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Abstract

In sequential prediction with log-loss as well as density estimation with risk measured by
KL divergence, one is often interested in the expected instantaneous loss, or, equivalently,
the individual risk at a given fixed sample size n. For Bayesian prediction and estimation
methods, it is often easy to obtain bounds on the cumulative risk. Such results are based on
bounding the individual sequence regret, a technique that is very well known in the COLT
community. Motivated by the easiness of proofs for the cumulative risk, our open problem
is to use the results on cumulative risk to prove corresponding individual-risk bounds.

Background We consider sequential prediction (online learning) with log-loss
(Cesa-Bianchi and Lugosi, 2006). In each iteration n = 1, 2, . . ., after observing a sequence
of past outcomes xn = x1, x2, . . . , xn ∈ X n, a prediction strategy assigns a probability
distribution on X , denoted P̂ ( · | xn). Then, a next outcome xn+1 is revealed and the
strategy incurs the log loss − log P̂ (xn+1 | xn). The goal of the prediction strategy is to
be not much worse than the best in a reference set of distributions (also called “experts”),
which we call the model M.

In online learning, the performance of a prediction strategy is usually measured by the
regret, which is the difference between the accumulated loss of the prediction strategy and
the best distribution in the model. The goal is then to minimize the regret in the worst
case over all possible data sequences. This problem is relatively well-explored as it has been
investigated in such fields as statistics, information theory, finance and machine learning.
For example, it is known that: (1) when the model is finite (contains a finite number of
distributions, say N), it is possible to obtain a constant bound logN on the regret, (2)
when the model is infinite, but parametric (e.g. exponential families), a bound of the form
k
2 log n+O(1) is usually possible, where k is the number of parameters (Grünwald, 2007).

In statistics, more focus is traditionally put on the instantaneous rather than cumulative
losses of the prediction strategy: one wants the loss when predicting xn to be small for fixed
n, and to go to 0 at a fast rate as n increases. Since it is not possible to meaningfully
bound instantaneous loss for adversarial data, one assumes that the data are sampled form
a distribution P ∗. Then, it is reasonable to define the individual risk or instantaneous
redundancy in the n-th iteration as the difference between the expected loss of the prediction
strategy and the expected loss of the best (w.r.t. P ∗) distribution in the model:

RISKn(P̂ , P ∗) = EP ∗ [− log P̂ (Xn+1|Xn)]− inf
P∈M

{EP ∗ [− logP (Xn+1 | Xn)]}
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(note that we use capitals to denote both distributions and their densities/mass functions).
Although our questions can be phrased more generally, for simplicity we will assume that
data are i.i.d. and that P ∗ ∈M. Then the infimum in the above is attained by P ∗ and the
expression simplifies to:

RISKn(P̂ , P ∗) = EXn+1∼P ∗ [− log P̂ (Xn+1|Xn)]− EX∼P ∗ [− logP ∗(X)]

The aforementioned results about regret immediately imply results about cumulative risk.
For example, for k- parameter exponential families, Bayesian, ML (maximum likelihood
prediction), NML (normalized maximum likelihood (“Shtarkov”)) and several other well-
known strategies achieve cumulative risk

∑n
i=1RISKi(P̂ , P

∗) = (k/2) log n + O(1). In
general, especially for Bayesian strategies, it is easy to obtain bounds on the cumulative
risk. For example, if M is countable and P̂ is the Bayesian predictive distribution based
on prior W such that W (P ∗) > 0, then one has that

n∑
i=1

RISKi(P̂ , P
∗) ≤ − logW (P ∗).

The proof is completely straightforward using an individual-sequence regret argument
(Grünwald, 2007, Chapter 6). The question we ask is what can be said about the individual
risk of a prediction strategy P̂ , given the performance in terms of such cumulative risk. In
particular, let P̂ be defined as a Bayesian predictive distribution. We ask:

Our Questions

1. When the model is a k-parameter exponential family, is a bound of the form k
2n +

O(1/n2) possible?

2. When the model is countably infinite, is it possible to obtain a bound on the individual
risk of the form − logW (P ∗)

nγ for some γ > 0 (preferrably γ ≥ 1)?

Known results.

