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Abstract

We extend Bayesian MAP and Minimum Description Length (MDL) learning by testing
whether the data can be substantially more compressed by a mixture of the MDL/MAP
distribution with another element of the model, and adjusting the learning rate if this is
the case. While standard Bayes and MDL can fail to converge if the model is wrong, the
resulting “safe” estimator continues to achieve good rates with wrong models. Moreover,
when applied to classification and regression models as considered in statistical learning
theory, the approach achieves optimal rates under, e.g., Tsybakov’s conditions, and reveals
new situations in which we can penalize by (− log prior)/n rather than

√
(− log prior)/n.

1. Introduction

1. Learning Theory; Predictor Models. In much of statistical learning and machine learning
theory, the goal is to learn, based on a set of observed data Zn = (Z1, . . . , Zn), a predictor
f̆ taken from some set of candidate prediction rules F . Here each Zi = (Xi, Yi), each
Xi takes values in some set X , each Yi takes values in Y, and F is a set of functions
f : X → Y. The Zi are assumed to be sampled i.i.d. according to some distribution P ∗

on Z = X × Y. The learned predictor f̆ should have a small generalization error or risk,
defined as risk(f) := E∗[loss(Y, f(X))] where loss is some given loss function and here,
as elsewhere in this paper, E∗ = E(X,Y )∼P ∗ denotes joint expectation of (X,Y ) over P ∗. In
a typical classification setting, Y = {0, 1} and loss(y, ŷ) := |y− ŷ| is the 0/1-loss; in typical
regression problems, Y = R and loss(y, ŷ) := (y − ŷ)2 is the squared loss. Crucially, risk
bounds are usually proved in worst-case settings, using only weak assumptions on P ∗

2. Standard Statistics; Probability Models. Here one models uncertainty by a statistical
model, i.e. a set of probability distributions P, and the goal is to learn a distribution p̆
that is a good representation of the underlying distribution P ∗ from which the data Zn are
sampled. Here we focus on the case that Zn are i.i.d., Zi = (Xi, Yi) as above, and P is a set of
conditional distributions p(y | x), identified by their mass functions (if Y is finite/countable)
or densities, and extended to n outcomes by independence. Witness papers such as The Two
Cultures (Breiman, 2001), the difference between statistical/machine learning theory and
standard statistics based on probability models is often regarded as fundamental. Here,
I propose a first, preliminary, attempt at an overarching, single theory of learning, as
embodied by a new ‘safe’ estimator. It is called ‘safe’ because, when applied to probability
models P, then, unlike standard Bayes and MDL, it is guaranteed to perform well in the
often inevitable situation that ‘all models (elements of P) are wrong, yet some are useful’.
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Safe Estimation for Probability Models For probability models P, the safe estimator
behaves similarly to the Bayesian MAP or two-part MDL estimator. Following Barron and
Cover (1991), we define the κ-two part estimator, written as p̈κ, as a generalization of the
MAP/MDL estimator, as follows: fix some prior distribution w and some κ > 0. For each
xn ∈ X n, yn ∈ Yn, p̈κ is defined∗ as the p ∈ P achieving1

min
p∈P

{−κ logw(p)− log p(yn | xn) } . (1)

When κ ≥ 1, then, via the Kraft inequality, (1) can be thought of as the number of bits
needed to encode Y n given Xn in a two-stage code; −κ logw(p) is the codelength needed to
encode p, and acts as a complexity penalty. − log p(yn | xn) is the codelength of the data
yn when encoded with the help of p and xn. To get good convergence rates, one needs to
set κ > 1 (Zhang, 2006); while any fixed κ > 1 will do, for ‘standard 2-part MDL’ one takes
κ = 2 which is mathematically convenient (Barron and Cover, 1991). In contrast, the safe
estimator is defined (in Section 2, Eq. (9)) as p̆safe = p̈2κ̆safe where κ̆safe is not fixed but
determined by the data. κ̆safe will be a small constant ≥ 2, unless the data indicate that
the model is misspecified (wrong). Whereas ordinary Bayesian and MDL approaches can
fail to converge in this case (Example 7 below), the safe estimator continues to perform well
in the following sense: suppose that data Zn are i.i.d. ∼ P ∗, as above, where for each x,
P ∗(Y = · | X = x) has conditional density p∗(· | x). Let q be the best approximation within
P of p∗ in terms of Kullback-Leibler (KL) divergence. Then the KL divergence between
p̆safe and p∗ converges to the KL divergence between q and p∗ at fast rates. To express this
formally, for any two conditional densities p and p′, we define∗ the generalized KL divergence
(Grünwald, 2007) relative to P ∗ as

D∗(p′‖p) := E∗[− log p(Y | X) + log p′(Y | X)].

Then, for q satisfying infp∈P D
∗(p∗‖p) = D∗(p∗‖q) we prove, under suitable regularity condi-

tions, in Theorem 1 in combination with Theorem 3 below that D(p∗‖p̆safe)−D(p∗‖q)→ 0,
or equivalently, D∗(q‖p̆safe)→ 0, in probability at fast rates.

Safe Estimation for Predictor Models In our overarching approach, all models are
formally defined as sets of probability distributions. Predictor models F are “transformed”
into corresponding probability models PF := {pf | f ∈ F} by a standard transformation
(called ‘entropification’ and extensively motivated from an MDL perspective by Grünwald
(1999)): for each f ∈ F ,

pf (y | x) := 1
Z(β)e

−βloss(y,f(x)) , pf (yn | xn) :=
∏n
i=1 pf (yi | xi). (2)

Here Z(β) =
∫
y∈Y exp(βloss(y, f(x)))dy is a normalization factor (if Y is finite/countable,

then here, as everywhere else in this paper, the integral should be replaced by a sum). In
this preliminary study, we set β to some fixed value, say, 1 (but see Section 6). For the
squared loss, Z(β) does not depend on f(x); if we set β = 1/2σ2, we see that (2) expresses
that Y is Gaussian with mean f(X) and variance σ2. For the 0/1-loss, Z(β) does not

1. Distracting aspects of proofs (such as showing that the minimum of a function exists) have been omitted
in this paper, but will be provided in the journal version. Such details are marked by a ∗, such as here∗.

398



Safe Learning

depend on f(x) either; loss functions for which Z(β) depends on f are handled as described
under Eq.(7) below. Taking logarithms in (2), we then get that the excess risk of any f as
compared to any g is a linear function of the generalized KL divergence of the corresponding
distributions:

excess-risk(g‖f) = risk(f)− risk(g) =

E∗[loss(Y, f(X))− loss(Y, g(X))] =
1

β
D∗(pg‖pf ). (3)

Now let g be such that risk(g) = inff∈F risk(f). Even if F is a good ‘model’, i.e. risk(g)
is small, the corresponding model PF will typically be misspecified (e.g. in the squared loss
case, the ‘true’ noise may not be Gaussian at all). Since the safe estimator is immune to
this problem, we can safely apply it to the model PF . Then Theorems 1 and 3 show that
the excess risk excess-risk(g‖f̆safe) converges to 0 at rates that are in many cases optimal;
here f̆safe := f for the f with p̆safe = pf . Thus, by the construction (2), convergence in
generalized KL-divergence becomes equivalent to convergence in the loss function of interest.

The Role of Convexity Our starting point is the known fact that ‘standard MDL still
works’, i.e., (broadly speaking), D∗(q‖p̈2) → 0 at the appropriate rate if the closure 〈P〉
(suitably defined as in (10) below) of the model P is convex (Li, 1999, Theorem 5.5); see
also (Kleijn and van der Vaart, 2006). Our first observation is that, even if 〈P〉 is not
convex, then as long as we have the weaker condition

inf
p∈P

D∗(p∗‖p) = inf
p∈convex-hull(P)

D∗(p∗‖p), (4)

we still get that D∗(q‖p̈2) → 0 at the right rates. Now define, for η ≤ 1, the model
P(η) := {p(η) | p ∈ P}, where p(η)(y | x) ∝ (p(y | x))η (for predictor models PF , this
corresponds to replacing β in (2) by η · β; a precise definition is beneath (7) below). Our
second insight is that, even if (4) does not hold for P, then still, for all η no greater than
some critical value ηcrit, (4) will actually hold with P replaced by P(η) and thus ‘standard
MDL still works’ for P(η). The third insight is that the MDL estimator p̈2κ for model P
with κ = 1/ηcrit is essentially equivalent to the standard MDL estimator p̈

(η)
2 for model

P(ηcrit); indeed, we will prove (implicitly in Theorem 3) that the MDL estimator p̈2κ with
κ = 1/ηcrit leads to good results for the model P. The fourth, and main, insight is that,
for any given η, we can test whether η ≤ ηcrit, i.e. whether (4) is the case for P(η), by

looking at the observed data: essentially, the likelihood of the data according to p̈
(η)
2 will

be significantly smaller than the likelihood according to a 2-component mixture of p̈
(η)
2 and

another, suitably chosen p ∈ P, if and only if (4) does not hold. The minus logarithm
of this discrepancy is measured in terms of a function conv-lack, a key concept of this
paper, defined formally in (8). The safe estimator is defined as p̆safe = p̈2κ̆safe , i.e. it is
the 2κ̆safe-two-part estimator where κ̆safe = 1/η, and η is determined by the data: it is
effectively set to the largest value for which conv-lack is small, i.e. for which we cannot
fit the data better by a two-component mixture.

