bt+1)2 if Bt+1 > Bt;

(18)

where (17) follows by definition of pt. To get Inequality (18) when Bt+1 = Bt, or, equiva-
lently, |yt| 6 Bt, we used the fact that the square loss is 1/(8B2

t )-exp-concave on [−Bt, Bt]
(as in Lemma 3). Indeed, by definition of ηt , 1/(8B2

t ) and by Jensen’s inequality, we get∫
Rd

e
−ηt
(
yt−
[
u·ϕ(xt)

]
Bt

)2

pt(du) 6 exp

(
−ηt

(
yt −

∫
Rd

[
u ·ϕ(xt)

]
Bt
pt(du)

)2
)

= e−ηt(yt−ŷt)
2

,

where the last equality follows by definition of ŷt. Taking the logarithms of both sides of
the last inequality and dividing by ηt, we get (18) when Bt+1 = Bt.

As for the rounds t such that Bt+1 > Bt, the square loss x 7→ (yt − x)2 is no longer
1/(8B2

t )-exp-concave on [−Bt, Bt]. In this case (18) follows from the cruder upper bound
(1/ηt) ln(W ′t+1/Wt) 6 0 6 −(yt − ŷt)2 + (2Bt+1)2 (since |yt|, |ŷt| 6 Bt+1). Summing (18)
over t = 1, . . . , T , Equation (16) yields

lnWT+1

ηT+1
− lnW1

η1
6 −

T∑
t=1

(yt − ŷt)2 + 4

T∑
t=1

t:Bt+1>Bt

B2
t+1 6 −

T∑
t=1

(yt − ŷt)2 + 8B2
T+1 , (19)

where, setting K , dlog2 max16t6T y
2
t e, we bounded the geometric sum

∑T
t:Bt+1>Bt

B2
t+1

from above by
∑K

k=−∞ 2k = 2K+1 , 2B2
T+1 in the same way as in Theorem 6 of Cesa-

Bianchi et al. (2007).

Putting Equations (15) and (19) together, we get the PAC-Bayesian inequality

T∑
t=1

(yt − ŷt)2 6 inf
ρ∈M+

1 (Rd)

{∫
Rd

T∑
t=1

(
yt −

[
u ·ϕ(xt)

]
Bt

)2
ρ(du) +

K(ρ, πτ )

ηT+1

}
+ 8B2

T+1 ,
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which yields (12) by definition of ηT+1 , 1/(8B2
T+1). The other PAC-Bayesian inequality

(13), which is stated for non-truncated base forecasts, follows from (12) by the fact that trun-
cation to Bt can only improve prediction if |yt| 6 Bt. The remaining t’s such that |yt| > Bt
then just account for an overall additional term at most equal to

∑T
t:Bt+1>Bt

(
2Bt+1

)2
6

8B2
T+1, which concludes the proof.

Proof (of Proposition 4) The proof follows the exact sames lines as in Proposition 1
except that we apply Lemma 7 instead of Lemma 3.

3.3. A fully automatic algorithm

In the previous section, we proved that adaptation to By was possible. If we also no longer
assume that a bound BΦ on the trace of the empirical Gram matrix is available to the
forecaster, then one can use a doubling trick on the nondecreasing quantity

γt , ln

1 +

√√√√ t∑
s=1

d∑
j=1

ϕ2
j (xs)


and repeatedly run the algorithm SeqSEW∗

τ of the previous section for rapidly-decreasing
values of τ . This yields a sparsity regret bound with extra logarithmic multiplicative fac-
tors as compared to Proposition 4, but which holds for a fully automatic algorithm; see
Theorem 8 below.

More formally, our algorithm SeqSEW∗
∗ is defined as follows. The set of time rounds

t = 1, 2, . . . is partitioned into regimes r = 0, 1, . . . whose final time instances tr are data-
driven. Let t−1 , 0 by convention. We call regime r, r = 0, 1, . . ., the sequence of time
rounds (tr−1 + 1, . . . , tr) where tr is the first date t > tr−1 + 1 such that γt > 2r. At the
beginning of regime r, we restart the algorithm SeqSEW∗

τ of the previous section with the
parameter τ = 1/

(
exp(2r)− 1

)
.