1. Cesaro As noted by e.g. Barron (1998); Yang (2000) (see also Catoni (1997)) it is
possible to establish a relationship between the cumulative risk of a prediction strategy and
the individual risk of a modified strategy using the notion of Cesaro averaging. Let P̂ be
any prediction strategy and define: P̂Cesaro(xn+1|xn) = 1

n

∑n
i=1 P̂ (xi+1|xi). It turns out

that RISKn(P̂Cesaro, P
∗) ≤ 1

n

∑n
i=1RISKi(P̂ , P

∗). Unfortunately, this statement does not

say anything about the individual risk of the original strategy P̂ , only about its Cesaro
average P̂Cesaro. In practice, the Cesaro average will often perform worse than the original
P̂ : Cesaro averaging is good to prove things, not to improve things. Moreover, in question
1 above the Cesaro-strategy, when applied to Bayesian strategies, gives a rate bounded by
n−1(k/2) log n, which is suboptimal by a factor of log n: it is known that, e.g. with the ML
estimator, an individual risk of O(1/n) is achieveable.
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2. Follow the Leader So far, the only case for which individual risk results are relatively
well-studied seems to be the maximum likelihood (also known as “follow the leader”) strat-
egy for exponential families. Grünwald and de Rooij (2005) proved that for one-parameter
exponential family, when the data are generated i.i.d. by a distribution P ∗, possibly outside
M, then the individual risk of the maximum likelihood decreases as:

RISKn(P̂ , P ∗) =
1

2n
var(P ∗) · I(P̄ ) +O(1/n2), (1)

where var(P ∗) is a variance of P ∗, I is a Fisher information, while P̄ is the element in
M closest to P ∗ in terms of KL-divergence D(P ∗‖P ). In particular, if P ∗ ∈ M, then
P ∗ = P̄ and var(P ∗) = I−1(P ∗), so that the bound takes the form 1

2n + O(1/n2), which
is the optimal rate for a one-dimensional exponential family. Forster and Warmuth (2002)
considered maximum likelihood for k-dimensional exponential families and managed to
prove the bound of the form:

RISKn(P̂ , P ∗) ≤ 1

2(n− 1)
tr{cov(P ∗)} · sup

P∈M
‖I(P )‖, (2)

where cov(P ∗) is the covariance matrix for P ∗. The bounds (1) and (2) are very similar,
but essentially incomparable. The latter is a true bound, which holds for all n and any
exponential family, but the constant in front of O( 1

n) is not optimal. The former is an
asymptotic expansion of the individual risk with the optimal constant in front of O( 1

n).
Both results concern only a particular prediction strategy (ML), which is known to be
suboptimal when P ∗ /∈ M, and cannot be easily extended to say anything about any
asymptotically optimal strategy, such as Bayes.

3. 2-part MDL If P̂ (Xn+1 | Xn) is taken to be the 2-part MDL estimator achieving
minP∈M− logW (P ) − logP (Xn), then one can use a result due to Barron, Cover, Li and
Zhang to get a bound on the squared Hellinger distance between P̂ and P ∗. If all distri-
butions inM have uniformly bounded density ratios, i.e. supx∈X ,P,Q∈M P (X)/Q(X) <∞,
then this translates into a bound on the instantaneous risk. With the original bound
(see (Grünwald, 2007, Chapter 15) for a simple statement and proof), one gets a bound
O(− logW (P ∗)(log n)/n) on the individual risk for the two-part MDL prediction strategy.
This can be refined (Zhang, 2006) to get O(− logW (P ∗)/n). Strangely, if P̂ is set to be a
Bayesian predictive distribution (which usually works better in practice), then nothing is
known about the individual risk.

4. Decreasing risk!? Let a1, a2, . . . be any sequence of number such that
∑n

i=1 an ≤
C log n. It can be easily shown (Grünwald, 2007) that such a sequence does not necessarily
converge to 0. Bounding

∑n
i=1 an ≤ C does imply that an converges to 0, but it can

converge at arbitrarily slow rate. However, if we additionally assume that the sequence an
is non-increasing, we immediately get optimal-rate bounds an ≤ C

n in the first question.
Thus, one strategy to address our questions for a given model M would be to first show
that individual risks of P̂ are monotonically decreasing. It is known that e.g. if M is the
Gaussian location family, then the risk of the ML predictions is strictly decreasing; on the
other hand in some cases the risk of the Bayesian strategy can slightly increase at some n.
Consider e.g. the Bernoulli model with a uniform prior, and assume the data is a sequence
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of independent fair coin flips, i.e. they are i.i.d. Bernoulli 1/2. In that case the risk at
sample size 1 is 0, because the Bayesian predictive distribution based on the uniform prior
and no data is P (X1 = 1) = 1/2. At sample size 2, the Bayesian predictive distribution is
P (X2 = 1 | X1 = x) which is either 2/3 (if x = 1) or 1/3 (if x = 0). In both cases, the risk
increases Barron (1998); Grünwald (2007). So increasing risk is possible. Still, no examples
are known of substantially increasing risk at large n. Thus, maybe one might prove that
some tight enough upper bound on the risk is still decreasing...
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