Overview of Results In Section 2 we formally define conv-lack and p̆safe. In Section 3
and 4, p̆safe will be shown to converge at optimal rates up to log factors in a variety of

399



Grünwald

situations, as illustrated by examples in Section 4. Convergence of p̆safe is shown in two
stages: Theorem 1 bounds D∗(q‖p̆) for arbitrary estimators p̆ in terms of a ‘redundancy’
term red and the conv-lack term. The redundancy term also shows up in classical MDL
analyses and tends to 0 if we set p̆ to a two-part estimator. Theorem 3 shows (essentially)
that if p̆ is set to p̈2κ with κ ≥ 1/ηcrit, then the conv-lack-term is small as well. Taken
together, Theorem 1 and 3 imply that p̆safe converges (a) at the right rates if the model is
correct or convex; and (b) also if the model is “incorrect in the worst possible manner”, and
finally, (c) also if the model is a classification model, i.e. P = PF for some set of classifiers
F , and a Tsybakov condition holds for F .

In case (a), ηcrit = 1. As shown in Example 4, if the model is in fact correct (p∗ = q)
we get the same bound on D∗(p∗‖p̆safe) as the bounds obtained on D∗(p∗‖p̈2) by Barron
and Cover (1991), but with a larger constant factor — this is the price we have to pay for
using a method that still works if the model is incorrect in a situation in which the model
in fact, turns out to be correct. In the special case that w(p∗) = w(q) > 0, D∗(q‖p̆safe) will
tend to 0 as O((log n)/n). In case (b), ηcrit may be as small as C/

√
n for some C > 0.

Example 6 shows that D∗(q‖p̆safe) may then tend to 0 at rate as slow as (log n)/
√
n,

a worst-case bound familiar from the statistical learning literature. In case (c), ηcrit �
n−(1−ν)/(2−ν) for some 0 ≤ ν ≤ 1 and the convergence rate depends on ν. In the special
case that w(q) > 0, D∗(q‖p̆safe) will tend to 0 as O((log n)n−1/(2−ν)); see above Example 7.
The examples illustrate the generality of p̆safe, capturing both the common asymptotics
for density estimation if the model is correct and for statistical classifier learning under
the celebrated Tysbakov condition. p̆safe also gives a new interpretation of the difference
in complexity penalties prescribed by MDL/Bayes on the one hand and learning theory
approaches (such as Structural Risk Minimization and PAC-Bayesian methods) on the other:
since the PF constructed from a predictor model F is in general nonconvex, we may have
ηcrit � 1, and the standard MDL penalties become too small.

A third main result is Theorem 2, which gives a new PAC-Bayes style empirical general-
ization bound in which, if we are ‘lucky’ on the observed data, the codelength (− logw(p̆safe))
only appears in an O(1/n) rather than an O(1/

√
n) term, even if the empirical error of the

learned classifier is not close to 0. As such it provides another step in the race to “root out
the square root” that characterizes so much of the work on classification bounds in learning
theory.

Related Work — Learning the Learning Rate The larger η = 1/κ, the more influ-
ence the data has on the chosen hypothesis p̈2κ. For predictor models, the same holds for
the β appearing in (2). Thus η · β may be viewed as the learning rate. A straightforward
approach to learn it from data is to fix η and instead pick the β in (2) that minimizes
overall description length of the data, as suggested by Grünwald (1999). Soon after pub-
lishing that paper, it became clear to me that this does not work (this was shown formally
in (Grünwald and Langford, 2007)), and I started looking for an estimator that performs
as well as if the optimal learning rate ηcrit had been known in advance. The safe estimator
does achieve this goal, thus ending a twelve-year long search. In a sense, p̆safe learns the
optimal learning rate. Note however that we cannot prove that the κ̆safe selected by the
safe estimator is equal or close to 1/ηcrit; we can only prove that it leads to the same
asymptotic performance bounds.
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A transformation similar to (2) is done in PAC-Bayesian methods (McAllester, 2003),
where Bayesian averages of pf are viewed as Gibbs distributions. Our approach is similar,
yet closer in spirit to standard Bayes and MDL — There may be some relation with the
advanced PAC-Bayesian analyses of Audibert (2004); Catoni (2007), who provide algorithms
for predictor models that learn a learning rate (similar to η = 1/κ) determined by the
amount of ‘disagreement’ on the input data (X1, . . . , Xn) between the chosen predictor f̆
and other predictors in F . It would be interesting to study the connections further.

Finally, our approach can (broadly) be seen as equipping (a form of) Bayesian inference
with a frequentist test, and adjusting the priors if the test indicates that the model is
misspecified. Such an idea was already suggested in broad terms by other researchers, e.g.
Dawid (1982). It can also be viewed as equipping (a form of) MDL with a randomness test
(can we compress the data more by stepping outside the model?), an idea that goes back
to the Kolmogorov complexity roots of MDL.

2. The Safe Estimator

Preliminaries A probabilistic model P is a countable set of conditional distributions
on Y given X , identified with their mass functions (in case Y is finite or countable) or
otherwise their densities relative to Lebesgue measure, which we assume to exist; X can be
arbitrary. We allow the p ∈ P to be defective (sum to less than one). That is, p(y | x)
can be any function such that, for all x, for all y, p(y | x) ≥ 0 and

∑
y∈Y p(y | x) ≤ 1.

We extend p to n outcomes by independence, i.e. p(yn | xn) :=
∏n
i=1 p(yi | xi). For given

zn = (x1, y1), . . . (xn, yn), znp is shorthand for yn | xn, i.e. p(znp ) = p(yn | xn). All logarithms
are to base e.

Crucially, the models P we are to consider, though countable, will usually represent
very “large”, “complex” sets of distributions, which may be thought of as dense (in the
information closure sense, see Section 3) subsets of an even larger, “nonparametric” P̄ with
P ⊂ P̄: for example, we may consider the set P̄ of all Gaussian mixtures with an arbitrary
number of components, and then define P as the subset of all p ∈ P̄ with rational-valued
means and mixture coefficients.

We may fix a probability mass function w on P, which we shall think of as the prior
distribution on P. An estimator at sample size n is a function p̆ : Zn → P that maps each
possible sequence of observations zn = (x1, y1), . . . (xn, yn) ∈ Zn to some p ∈ P, Following
e.g. Barron and Cover (1991), the notation p̆(Zn) denotes the density of the observed data
Zn according to the p̆ that was selected (estimated) based on the same data Zn.

Conditions We only consider combinations of (P, P ∗) and prior w for which (A) for each
(x, y) ∈ Z, there is a p ∈ P such that w(p)p(y | x) > 0. We also assume (B) that for some
finite integer Lmax > 0, for all n, all zn ∈ Zn, − logw(p̈2) ≤ nLmax. Hence the codelength
of the 2-MDL estimator is of order no larger than n. This assumption is innocuous, since it
can always be satisfied by adding one or a few distributions to P (proof sketch in appendix).
Finally, let

V = V (P, P ∗) := ess supZ supp,p′∈P
p(Zp)
p′(Zp)

. (5)

We assume (C) 1 < V and (D) V <∞. We may think of V (P, P ∗) as the maximum ratio
between the density of zp = y | x assigned by different p ∈ P, where the maximum is over
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all (x, y) in the support of P ∗. In case P ∗ has full support, the essential supremum can be
replaced by the standard supremum. Assumptions (A), (B) and (C) are harmless; (D) is
further discussed in Section 6.

Mixing The safe estimator is the κ̆safe-two part estimator, with κ̆safe determined by
the data. To find κ̆safe, we test, for each fixed κ, whether we can get a better fit of the
data/additionally compress the data by a convex combination of p̈κ with a single other
distribution p′ ∈ P. Of course, since P may be infinite and arbitrary, it may be the case
that, no matter what data we observe, there is always some p ∈ P such that a convex
combination of p̈κ and p gives a substantially better fit to the data. This problem, it turns
out, can be addressed by only looking at distributions p with prior mass not much smaller
than w(p̈κ): specifically, we require − logw(p) ≤ d− logw(p̈κ)e, where d·e denotes rounding
up.

To formalize this, for any p, p′ ∈ P and any λ ∈ [0, 1], we define the mixture distribution
mix(p, p′, λ) as (1 − λ)p + λp′, so that for a single outcome z, mix(p, p′, λ)(zp) := (1 −
λ)p(zp) + λp′(zp) (note the somewhat special notation). mix is extended to n outcomes by
independence:

mix(p, p′, λ)(znp ) :=
∏n
i=1((1− λ)p(zip) + λp′(zip)). (6)

Our test is defined in terms of how much better fit can be achieved by the best-fitting
convex combination of this form. To this end, for an arbitrary estimator p̆, we let

supmix(p̆)(Znp ) := sup
p∈P:− logw(p)≤d− logw(p̆)e,λ∈[0,1]

mix(p, p̆, λ)(Znp ). (7)

Let Z(η) := supx∈X ,p∈P
∫
y∈Y(p(y | x))ηdy. For each p ∈ P, and each η ∈ R with Z(η) <∞,

we define p(η)(y|x) := (p(y|x))η/Z(η). Note that the p(η) all represent distributions which,
in general, may be defective, even if p is not. We define P(η) := {p(η) | p ∈ P}. Since, in all
our equations, every occurrence of a density p(η) will actually be as a ratio of two densities,
i.e. p(η)(Znp )/q(η)(Znp ), we can safely write pη instead of p(η) everywhere without affecting
the results. This is what we do below. However, for interpreting our results it is useful
to think of the p(η) as densities. For predictor models, η corresponds to β in (2); but see
Section 6.