Theorem 8 Without requiring any preliminary knowledge at the beginning of the prediction
game, the algorithm SeqSEW∗

∗ satisfies, for all T > 1 and all (x1, y1), . . . , (xT , yT ) ∈ X ×R,

T∑
t=1

(yt − ŷt)2 6 inf
u∈Rd

{
T∑
t=1

(
yt − u ·ϕ(xt)

)2
+ 256

(
max

16t6T
y2
t

)
‖u‖0 ln

e +

√√√√ T∑
t=1

d∑
j=1

ϕ2
j (xt)


(20)

+ 64
(

max
16t6T

y2
t

)
AT ‖u‖0 ln

(
1 +
‖u‖1
‖u‖0

)}
+
(

1 + 38 max
16t6T

y2
t

)
AT ,

where AT , 2 + log2 ln
(

e +
√∑T

t=1

∑d
j=1 ϕ

2
j (xt)

)
.
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Proof The proof relies on the application of Proposition 4 with τ = 1/
(
exp(2r) − 1

)
on

all regimes r visited up to time T . Summing the corresponding inequalities over r then
concludes the proof. Due to lack of space, we refer the reader to the full version of this
paper (Gerchinovitz, 2011, Theorem 1) for further details.

4. Adaptivity to the unknown variance in the stochastic setting

In this section we apply the algorithm SeqSEW to the regression model with random design.
In this batch setting the forecaster is given at the beginning of the game T independent
random copies (X1, Y1), . . . , (XT , YT ) of (X,Y ) ∈ X × R whose common distribution is
unknown. We assume thereafter that E[Y 2] < ∞; the goal of the forecaster is to estimate
the regression function f : X → R defined by f(x) , E[Y |X = x] for all x ∈ X . We also set

‖h‖L2 ,
(
E[h(X)2]

)1/2
for all measurable functions h : X → R such that E[h(X)2] <∞.

4.1. Algorithm and main result

Even if the whole sample (X1, Y1), . . . , (XT , YT ) is available at the beginning of the predic-
tion game, we treat it in a sequential fashion. We run the algorithm SeqSEW∗

τ of Section 3.2
from time 1 to time T with τ = 1/

√
dT . We then define our data-based regressor f̂T as

the uniform average f̂T , 1
T

∑T
t=1 f̃t of the regressors f̃t : X → R sequentially built by the

algorithm SeqSEW∗
τ as

f̃t(x) ,
∫
Rd

[
u ·ϕ(x)

]
Bt
pt(du) .

This technique is now quite standard in the machine learning community. Though we only
state our risk bounds in expectation (which already improves on existing results in the
stochastic setting), we refer to Kakade and Tewari (2009) to transform our results into risk
bounds with large probability.

Note that, contrary to much prior work from the statistics community such as Catoni
(2004) and Dalalyan and Tsybakov (2011), the regressors f̃t : X → R are tuned online.
Therefore, f̂T does not depend on any prior knowledge on the unknown distribution of the
(Xt, Yt), 1 6 t 6 T , such as the unknown variance E

[
(Y −f(X))2

]
of the noise, the ‖ϕj‖∞, or

the ‖f − ϕj‖∞ (actually, the ϕj and the f−ϕj do not even need to be bounded in `∞-norm).

Theorem 9 Assume that (X1, Y1), . . . , (XT , YT ) ∈ X × R are independent random copies
of (X,Y ) ∈ X ×R, where E[Y 2] < +∞ and ‖ϕj‖2L2 , E[ϕj(X)2] < +∞ for all j = 1, . . . , d.

Then, the data-based regressor f̂T defined above satisfies

E
[wwwf − f̂Twww2

L2

]
6 inf

u∈Rd

{
‖f − u ·ϕ‖2L2 + 64

E
[
max16t6T Y

2
t

]
T

‖u‖0 ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}

+
1

dT

d∑
j=1

‖ϕj‖2L2 + 32
E
[
max16t6T Y

2
t

]
T

.
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Proof By Proposition 4 with τ = 1/
√
dT and by definition of f̃t above and ŷt , f̃t(Xt) in

Equation (10), we have, almost surely,

T∑
t=1

(Yt − f̃t(Xt))
2 6 inf

u∈Rd

{
T∑
t=1

(
Yt − u ·ϕ(Xt)

)2
+ 64

(
max

16t6T
Y 2
t

)
‖u‖0 ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}

+
1

dT

d∑
j=1

T∑
t=1

ϕ2
j (Xt) + 32 max

16t6T
Y 2
t .