Convexity Lack We define the convexity lack of an arbitrary estimator p̆ on data Znp as

conv-lack(η, p̆) = −cη
η

log
p̆η(Znp )w2(p̆)

supmix(p̆η)(Znp )
, (8)

where cη = 1 + CηC
′
η, and Cη = 2 + 2η log V and C ′η = 2V 2η. The rationale behind these

values will become clear in Theorem 1 and Lemma 9 below. conv-lack is a measure of
how many more bits are needed to encode the data using a two-part code (with κ = 2)
based on p̆η (the numerator in the logarithm) as compared to the number of bits needed by
the two-component mixture that provides the best fit (smallest codelength) with hindsight
(the denominator). The larger this number, the more could have been gained by modelling
the data with the convex hull of P rather than just P. Our main insight (see Theorem 3
below) is that, if η ≤ ηcrit (ηcrit, introduced in Section 1, is formally defined below),
then conv-lack is guaranteed to be small. This suggests to test various values of κ,
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and define the safe estimator as the κ-two part estimator for the smallest value of κ for
which conv-lack(1/κ, p̈κ) is below some fixed threshold. Here we opt for the essentially
equivalent, but mathematically more convenient option to simply add conv-lack as an
additional penalty to the codelength of the two-part estimator:

Safe Estimation Let κmax = d
√
n/(2 log V )e (this value is motivated below Lemma 5).

The safe estimator p̆safe is defined as the 2κ- two-part estimator for the κ ∈ {1, 2, . . . , κmax}
that minimizes

− log p̈2κ(Znp )− 2κ logw(p̈2κ) + conv-lack(κ, p̈2κ). (9)

This is just the formula for p̈2κ, but with the term conv-lack(κ, p̈2κ) added. Here we es-
tablish that p̆safe has good theoretical properties; whether it is useful in practice is discussed
in Section 6.

3. Generalization Bounds for the Safe Estimator

Preliminaries We define the (generalized) information closure of P (Barron and Cover,
1991) as

〈P〉 := {p′ | for some P ∗, infp∈P D
∗(p∗‖p) = D∗(p∗‖p′)}, (10)

where p′ ranges over all conditional densities for Y given X (i.e. p′ is not necessarily in P),
and P ∗ ranges over all distributions on Z that have some conditional density; we denote the
density corresponding to P ∗ by p∗(y | x). Henceforth we assume that data Zn are sampled
from a P ∗ that admits such a p∗. We also assume that P ∗ and P are such that there exists
a best-approximating q, defined as a q such that:

D∗(p∗‖q) = infp∈P D
∗(p∗‖p) and V (P ∪ {q}, P ∗) = V (P, P ∗). (11)

From now on, for given (P, P ∗), we fix a particular best-approximating density once and
for all and keep denoting it by q. We must have q ∈ 〈P〉, and D∗(q‖p) ≥ 0 for all p ∈ P.
Our assumption that p∗ and q exist simplifies the formulation of our theorems. Still, all
our results continue to hold, with appropriately generalized definitions, if no such q or p∗

exist∗. In the well-specified case, with q = p∗ ∈ 〈P〉, we trivially have that, for η = 1,

For all p ∈ P: E∗
[(

p(Zp)

q(Zp)

)η]
≤ 1, or equivalently, d∗η(q‖p) := −1

η
logE∗

[(
p(Zp)

q(Zp)

)η]
≥ 0,

(12)
as is seen by writing out the expectation in full and substituting q by p∗. Here d∗η is the
generalized Rényi divergence (Li, 1999); by a result of Li (1999), repeated as Proposition 15
in Section 5, if (12) holds then d∗η/2 may be viewed as a proxy for the generalized KL

divergence, since then, for all p ∈ P, D∗(q‖p) ≤ Cηd∗η/2(q‖p) ≤ CηD∗(q‖p), where Cη = 2 +
2η log V is a constant. This is a key idea for our proofs. Classical theorems on two-part MDL
inference for the well-specified case (Barron and Cover, 1991; Zhang, 2006; Grünwald, 2007)
invariably make use of (12) at some point in the proofs; so do classical results on Bayesian
consistency (Doob, 1949), in which (12) is used to establish that {p(Znp )/q(Znp )}n=1,2... forms
a martingale. It can be shown (Li, 1999; Kleijn and van der Vaart, 2006) that (12) still
holds for η = 1 if 〈P〉 is convex, or, more generally, if (4) holds. This is the fundamental
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reason why the MDL and Bayesian convergence bounds still hold in that setting. In fact,
(4) with P(η) in the role of P is equivalent to (12), as follows from Lemma 9 in Section 5
(proof sketch in Appendix). If (4) does not hold for η = 1, then (12) does not hold for η = 1
and MDL and Bayes may not converge (Example 7 below). Luckily, for many types of P,
one can still show that (12) holds for some η < 1. Thus it makes sense to define the critical
exponent ηcrit as the largest value of η such that, for all p ∈ P, (12) holds. It is useful to
generalize the idea slightly. We define, for u ≥ 0, the u-critical exponent ηcrit(u) as

ηcrit(u) := sup

{
η ≤ 1 : for all p ∈ P, logE∗

[(
p(Zp)

q(Zp)

)η]
≤ u

n

}
. (13)

ηcrit(0) is just the critical value as defined before. In Section 1 we cheated a little, writing
ηcrit for ηcrit(u) for the u which gives the best bounds; see below. Whenever we write
“WHP” (‘with high probability’), we really mean “for all K ≥ 0, with P ∗-probability at
least 1− e−K , Zn satisfies...”.

Theorem 1 (Oracle Bound) Let (P, P ∗) and w satisfy conditions (A)-(D) of Section 2
with V as in (5), q as in (11), ηcrit as in (13) and κmax as above (9). Let p̆ be an arbitrary
estimator. Let Zn ∼ P ∗. WHP, uniformly for all η ∈ {1, 1/2, 1/3, 1/4, . . . , 1/κmax}, all
u ∈ {0, 1, . . . , nLmax}, we have

D∗(q‖p̆) ≤ Cη
n

(
red(2/η, p̆) + conv-lack(η, p̆) + u

min{η,ηcrit(u)} +R
)
, (14)

where Cη = 2 + 2η log V . The term conv-lack is given by (8). The term red is given by

red(2/η, p̆) = − log
w2/η(p̆)p̆(Znp )

q(Znp ) = − 2
η logw(p̆)− log p̆(Znp ) + log q(Znp ). (15)

The remainder term∗ is R = O
(
K+logn+log(2+d− logw(p̆)e)

min{η,ηcrit(u)}

)
.

red stands for ‘redundancy’. It can be interpreted as the extra number of nats needed to
code the data using a two-part code based on p̆ (with κ = 2/η), as compared to the code
based on the best-approximating q, and under mild conditions red/n will tend to 0, WHP
(Example 4). For predictor models as in (2), p̆ = pf̆ and q = pg, and then red/n can be

thought of as the difference in empirical risk between f̆ and the optimal g, ‘penalized’ by
−(2/ηn) logw(p̆). The red and conv-lack terms depend on the data; the third term in
(14) becomes 0 if we set u = 0; for the possibility u > 0 see Example 6. The fourth term is a
remainder term which does not depend on the data except for the term log(2− logw1/η(p̆))
which, by assumption (B), if p̆ is a 2-part or the safe estimator, is bounded by O(log n).

We can now motivate the definition p̆safe: among all two-part estimators, it is the one
minimizing (14), ignoring the remainder term. To see this, note that the third term in (14)
does not depend on the data, and the redundancy term can be written as the sum of two
terms plus a term log q(Znp ) that does not depend on our choice of estimator p̆. Thus, p̆safe
minimizes an upper bound on the KL divergence between p̆ and the best-approximating q.

Let us compare (14) to the bounds on the standard two-part MDL estimator as derived
by Barron and Cover (1991) under the assumption that q = p∗. One of their main results
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(Theorem 4, as later strengthened by Zhang (2006) and (Grünwald, 2007, Section 15.3))
implies that, for all κ ≥ 1,

EZn∼P ∗ [ D∗(p∗‖p̈2κ) ] ≤ C
nEZn∼P ∗ [ red(2κ, p̈2κ) ], (16)

where C ≤ 2+2 log V as above. This provides a frequentist justification for the 2-part MDL
estimator p̈2κ with κ ≥ 1, since p̈2κ is in fact defined as the p ∈ P that minimizes red(2κ, p).
Apart from the ‘in-expectation’ rather than ‘in-probability’ formulation, the “only” relevant
difference to our result is the conv-lack term, which appears in (14) because we do not
require a correct model. In Section 4 we show that for many combinations of P ∗ and P,
the conv-lack term will be small, WHP, for p̆ = p̆safe. In such cases Theorem 1 states
something similar to Barron and Cover’s result (D∗(q‖p̆) → 0), but without the often
unrealistic requirement that p∗ ∈ 〈P〉.

Theorem 2 (Empirical Bound) Assume the notations and conditions of Theorem 1.
WHP, uniformly for all η ∈ {1, 1/2, 1/3, . . . , 1/κmax}, we have,

E∗[− log p̆(Zp)] ≤ 1
n

(
− log p̆(Znp )− logw(p̆)2/η + 2conv-lack(η, p̆) +R

)
, (17)

with remainder term R = O
(√

n(K + log n+ log(2− logw(p̆)))
)

.

The proof of this result is similar to the proof of Theorem 1 and will be provided in the
full paper. Note that the weights of the main terms on the right side in Theorem 2 and 1
are different. In Theorem 2, the left term’s weight is reduced from Cη to 1, and the weight
of the right term (conv-lack) is reduced from Cη (which is always ≥ 2) to 2. Unlike
the ‘oracle’ bound Theorem 1, the ‘empirical’ bound Theorem 2 gives useful information
without knowledge of E∗[− log q(Zp)]. If P = PF for a classification model F , then the first
term on the right-hand side is the empirical risk β−1n−1

∑n
i=1 loss(yi, f̆(xi)) and the bound

becomes similar to the PAC-Bayesian and Occam’s Razor (OR) bounds (McAllester, 2003;
Blumer et al., 1987). Yet, by Condition (B), for p̆ = p̆safe, the remaining error term R/n

is of order O(log n/
√
n) rather than O

(√
− logw(p̆)/n

)
as it would be for PAC-Bayes and

OR-bounds. In this sense, for data Zn such that for some γ > 0 (say, γ = 0.1), for all f ∈ F ,
the empirical loss of f on Zn is larger than γ, the bound of Theorem 2 will be stronger than
the best PAC-Bayesian or OR bounds. In other cases Theorem 2 gives weaker bounds than
PAC-Bayes, since unlike PAC-Bayes it does not improve if f̆ has empirical error ≈ 0; also
it is not suitable for randomized classifiers. Theorem 2 is thus a first step, to be improved
in future work.

4. What Actually Happens

Theorem 3 Assume the notations and conditions of Theorem 1. Let cη be as in (8). Fix

u ≥ 0 and let η ≤ ηcrit(u). WHP, we have conv-lack(η, p̆) ≤ cη
(

3red(2/η, p̆) + u
η

)
+R,

with remainder term R = O((log n+K + u)/η)

Applying Theorem 1 to the safe estimator p̆safe with η ≤ ηcrit(u), and using Theorem 3 to
rewrite conv-lack, and using the fact that, if two inequalities hold with high probability,
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the combined inequality also holds with high probability (see Proposition 12 in Section 5),
we see that for all η ∈ {1, 1/2, 1/3, . . . , κmax} with η ≤ ηcrit(u), the safe estimator achieves,
WHP,

D∗(q‖p̆safe) ≤ C
n

(
red(2/η, p̆safe) + u

η + cη3red(2/η, p̆safe) +
cη
η u+R′

)
=

C(1+3cη)
n

(
red(2/η, p̈2/η) +R′′

)
+

C(1+cη)
n · uη

≤ C′′

n

(
red(2/η, p̈2/η) + u

η +R′′
)
,

(18)

with constant C ′′ = C(1 + 3cη) and new remainder term R′′ = O((log n+K)/η). As long
as we use (18) with u = 0 (directly below) or u = 1 (in Lemma 5) and η ≤ ηcrit(u), then
the terms u/η and R′′ are at most of the same order as the first term (−2/η) logw(p̈2η) in
red, and hence do not affect the obtained convergence rates of p̆safe.

Example 4 [Best-Case: Model P correct or convex] Suppose that P ∗ is in the
information closure of P, i.e. q = p∗. Then ηcrit(0) = 1, and, using (18) with u = 0 and
η = ηcrit(0), WHP,

D∗(p∗‖p̆safe) = D∗(q‖p̆safe) ≤ C ′′

n

(
red(2, p̈2) +R′′

)
, (19)

where by Barron and Cover’s original analysis, we would get (16). Except for the in-
probability rather than in-expectation formulation, the only real difference is that the KL
divergence is bounded in terms of a larger constant factor. This is the price we pay for not
knowing in advance that our model was, in fact, correct, while using a procedure that still
leads to good results if it is incorrect.

Barron and Cover (1991) show that, for a wide variety of probabilistic models M,
there exist countable discretizations P ⊂ M and corresponding priors w on P such that
1
nEZn∼P ∗ [red(2, p̈2)] is equal to the minimax convergence rate in KL risk if M is “non-
parametric”, or equal to the minimax rate up to a log n-factor ifM is “parametric”. Using
Markov’s inequality∗, WHP red(2, p̈2) on the data (as in (19)) is not larger than a con-
stant factor times its expectation EZn∼P ∗ [red(2, p̈2)]. This implies that the standard MDL
estimator also achieves the minimax rate in probability (up to a logarithmic factor in the
parametric case). Hence, by (19), so do we. A similar story∗ can be told if 〈P〉 is convex or
if the weaker condition (4) holds; again, up to constant factors, the safe estimator performs
as well as the two-part estimator, which converges at near-optimal rates.

When the Model is Wrong Define D∗sq(q, p) = E∗[(log p(Zp)/q(Zp))
2]. Such a variation

of generalized KL divergence was earlier considered by, e.g., Kleijn and van der Vaart (2006).
The lemma below shows that if the model is wrong, then the value of ηcrit(u) depends on
the relation between D∗sq and D∗. The lemma is not really new, being a direct translation of
existing results of e.g. Tsybakov (2004) from ‘F-space with loss function loss’ to ‘P-space
with log-loss’.

Lemma 5 Assume the notations and conditions of Theorem 1. Suppose further (E) that
for some A > 0 and some 0 ≤ ν ≤ 1, for all p ∈ P, D∗sq(q, p) ≤ A(D∗(q‖p))ν . Then, for all
u > 0, we have

ηcrit(u) ≥ min

{
1

2 log V
,B
(u
n

) 1−ν
2−ν
}

where B = (2/eA)
1

2−ν . (20)
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When P represents a classification model containg the Bayes classifier, condition (E) above
specializes to the celebrated condition of (Mammen and Tsybakov, 1999; Tsybakov, 2004);
the κ in (Tsybakov, 2004) is equal to ν−1 in our notation. In particular, we automatically
have D∗sq(q, p) ≤ (log V )2 so (E) always holds for ν = 0 and A = (log V )2. Using (20) with

these values, and using 1/2 <
√

2/e, it follows that for all u ≥ 1,

ηcrit(u) ≥ 1
2 log V

√
u
n ≥ 1/κmax, (21)

which explains why we could restrict η to η > κmax; see Example 6. If (E) holds for some
ν > 0 though, then ηcrit(u) is of larger order than

√
u/n and things get better; see below

Example 6.

Example 6 [Worst-Case] Let u ≥ 1 and let η = ηcrit(u). Using (18), and (21), we see
that WHP,

D∗(q‖p̆safe) ≤ C′′

n

(
red(2/η, p̈2/η) + u

η +R′′
)

= C′′

n

(
−2c

√
n
u logw(p̈2/η)− log

p̈2/η(Znp )

q(Znp ) + c
√
u · n+R′′

)
for some constant c = 2 log V . Differentiating with respect to u shows that a minimum is
achieved∗ for u ≈ −2 logw(p̈2/η). The resulting expression becomes

C ′′ · 2c
√
− logw(p̈2/η)

n + C ′′
(
− 1
n log

p̈2/η(Znp )

q(Znp ) +R′′
)
. (22)

For classification models, this bound is familiar from the computational learning literature.
Now suppose that (E) holds for some ν > 0. Then we can achieve better bounds: by the
reasoning below Theorem 3, p̆safe converges at the same rate as the κ-MDL estimator with

κ = ηcrit(1)−1 = O(n
1−ν
2−ν ). From (18) we see that in the special case that q ∈ P, w(q) > 0,

(18) gives a rate in probability of (log n)/n1/(2−ν), which, for classification models, is equal
to the minimax optimal rate in expectation (Tsybakov, 2004) up to a log factor. The next
example illustrates this for ν = 1; in the full paper∗ we will also provide examples involving
regression and classification with 0 < ν < 1.

Example 7 [Bayesian inconsistency and Tsybakov’s Condition]
Grünwald and Langford (2007) showed that standard MDL and Bayesian inference can be
inconsistent in various ways if P ∗ 6∈ 〈P〉, for countable models P = {p0, p1, . . .} that are
really classification models, i.e. P = PF with F = {f0, f1, . . .} with pj = pfj as given by
(2), where Y = {0, 1} and loss is the 0/1-loss. In these examples, p0 has positive prior
w(p0) > 0 independent of the sample size, and for some δ > 0, for all j > 0, it holds
D∗(p0‖pj) > δ, i.e. risk(pj) > risk(p0) + β−1δ. In the examples Tsybakov’s condition
(E) holds with ν = 1 but only for very large A. Since thus q = p0 and, by Lemma 5,
ηcrit(1) > 1/C for some very large constant independent of n, it follows from (18) that the
safe estimator converges WHP at rate O((− logw(p0) +R′′)/n) = O(log n/n), much faster
than the worst-case O(1/

√
n). However, explicit calculation of ηcrit(1) shows that it is

indeed very small, and since standard MDL and Bayesian MAP use an η equal to 1 or 2, it
comes as no surprise that in this scenario they do not converge at all, i.e. with probability
1, for all large n, they select a distribution/classifier p 6= p0, as was shown formally by
Grünwald and Langford (2007).