Taking the expectations of both sides and applying Jensen’s inequality straightforwardly
concludes the proof (we refer the reader to the full version of this paper, Gerchinovitz 2011,
Theorem 2 for more details).

The above theorem can be used under several assumptions on the distribution of the
output Y . We only discuss below its application to one important set of assumptions
studied, e.g., in Dalalyan and Tsybakov (2011).

4.2. Questions left open by Dalalyan and Tsybakov

Theorem 9 above provides answers to two questions left open in Dalalyan and Tsybakov
(2011) when the regression function f is bounded and when the i.i.d. errors εt , Yt− f(Xt)
are subgaussian (conditionally on the Xt) in the sense that, for some constant σ2 > 0,

‖f‖∞ < +∞ and E
[
eλε1

∣∣∣ X1

]
6 eλ

2σ2/2 a.s., ∀λ ∈ R . (21)

Under the above assumptions, we prove in Gerchinovitz (2011, Corollary 5 and Remark 8)
that Theorem 9 above yields, for some universal constant C > 0, that for all T > 2,

E
[wwwf − f̂Twww2

L2

]
6 inf

u∈Rd

{
‖f − u ·ϕ‖2L2 + 2C

(
‖f‖2∞ + σ2 lnT

) ‖u‖0
T

ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}
(22)

+
1

dT

d∑
j=1

‖ϕj‖2L2 +
C

T

(
‖f‖2∞ + σ2 lnT

)
.

The above bound is of the same order (up to a lnT factor) as the sparsity oracle inequality
proved in Proposition 1 of Dalalyan and Tsybakov (2011). For the sake of comparison
we state below with our notations (e.g., β therein corresponds to 1/η in this paper) a
straightforward consequence of this proposition, which follows by Jensen’s inequality and
the particular5 choice τ = 1/

√
dT .

5. Proposition 1 of Dalalyan and Tsybakov (2011) may seem more general than Theorem 9 at first sight
since it holds for all τ > 0, but this is actually also the case for Theorem 9. The proof of the latter would
indeed have remained true had we replaced τ = 1/

√
dT with any value of τ > 0. We however chose the

reasonable value τ = 1/
√
dT to make our algorithm parameter-free.
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Proposition 10 (A consequence of Prop. 1 of Dalalyan and Tsybakov 2011)
Assume that sup16j6d ‖ϕj‖∞ < ∞ and that the set of assumptions (21) above hold true.

Then, for every R > 0 and η 6
(

2σ2 + 2 sup‖u‖16R ‖u ·ϕ− f‖
2
∞

)−1
, the mirror averaging

aggregate f̂T : X → R defined in Dalalyan and Tsybakov (2011, Equations (1) and (3))
satisfies

E
[wwwf − f̂Twww2

L2

]
6 inf
‖u‖16R−2dτ

{
‖f − u ·ϕ‖2L2 +

4 ‖u‖0
η(T + 1)

ln

(
1 +

√
dT ‖u‖1
‖u‖0

)}

+
4

dT

d∑
j=1

‖ϕj‖2L2 +
1

η(T + 1)
.

We can now discuss the two questions left open by Dalalyan and Tsybakov (2011).
Despite the similarity of the two bounds, the sparsity oracle inequality stated in Propo-
sition 10 above only holds for vectors u within `1-balls of finite radii. The authors thus
asked in Dalalyan and Tsybakov (2011, Section 4.2) whether it was possible to extend the
infimum to the whole Rd space. Our results show that, thanks to data-driven truncation,
the answer is positive.

The second open question, which was raised in Dalalyan and Tsybakov (2011, Section 5.1,
Remark 6), deals with the prior knowledge of the variance factor σ2 of the noise. The latter
is indeed required by their algorithm for the choice of the inverse temperature parameter
η. The authors thus asked whether adaptivity to σ2 was possible. Our sparsity oracle
inequality (22) above provides a positive answer (up to a lnT factor).

Remark 11 Similar adaptivity results hold in the regression model with fixed design; see
the full version of this paper (Gerchinovitz, 2011, Section 5.2). The framework of prediction
of individual sequences thus seems to offer a unifying setting to address tuning issues both
in the random and in the fixed design regression models.
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