407



Grünwald

5. The Proofs

Preliminary Results Our main tool is Proposition 8 below, a bound for ratios of proba-
bility densities, similar to earlier inequalities by Barron and Cover (1991); Li (1999); Zhang
(2006). Below tr is a function mapping distributions to other distributions (we use notation
as in (6)).

Proposition 8 Let Zn be i.i.d. ∼ P ∗. Let P be a countable set of (possibly defective)
conditional densities for Zn and let p̆ be an arbitrary estimator. Let Q be another set of
(possibly defective) conditional densities for Zn. Let tr : P → Q be a function mapping
distributions in P to distributions in Q. Let w be a (potentially defective) probability mass
function on P. Let η > 0. Then WHP,

d∗η(tr(p̆)‖p̆) ≤ 1
n

(
− log

w(p̆)p̆(Znp )

tr(p̆)(Znp ) + K
η + 1

η log
∑

p∈P̆ w(p)η
)
. (23)

Proof We bound the probability that (23) does not hold:

P ∗
(
ηd∗η(tr(p̆)‖p̆) > 1

n

(
−η log

w(p̆)p̆(Znp )

tr(p̆)(Znp ) +K + log
∑

p∈P̆ w(p)η
))

=

P ∗
(

log
(

p̆(Znp )

tr(p̆)(Znp )

)η
> − log wη(p̆)∑

wη(p) +K + n logE∗
(

p̆(Zp)
tr(p̆)(Zp)

)η )
≤

P ∗
(

There exists p ∈ P with
(

p(Znp )

tr(p)(Znp )

)η
> eK

(∑
w(p)η

wη(p)

)
E∗
(

p(Zn)
tr(p)(Zn)

)η )
≤∑

p∈P P
∗
( (

p(Znp )

tr(p)(Znp )

)η
> eK

(∑
w(p)η

wη(p)

)
E∗
(

p(Zn)
tr(p)(Zn)

)η )
≤ e−K ,

where the equality is basic rewriting, the first inequality follows from exponentiating both
sides, absorbing n into the expectation E∗ (which can be done since the Zi are i.i.d.)
and weakening, the second is the union bound, and the third is an instance of Markov’s
inequality.

In some applications we set, for all p ∈ P, tr(p) equal to the best approximating density q,
and then the first term on the right in (23) is equal to red(1/η, p̆); the inequality is then a
weakening of Zhang’s, who provides an expectation rather than an in-probability form. In
other applications (e.g. below Eq. (37)), tr(p) actually varies with p, and in this form, the
inequality is new. We will apply this proposition in two different ways. In the first type
of application, the goal is to get a (high-probability) upper bound on the left-hand side
of (23). In the second type of application, the goal is to upper bound − log tr(p̆)(Znp ).
Thus, we rewrite (23) equivalently as:

− 1

n
log tr(p̆)(Znp ) ≤ − 1

n
logw(p̆)p̆(Znp )+R, with R = −d∗η(tr(p̆)‖p̆)+

K + log
∑

p∈P̆ w(p)η

nη
.

(24)
In such applications, we take a value of η guaranteeing d∗η(tr(p̆)‖p̆) ≥ 0 or (as e.g. in
Lemma 14), we allow d∗η(tr(p̆)‖p̆) to be negative but not too negative, so that the bound
remains useful.

Let p, p′ ∈ P such that D∗(p‖p′) ≥ 0, and let∗ λ◦ := arg minλ∈[0,1]D
∗(p∗‖mix(p, p′, λ)) =

arg maxλ∈[0,1]D
∗(mix(p, p′, λ)‖p)) (if more than one λ achieves the extremum, we take

the smallest). Our second key result states that if D∗(mix(p, p′, λ◦)‖p) is small, then
E∗[mix(p, p′, λ◦)(Zp)/p(Zp)] cannot be much larger than 1; equivalently d∗1(p‖mix(p, p′, λ◦))
cannot be much smaller than 0:
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Lemma 9 Let (P, P ∗) be as on page 401, V = V (P, P ∗) be as in (5), and let p, p′ ∈ P
be such that D∗(p‖p′) ≥ 0, and λ◦ be as above. (a) If λ◦ = 0 (p is closer to p∗ than
any mixture of p and p′) then for all λ ∈ [0, 1], d∗1(p‖mix(p, p′, λ)) ≥ 0; otherwise, (b),
−d∗1(p‖mix(p, p′, λ◦)) ≤ 2V 2D∗(mix(p, p′, λ◦)‖p).

Proof Let g(λ) = D∗(mix(p, p′, λ)‖p). Then g(0) = 0, g(1) ≤ 0. We first need the following
(proof straightforward by differentiation, see appendix):

Proposition 10 1. g′(0) = E∗
(
p′(Zp)
p(Zp)

)
− 1; if λ◦ = 0 then (1a) g′(0) ≤ 0; if λ◦ > 0 then

(1b) g′(0) > 0, g′(λ◦) = 0 and g′(1) ≤ 0; 2. if p(Zp) = p′(Zp) P
∗-almost surely, then (2a)

g′(λ) = g′′(λ) = 0 on λ ∈ [0, 1]. Otherwise (2b) g′′(λ) < 0 on [0, 1] and maxλ∈[0,1] |g′′(λ)| ≤
minλ∈[0,1] V

2|g′′(λ)|.

Abbreviate d∗1(p‖mix(p, p′, λ)) to d∗(λ) and g(λ◦) = D∗(mix(p, p′, λ◦)‖p) to D∗, and note
that

−d∗(λ) = logE∗
(

(1−λ)p(Zp)+λp′(Zp)
p(Zp)

)
≤ E∗

(
(1−λ)p(Zp)+λp′(Zp)

p(Zp)

)
− 1 = λg′(0). (25)

In case (1a) and (2a) the result is now immediate, so assume (1b) and (2b). Then by a
first-order Taylor approximation of g′, for some 0 ≤ λ1 ≤ λ◦, g′(0) = g′(λ◦) − λ◦g′′(λ1) =
λ◦|g′′(λ1)|, so that (25) gives −d∗(λ◦) ≤ (λ◦)2|g′′(λ1)|. Also, by a 2nd-order Taylor expan-
sion of g around λ◦ we find, for some 0 ≤ λ2 ≤ λ◦, that 0 = g(0) = (1/2)(λ◦)2g′′(λ2)+g(λ◦),

so D∗ = (1/2)(λ◦)2|g′′(λ2)|. Combining with our expression for d∗(λ◦), we get −d
∗(λ◦)
D∗ ≤

2 |g
′′(λ1)|
|g′′(λ2)| . The result now follows by part (2b) of Proposition 10.

The next proposition is about varying exponents rather than mixture coefficients:

Proposition 11 Let P = {p, p′} be such that V (P, P ∗) <∞ and D∗(p‖p′) > 0. Then (a):
letting g(η) = logE∗(p′(Zp)/p(Zp))

η = −ηd∗η(p‖p′), we have g(0) = 0, g(η) is decreasing at
η = 0 and exp(g(η)) is strictly convex, so that there exists at most one η′ > 0 with g(η′) = 0,
and g(η) is increasing for η ≥ η′. (b) Define λ◦ as in Lemma 9. If λ◦ = 0 (p is closer to p∗

than any mixture of p and p′) then ∀η ∈ (0, 1), d∗η(p‖p′) > 0.

Proof (a) is just differentiation of E∗(p′(Zp)/p(Zp))
η (see proof of Lemma 5); details omit-

ted. (b) is immediate from (a) because by Lemma 9, part (a), d∗1(p‖p′) = d∗1(p‖mix(p, p′, 1)) =
−g(1) ≥ 0.

The following proposition provides the glue that ties all our inequalities together:

Proposition 12 (log-Bonferroni) Let J be a finite or countably infinite set. Let {Yj}j∈J
be a collection of random variables, let {aj}j∈J be a collection of constants in R and let
{fj}j∈J be a collection of increasing functions R→ R. Suppose that for all j ∈ J , WHP,
Yj ≤ aj+fj(K). Then, for any collection of positive numbers {wj}j∈J such that

∑
j∈J wj =

1, we have, WHP,
For all j ∈ J , Yj ≤ aj + fj(K − logwj).

This result is a straightforward consequence of the union bound that appears in one form
or other in many COLT papers; for convenience there is a proof in the appendix.
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Notation common to the Proofs In all proofs below we make use of the following
concepts: let w be a prior for a countable set of densities P. Let p ∈ P. Relative to w and
P ∗, we define∗ the optimal density at p’s description length as

opt(p) := arg min
p′∈P:− logw(p′)≤d− logw(p)e

D∗(p∗‖p) (26)

For an estimator p̆, opt(p̆) is itself a random variable, representing the best distribution
(closest in KL divergence to p∗) with prior no smaller (up to rounding) (or “complexity”
no larger, up to rounding) than the p̆ selected for the given data Znp . We further define

opt(P) = {p ∈ P : p = opt(p′) for some p′ ∈ P}. (27)

Now define for p ∈ P, optmix(p) := mix(opt(p), p, λ◦), where λ◦ ∈ [0, 1] minimizes∗

E∗[− logmix(opt(p), p, λ)(Zp)] = E∗[− log ((1− λ)opt(p)(Zp) + λp(Zp))]. (28)

Note that D∗(optmix(p̆η)‖p̆η) = maxλ∈[0,1]D
∗(mix(opt(p̆η), p̆η, λ)‖p̆η) ≥ D∗(opt(p̆η)‖p̆η).

(29)

5.1. Proofs of Main Results

Proof of Theorem 1 We first consider an arbitrary fixed η and a fixed u. We have:

D∗(q‖p̆) = D∗(q‖opt(p̆))+
1

η
D∗(opt(p̆η)‖p̆η) ≤ D∗(q‖opt(p̆))+

1

η
D∗(optmix(p̆η)‖p̆η),

(30)

where the equality is straightforward from the definition of D∗ and the inequality follows
from (29). By Lemma 14, we can bound the term D∗(q‖opt(p̆)) from above and rewrite
(30) to get, WHP,

D∗(q‖p̆) ≤ Cη
n

(
−1

η
log

w(p̆)optmix(p̆η)(Znp )

qη(Znp )
+
u

η′
+R1

)
+ T (31)

with Cη = 2 + 2η log V , η′ = min{η, ηcrit(u)}, R1 as in Lemma 14 and

T = −Cη
η
d∗1(opt(p̆η)‖optmix(p̆η)) +

1

η
D∗(optmix(p̆η)‖p̆η), (32)

We proceed to rewrite T . −d∗1(opt(p̆η)‖optmix(p̆η)) may very well be positive, but by
Lemma 9, applied with (P, p, p′) ← (P(η),opt(p̆)η, p̆η) (the notation indicates that e.g.
P in Lemma 9 is instantiated to P(η) as used above), we can bound (32) to get: T ≤
η−1(CηC

′
η + 1)D∗(optmix(p̆η)‖p̆η), where we used

D∗(optmix(p̆η)‖opt(p̆)η) ≤ D∗(optmix(p̆η)‖p̆η), and C ′η = 2V 2η. Letting w′(pη) := w(p),

this can be further bounded using Lemma 13 below, with (p̆,P, w)← (p̆η,P(η), w′) (notation
as explained above). This gives, WHP:

T ≤ Cη
n

(
−cη
η

log
p̆η(Znp )w(p̆)2

supmix(p̆η)(Znp )
+R′1

)
=
Cη
n

(
conv-lack(η, p̆) +R′1

)
, (33)
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where R′1 = η−1cη2K and cη = CηC
′
η + 1 and we used the definition of conv-lack. Now

apply Proposition 8 as in (24), with (P, p̆,Q,tr(·), w, η) ← (P(η), p̆η,Q,optmix(·), w′, 1),
where Q = {optmix(pη) | p ∈ P} and w′ as above. Since, by Lemma 9, part (b),
d∗1(optmix(pη)‖opt(p)η) ≥ 0, we find that WHP,− logoptmix(p̆η)(Znp ) ≤ − logw(p̆)p̆η(Znp )+
K. Substituting this and (33) into (31), we get with Proposition 12 (with |J | = 3, wj = 1/3)
that WHP,

D∗(q‖p̆) ≤ Cη
n

(
−1

η
log

w(p̆)2p̆η(Znp )

qη(Znp )
+
u

η′
+ conv-lack(η, p̆) +R2 +R′2

)
, (34)

where R2 = (4(K + log 3) + 4 log(2 + d− logw(p̆)e))/η′ and R′2 = cη(2(K + log 3))/η. The
result now follows for a fixed value of u and η. To prove that it holds uniformly for u ∈
{0, 1, 2, . . . , nLmax}, η ∈ {1, 1/2, 1/3, . . . , 1/κmax}, we use Proposition 12; details omitted∗.

Lemma 13 Let (P, P ∗) and w be as on page 401. We have WHP,

D∗(optmix(p̆)‖p̆) ≤ C1
n

(
− log

p̆(Znp )w2(p̆)

supmix(p̆)(Znp ) + 2K
)

where C1 = 2 + 2 log V is a constant and supmix is defined as in (7) above.

Proof By Proposition 15, applied with η = 1, we get

D∗(optmix(p̆)‖p̆) ≤ C1d
∗
1/2(optmix(p̆)‖p̆)−(C1−1)d∗1(optmix(p̆)‖p̆) ≤ C1d

∗
1/2(optmix(p̆)‖p̆),

where C1 = 2 + 2 log V and the final inequality follows because by Proposition 11,
d∗1(optmix(p̆)‖p̆) ≥ 0. We now let Q = {mix(p0, p1, λ) : p0, p1 ∈ P, λ ∈ [0, 1]} be the set of
two-component mixtures of elements of P, and apply Proposition 8, with (P, p̆,Q,tr(·), w, η)←
(P, p̆,Q,optmix(·), w2, 1/2) (notation as below (32)). We get that, WHP,

d∗1/2(optmix(p̆)‖p̆) ≤ − 1
n log

w2(p̆)p̆(Znp )

optmix(p̆)(Znp ) + 2K
n ≤ −

1
n log

w2(p̆)p̆(Znp )

supmix(p̆)(Znp ) + 2K
n .

Lemma 14 Assume the conditions and notation of Theorem 1. For all 0 < η ≤ 1, WHP,

D∗(q‖opt(p̆)) ≤ Cη
n

(
−1

η
log

w(p̆)optmix(p̆η)(Znp )

qη(Znp )
+
u

η′
+R1

)
−Cη
η
d∗1(opt(p̆η)‖optmix(p̆η)),

where Cη = 2 + 2η log V , η′ = min{η, ηcrit(u)} and remainder R1 = (3K + 4 log(2 +
d− logw(p̆)e))/η′. (Note that d∗1(opt(p̆η)‖p̆η) may be negative).

Proof We apply Proposition 15 with η set to η′. This gives D∗(q‖opt(p̆)) ≤
Cη′d

∗
η′/2(q‖opt(p̆)) + (Cη′ − 1)R, where R = −d∗η′(q‖opt(p̆)). By Proposition 11, part(a),

if η′R ≥ 0 then, since η′ ≤ ηcrit(u), we have η′R ≤ −ηcrit(u)d∗ηcrit(u)(q‖opt(p̆)) ≤ u/n. It

follows that R ≤ u/(η′n), so we have

D∗(q‖opt(p̆)) ≤ Cη′d∗η′/2(q‖opt(p̆)) + 1
η′ (Cη′ − 1)un . (35)

Now fix some p0 ∈ P. Set w′(p0) = 1, tr(p0) = q and apply Proposition 8 with
(P, p̆,Q,tr(·), w, η) ← (P, p0, {q},tr(·), η′/2). The p̆ in the proposition is a degenerate
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estimator that is always equal to the fixed p0 and does not depend on the data, and tr(p̆)
is always equal to q. We get that WHP,

d∗η′/2(q‖p0) ≤ 1
n

(
− log

p0(Znp )

q(Znp ) + 2K
η′

)
. (36)

Note that we can enumerate the elements of opt(P) as given by (27) as {p1, p2, . . .} where,
for all j, it holds j − 1 ≤ d− logw(pj)e ≤ j. Using the log-Bonferroni Proposition 12 with
|J | = N, wj = 1/j(j + 1) and fj(K) = 2K/η′(u), we get that, WHP, uniformly for all
pj ∈ opt(P ),

d∗η′/2(q‖pj) ≤ 1
n

(
− log

pj(Z
n
p )

q(Znp ) + 2
η′ (K + 2 log(j + 1))

)
≤ 1

n

(
− log

pj(Z
n
p )

q(Znp ) + 2
η′ (K + 2 log(2− d− logw(pj)e))

)
.

(37)

We now let R = {optmix(pη) | p ∈ P}, and define a prior w′ on R with, for r ∈ R, w′(r) :=
w(p) for the p such that r = optmix(pη). We set tr(p′) := opt(p̆η). We now use Proposi-
tion 8 again (in the form (24)) with (P, p̆,Q,tr(·), w, η)← (R,optmix(p̆η),opt(P)η,tr(·), w′, 1).
(notation as below (32); effectively we use optmix(p̆η) as an estimator here. ). We get,
WHP,

− 1

n
logopt(p̆η)(Znp ) ≤ − 1

n
logw(p̆)optmix(p̆η)(Znp )−d∗1(opt(p̆η)‖optmix(p̆η))+

K

n
. (38)

Dividing (38) by η, using η−1 logopt(p̆η) = logopt(p̆), and then combining with (35) and
(37), with pj set to opt(p̆), we get, WHP,

D∗(q‖opt(p̆)) ≤ Cη′ ·(
1

n

(
−1

η
log

w(p̆)optmix(p̆η)(Znp )

qη(Znp )
+R

)
− 1

η
d∗1(opt(p̆η)‖optmix(p̆η)) +

1

η′
u

n

)
, (39)

where R = (2/η′)(K+2 log(2−d− logw(pj)e))+(1/η)K, which is no greater than R1 in the
statement of the lemma. This proves the result for η ≤ ηcrit(u) (for then η′ = η). For the
case that η > ηcrit(u), note that then Cη > Cη′ . Because by definition of q the left-hand
side of (39) must be nonnegative, we have WHP that both (39) holds and its right-hand
side is nonnegative, so that with the same probability, (39) holds with Cη′ replaced by Cη.
The result follows.

Proposition 15 Let P ∗ be a distribution on Z, let p an q be conditional distributions for Y
given X, and let V = V ({p, q}, P ∗) defined as in (5). For all η ≤ 1 and all Cη ≥ 2+2η log V ,
we have

D∗(q‖p) ≤ Cη · d∗η/2(q‖p)− (Cη − 1)d∗η(q‖p).

In particular, if d∗η(q‖p) ≥ 0, then D∗(q‖p) ≤ Cηd
∗
η/2(q‖p), i.e. the generalized KL di-

vergence is upper bounded by a constant times the generalized Rényi divergence of order
1/2η.
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Proof This result is a straightforward extension of a result due to Andrew Barron and
Jonathan Li, published in Li’s (1999) thesis. See Lemma 5.11, page 67 and Lemma 5.12,
page 73 of (Li, 1999). d∗η corresponds to log c = log

∫
fg/f∗ in Li’s notation; p∗ corresponds

to f in Li’s notation, p(· | x)η corresponds to g in Li, and q(· | x)η corresponds to f∗. Our
argument is slightly more involved than Li’s since we allow conditioning on x; this also
accounts for the extra η log V term in the constant Cη. For convience, we provide a full
proof in the appendix.

Proof of Theorem 3 We fix a p̂ and λ̂ be such that supmix(p̆η) = mix(p̂η, p̆η, λ̂), i.e. p̂
and λ̂ achieve∗ the supremum in (7) applied with estimator p̆η.
Let λ̇ = arg minλ∈{0,1/n,2/n,...,1} − logmix(p̂η, p̆η, λ)(Znp ) be a discretized version of λ̂. We
have:

− log
p̆η(Znp )w2(p̆)

supmix(p̆η)(Znp ) ≤ − log
qη(Znp )

supmix(p̆η)(Znp ) − log
p̆η(Znp )w2(p̆)

qη(Znp )

≤ − log
qη(Znp )

mix(p̂η ,p̆η ,λ̇)(Znp )
+ V η + ηred(2/η, p̆),

(40)

where in the second inequality we used a simple first-order Taylor approximation, showing
that − logmix(p̂η, p̆η, λ̇)(Znp ) ≤ − logmix(p̂η, p̆η, λ̂)(Znp ) + V η (details omitted). We now
come to the crucial step: we will prove that WHP, we have

− log
qη(Znp )

mix(p̂η ,p̆η ,λ̇)(Znp )
≤ − logw2(p̆) + log(n+ 1) +K + u. (41)

This result follows by applying Proposition 8 to an extended model P ′ with a prior w′

defined, at sample size n, as follows: P ′ = {mix(pη0, p
η
1, λ) : pη0, p

η
1 ∈ P, λ ∈ [0, 1]}; and, for

λ ∈ Λ := {0, 1/n, . . . , 1}, w′(mix(pη0, p
η
1, λ)) := w(pη0) ·w(pη1)(n+ 1)−1. Thus, P ′ is the set of

all two-component mixtures of P(η); and w′ has its support on all two-component mixtures
with λ ∈ Λ, and puts mass 0 on all other mixtures. Note that w′ is indeed a prior, i.e.∑

p0,p1∈P,λ∈Λw
′(mix(pη0, p

η
1, λ)) ≤ 1. We now apply Proposition 8 in the form (24) with, for

all p′ ∈ P ′, tr(p′) := qη, and η in the proposition set to 1, and with the estimator that, for
data zn, chooses mix(p̂η, p̆η, λ̇). That is, we set
(P, p̆,Q,tr(·), w, η)← (P ′,mix(p̂η, p̆η, λ̇), {qη},tr(·), w′, 1). This gives (41), where we also
used (a), by definition, − logw′(mix(p̂η0, p̆

η
1, λ̇)) ≤ − logw(p̆)2 + log(n + 1); and (b): since

η ≤ ηcrit(u), we have that d∗1(qη‖pη) ≥ −u/n for both p = p̆ and p = p̂, which implies, from
the definition of d∗1, that d∗1(qη‖(1− λ)p̂η + λp̆η) ≥ −u/n for all λ ∈ [0, 1], in particular for
λ̇.
Combining (40) and (41), using the definition of conv-lack, it follows that, WHP,

conv-lack ≤ cηred(2/η, p̆) +
cη
η

(
− logw2(p̆) + log(n+ 1) +K + u+ V η

)
= cηred(4/η, p̆) +

cη
η (log(n+ 1) +K + u+ V η) .

Now with some relatively straightforward manipulations∗ we get that we get,WHP, red(4/η, p̆) ≤
3red(2/η, p̆) + 2K+2u+2 log 2

η , so that, using the log-Bonferroni Proposition 12 with J = 2,
the above becomes conv-lack ≤ 3cηred(2/η, p̆) +R, and the result follows.
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Proof of Lemma 5 A second-order Taylor expansion of
E∗(p(Zp)/q(Zp))

η = E∗(eη log p(Zp)/q(Zp)) around η = 0 shows that, for all η > 0, for some
0 ≤ η′ ≤ η, we have:

E∗
(
p(Zp)

q(Zp)

)η
= 1− ηE∗[− log p(Zp)/q(Zp)] +

1

2
η2E∗

(
p(Zp)

q(Zp)

)2η′ (
log

p(Zp)

q(Zp)

)2

≤

1− ηD∗ +
1

2
η2V 2ηD∗sq,

where we abbreviate D∗(q‖p) to D∗ and D∗sq(q, p) to D∗sq, and we replaced all factors in
the expectation in the second order by their maximum. From now on we repeatedly use
D∗(q‖p) ≥ 0 which holds because q is best-approximating, It is sufficient to show that the
right-hand side of this expression is bounded by 1+u/n if we plug in η ≤ ηcrit(u) as defined
above. Dividing the inequality by η and using assumption (E), it is thus sufficient if we can
show that

−D∗ + η(D∗)ν · b ≤ η−1(u/n) (42)

where we set b = A
2 V

2η. We may further assume (D∗)1−ν ≤ ηb, (43)

for if this does not hold, then −D∗ = −(D∗)ν(D∗)1−ν ≤ −(D∗)νηb and then (42) holds
trivially. Now first consider the case 0 < ν < 1. From (43) it follows that D∗ ≤ (ηb)1/(1−ν).
By (42), it is thus sufficient if we can show that η ·(ηb)ν/(1−ν)b ≤ η−1u/n. Solving for η gives

η2+ ν
1−ν ≤ u

nb
−1/(1−ν), which can be rewritten to η ≤ C, where C =

(
u
n

) 1−ν
2−ν b−1/(2−ν). Thus,

weakening the requirement, it is sufficient if η ≤ min{1/(2 log V ), C}. But if η ≤ 1/(2 log V ),

then b−1 ≥ 2/(eA), so it is also sufficient if η ≤ min
{

1
2 log V , B

(
u
n

) 1−ν
2−ν
}

. (20) now follows

for the case 0 < ν < 1. The limiting cases ν = 0 and ν = 1 can be handled similarly; we
omit details.

6. Discussion and Future Work

The great advances we made were already summarized on page 3; but currently, our work
also has at least two major restrictions : (a) V = V (P, P ∗) as in (5) must be bounded; and
(b) V occurs in the definition of conv-lack, so that it must be known in order to apply the
safe estimator. Neither restriction is problematic for classification models, as long we used
a fixed β in (2); both are problematic for e.g. standard regression models though. As to (a),
currently our results only hold for such models if P ∗ has bounded support. In future work,
we hope to replace the strong V <∞ condition with a weaker condition on moments of P ∗.
As to (b), we do have a version of all our results in which V is replaced by its empirical
counterpart V̄ = supi∈{1,...,n} supp,p′∈P p(Zip)/p

′(Zip), but with worse constants. We hope to
refine this in future work.

Another issue is that, even if known, V or V̄ , appearing in conv-lack, may be so large
as to make the approach useless in practice (even aside from computational issues, which,
in this preliminary study, we decided not to deal with at all). We should note though
that our current results hold for arbitrary priors w, in particular, priors with very heavy
tails. Most priors used in practice have lighter tails, i.e.

∑
p∈P w

ρ(p) <∞ for some ρ < 1.
For such priors, the theorems still hold for the prior w′ defined as w′(p) ∝ wρ(p) rather
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than the original w. As a result, the safe estimator p̆safe defined relative to w′ rather than
w will effectively choose simpler distributions (with higher w(p)) for the same data, but
all occurrences of V in our theorems can be replaced by V ρ, which can lead to a serious
improvement in the size of conv-lack. A related idea is to consider the β in predictor
models F as in (2) as an additional parameter, to be equipped with a prior and fitted to
the data. Since q and p̆ in Theorem 1 may then refer to different predictors with different
β’s, β will act as a ‘local’ learning rate whereas η, shared by all distributions, is a ‘global’
learning rate. Preliminary investigations suggest that this leads to better bounds in some
cases.
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Appendix A. Additional Proofs

1. Condition (B) can be made to hold by adding one or a few distributions to
P For example, in the classification case, it suffices to include the trivial distribution p0

into P, where, for all x ∈ X , p0(Y = 1 | X = x) = p0(Y = 0 | X = x) = 1/2, and assign it
some prior mass w0(p0) > 0. Then for all sequences zn, for all κ ≥ 1,

− logw(p̈κ) ≤ − logw(p̈1) ≤ − logw(p̈1)− log p̈1(znp )
≤ − logw0 − log p0(znp ) = − logw0 + n log 2 ≤ nLmax,

(44)

for suitably chosen Lmax. Clearly, this approach extends to all Z = X × Y with finite or
compact Y. If Y is not compact, then, by our assumption (D) that V (P, P ∗) < ∞, the
interval [a, b] with a = ess infZ∈Z,p∈P p(Zp) and b = ess supp∈P,Z∈Z p(Zp), is bounded. It then
suffices to include a density pa,b with prior w0 such that, for all x ∈ X , pa,b(Y = · | X = x)
is uniform on [a, b]. If the end points on the interval are not known, we can discretize
candidate end points to integers and put a prior v on these end points satisfying, for both
end points c ∈ {a, b}, − log v(c) ≈ 2 log min{|c|, 1} (Grünwald, 2007). We can define the
defective distribution p0(y | x) := maxa,b pa,b(y | x)v(a)v(b) and repeat the reasoning in
(44).

2. Equivalence of (4) and (12) We will only show that equivalence holds in the
idealized case in which the best-approximating q is actually a member of P. This should be
sufficient, since the goal of establishing equivalence is merely to give some intuition about
the meaning of (12) (that’s why we only put it in the appendix); the equivalence is not
needed in any of our results, whose proofs invariably rely on (12) rather than (4). Assume
then that D(p∗‖q) = infp∈P D(p∗‖p) and that q ∈ P. We only show equivalence for η = 1;
extension to other η is immediate. We first prove (4) ⇒ (12). If (4) holds, then for all
p ∈ P, D∗(q‖mix(q, p, λ)) has its minimum λ◦ (as defined above Lemma 9) at λ◦ = 0. It
then follows by Lemma 9 that d∗1(q‖p) = d∗1(q‖mix(q, p, 1)) ≥ 0, and we see that (12) holds.

We next prove (12)⇒ (4). Suppose that (12) holds for all p ∈ P. Without loss of
generality let P = {p1, p2, . . .}. Then for any p′ in the convex hull of P, say p′ =

∑∞
j=1 αjpj
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with all αj ≥ 0 and
∑
αj = 1, we have E∗(p′(Zp)/q(Zp)) =

∑∞
j=1 αjE

∗(pj(Zp)/q(Zp)) ≤ 1.
Thus E∗(p′(Zp)/q(Zp)) − 1 ≤ 0 and hence, by Proposition 10, part (1), the derivative of
the concave function D∗(mix(q, p′, λ)‖q) is ≤ 0 at λ = 0. This implies that D(p∗‖q) ≤
D(p∗‖mix(q, p′, λ)) for all λ > 0, in particular D(p∗‖q) ≤ D(p∗‖p′); this shows that (4)
holds.

3. Lemma 9 – proof of Proposition 10 Differentiation gives:

g′(γ) =
d

dγ
g(γ) = −E∗

(
p(Z)− p′(Z)

(1− γ)p(Z) + γp′(Z)

)
, in particular g′(0) = E∗

(
p′(Z)

p(Z)

)
− 1,

(45)
which shows the first part of 1. We now first show part 2(a) and (b). Note that

g′′(γ) = −E∗
(

p(Z)− p′(Z)

(1− γ)p(Z) + γp′(Z)

)2

.

For all γ ∈ [0, 1] and all Z, the denominator inside the expectation must be bounded from
below by p := ess infZ,p∈P p(Z) and from above by p := ess supZ,p∈P p(Z). We thus have,
for all γ ∈ [0, 1], 1/p2E∗(p′ − p)2 ≤ |g′′(γ)| ≤ 1/p2E∗(p′ − p)2. Now suppose first that
E∗(p′(Zp) − p(Zp))

2 = 0. Then p′(Zp) = p(Zp) almost surely, and g′(λ) = g′′(λ) = 0 on
[0, 1], almost surely, and part (2a) follows. If E∗(p′(Zp) − p(Zp))

2 > 0, then p′(Zp) 6= p(Zp)
with positive probability, and part (2b) immediately follows. Having now established that
g′′(λ) ≤ 0 on [0, 1], it follows by definition of λ◦ that g′(0) > 0 iff λ◦ > 0. And since we
assume D∗(p‖p′) ≥ 0, we have g(1) ≤ g(0), which implies that if λ◦ > 0, then g′(λ◦) = 0
and g′(1) ≤ 0.

4. Proof of Proposition 12 (log-Bonferroni) Let Xj := e−Yj and bj = e−aj . The
assumption implies that, for any collection {Kj}j∈J of positive real numbers, for all j ∈ J ,

P ∗
(
Xj ≥ bje−fj(Kj)

)
≥ 1− e−Kj ,

or equivalently,

P ∗
(
Xj < bje

−fj(Kj)
)
< e−Kj .

Now, for fixed K ≥ 0, define Kj = K − logwj . By the union bound, we have

P ∗ (A) <
∑
j∈J

e−K+logwj =
∑
j∈J

wje
−K .

where A is the event that for some j ∈ J , Xj < bje
−fj(K−logwj). This implies that for Ā,

the complement of A, we have

P ∗
(
Ā
)
≥ 1−

∑
j∈J

wje
−K .

The result now follows by noting that the event whose probability is bounded in the state-
ment of the proposition is just Ā.
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5. Proof of Proposition 15 (Barron and Li’s (1999) result) Define, for given η, p∗, p

and q, the affinity relative to x as Ax =
∫
y∈Y p

∗(y | x) ·
(
p(y|x)
q(y|x)

)η
and let

pnew(y | x) =
1

A(x)
p∗(y | x) ·

(
p(y | x)

q(y | x)

)η
.

Next, recall that the squared Hellinger distance, between densities p and q on Y, denoted
by us as H2(q, p), is defined as

H2(q, p) :=

∫
y
(
√
q(y)−

√
p(y))2 = 2

(
1−

∫
y

√
q(y)p(y)

)
.

Also recall that the ordinary (nongeneralized) Rényi divergence of order 1/2 is given by
d1/2(q, p) = −2 log

∫
y

√
q(y)p(y)dy. Now, for u ≥ 0, we have 1 − u ≤ − log u (this follows

from log(1 + z) ≥ z and substituting z = u − 1). This implies the following well-known
general relation between squared Hellinger distance and Rényi divergence:

H2(q, p) ≤ d1/2(q‖p). (46)

Moreover (Barron and Cover, 1991), when the ratio between p and q is bounded, then the
standard (nongeneralized) KL divergence is upper-bounded by a multiple of the squared
Hellinger distance. Yang and Barron (1999) proved the following precise relation:

D(q‖p) ≤ (2 + log V )H2(q, p). (47)

We will now use (46) and (47) to prove our result. We first need to clarify notation: for

given x, the generalized Rényi divergence between p and q, given x is denoted as d
∗|x
η (q(· |

x)‖p(· | x)) and defined as

d∗|xη (q(· | x)‖p(· | x)) = −1

η
logE∗

[(
p(Y | x)

q(Y | x)

)η
| X = x

]
.

We have for all Cη ≥ 2 + 2η log V , for each x ∈ X , each η ≤ 1,

E∗
[
− log p(Y |x)

q(Y |x) | X = x
]

= 1
η · E

∗
[
log p∗(Y | x)− log

(
p∗(Y | x)

(
q(Y |x)
p(Y |x)

)η)
| X = x

]
+ 1
η (logAx − logAx)

= 1
ηD(p∗(·|x)‖pnew(·|x))− 1

η logAx
≤ 1

ηCηH
2(p∗(·|x), pnew(·|x))− 1

η logAx
≤ 1

ηCηd1/2(p∗(·|x), pnew(·|x))− 1
η logAx

= Cη

(
d
∗|x
η/2(q(·|x)‖p(·|x)) + 1

η logAx

)
− 1

η logAx

= Cηd
∗|x
η/2(q(·|x)‖p(·|x)) + 1

η (Cη − 1) logAx.

Here the first two equalities are just rewriting. In the first inequality we used (47), the fact
that P ∗-almost surely, supX,Y p

new(Y |X)/p∗(Y |X) ≤ V 2η, and the fact that D(·‖·) ≥ 0,
and the second inequality is just (46). In the fifth line we used some basic rewriting. Using
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the notation E∗X to denote expectation of X under P ∗X , the marginal distribution of X, we
thus get:

D∗(q‖p) ≤ CηE
∗
X [d
∗|X
η/2 (q(· | X)‖p(· | X))] + (Cη − 1)

1

η
E∗X [logAX ]

≤ Cηd
∗
2/η(q‖p) + (Cη − 1)

1

η
logE∗X [AX ]

= Cηd
∗
η/2(q‖p)− (Cη − 1)d∗η(q‖p).

where the second inequality is Jensen’s and the final equality is just the definition of Rényi
divergence.
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