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Abstract

Concept classes can canonically be represented by sign-matrices, i.e., by matrices with
entries 1 and −1. The question whether a sign-matrix (concept class) A can be learned
by a machine that performs large margin classification is closely related to the “margin
complexity” associated with A. We consider several variants of margin complexity, reveal
how they are related to each other, and we reveal how they are related to other notions of
learning-theoretic relevance like SQ-dimension, CSQ-dimension, and the Forster bound.

1. Introduction

Large margin classifiers implicitly use a feature map that transforms linearly inseparable
data into feature vectors that can be linearly separated in feature space so as to achieve a
(hopefully) large margin, which then leads to a small generalization error. Concept classes C
over a domain X that can potentially be learned by large margin classifiers must therefore
admit a linear arrangement consisting of hyperplanes and points (with the hyperplanes
representing the concepts from C and the points representing the instances from X ) such
that positive (resp. negative) examples appear as points lying in a positive (resp. negative)
halfspace and having a certain “safety distance” to the corresponding separating hyperplane.
In practice, a large “hard” margin cannot often be achieved so that softer notions of a margin
come into play. Soft margins can be achieved by arrangements which occasionally put points
close to the separating hyperplane (small margin) or, may be, even in the wrong half-space
(negative margin). But one would still insist on something like a large “average margin”.
This will (roughly) be captured by our notion of average margin complexity.

In this paper, we deal with sign-matrices (which represent finite concept classes: every
column is a Boolean function and the rows correspond to the instances), and we study
various notions of (average) margin complexity, where “high (average) margin complexity”
means that even the best arrangement achieves a small (average) margin only. Sign-matrices
with high average margin complexity represent concept classes that cannot be successfully
learned by large margin classifiers (thereby indicating the limitations of this approach). In
a seminal paper, Forster (2002) presented a lower bound on the margin complexity (and on
the dimension complexity which, however, is not considered in this paper) of a sign-matrix
in terms of its spectral norm. Loosely speaking, the Forster bound measures the “amount of
orthogonality” that is contained in A. It achieves its maximal value for Hadamard matrices.
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In this paper, we generalize the Forster bound by imposing probability distributions on the
rows and the columns of A. In case of uniform distributions, the generalized bound collapses
to the original-one. It is easy to construct matrices for which the original bound evaluates to
a small number but, when the probability distributions are chosen properly, the generalized
bound becomes large.

The SQ model of learning was introduced by Kearns (1998). It is an elegant abstraction
from the PAC learning model of Valiant (1984). In this model, instead of having direct
access to random examples (as in the PAC learning model) the learner obtains information
about random examples via an oracle that provides estimates of various statistics about
the unknown concept. Kearns showed that any learning algorithm that is successful in
the SQ model can be converted, without much loss of efficiency, into a learning algorithm
that is successful in the PAC learning model despite noise uniformly applied to the class
labels of the examples. Furthermore, almost all concept classes known to be efficiently
learnable in the PAC learning model can efficiently be learned in the SQ model too. This is
why the SQ model attracted a lot of attention in the Computational Learning Community.
“Correlational Statistical Queries” are statistical queries of a special form and lead in the
obvious way to the CSQ model of learning. As shown by Bshouty and Feldman (2002),
the two models coincide in case of a fixed distribution, but, as shown by Feldman (2008),
the SQ model is exponentially more powerful in the distribution-independent setting. Blum
et al. (2003) have shown that the number of statistical queries needed for weak SQ-learning
under a fixed distribution is polynomially related to the SQ-dimension (defined w.r.t. the
same distribution). Feldman (2008) has defined the CSQ-dimension and has shown that
it plays a similar role for distribution-independent weak learning in the CSQ model. In
the same paper, he shows furthermore that CSQ-learnability is equivalent to evolvability
(a framework introduced by Valiant (2009) and designed so as to catch the computational
aspects of evolution).

In this paper, we will be concerned with the relations that hold between the various
notions of margin complexity on one hand and parameters like SQ-dimension or CSQ-
dimension on the other hand. The main results are as follows:1

• By means of semi-definite programming duality, we show in Section 3 that the optimal
margin (the smallest distance between one of the points and one of the hyperplanes in a
margin-optimal arrangement) coincides with the optimal average margin (the average
distance between points and hyperplanes in an optimal arrangement) provided that
the underlying distribution (according to which the average is taken) is chosen in a
worst-case fashion. More formally:

mc(A) = max
Y

mcY (A)

• In Section 3.1, we complement the well-known lower bound
√
mn/|||A|||2 on the average

margin complexity (w.r.t. uniform distributions on the rows and the columns of A)
by the upper bound mn/|||A|||tr. More formally:

√
mn

|||A|||2
≤ mc(A) ≤ mn

|||A|||tr
1. The formal definitions needed for a precise understanding of the following statements are given in Sec-

tion 2.
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• In Section 3.2, we identify two families of matrices whose average margin complex-
ity (w.r.t. uniform distributions on the rows and the columns) is determined exactly:
Hadamard matrices and matrices composed of all reflections of a single Boolean func-
tion.

• In Sections 4, 5, and 6, we determine relations between the various notions of margin
complexity, the various versions of the Forster bound, the SQ-dimension and the
CSQ-dimension. Here is a quick overview over our results:

– Let p, q denote vectors assigning probabilities to the rows and the columns of a
matrix A, respectively. We show that the SQ-dimension w.r.t. p of a sign-matrix
A is polynomially related to the generalized Forster bound and also polynomially
related to the average margin complexity of A according to

SQdimp(A) < 2·max
q

FBp,q(A)2 ≤ 2·max
q

mcp,q(A)2 < 2·SQdimp(A)·(SQdimp(A)+1)2 .

– We reveal the following polynomial relationship between the CSQ-dimension of
a matrix A ∈ Rm×n and the margin complexity of A:

mc(A) ≤ CSQdim(A)1.5 and CSQdim(A) ≤
⌈
32 ln(4mn) ·mc(A)2

⌉
– We show that

SQdim(AT ) < 2 · SQdim(A) · (SQdim(A) + 1)2 .

This improves on SQdim(A>) ≤ 32 · SQdim(A)4, a result that had been shown
before by Sherstov (2008).

– We show that the generalized Forster bound is, up to a polynomial, not more
effective than simply applying the classical bound to a properly chosen sub-
matrix A′′ of A. More formally:

max
A′′

FB(A′′) ≤ max
p,q

FBp,q(A) < 64 · (1 + o(1)) ·max
A′′

FB(A′′)9

Although we are mainly interested in the study of sign-matrices, most of our notions and
results deal with real-valued matrices because we do not want to impose unnecessary re-
strictions. A notable exception are the results in Section 5 which hold for sign-matrices
only.

2. Definitions, Notations, and Facts

In this section, we provide the reader with the definitions and facts which will play a central
role in the course of this paper.
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Vectors, Matrices, and Norms: The all-ones vector in a finite-dimensional Euclidean
space is simply denoted 1. The vector with value 1 in component k and zeros elsewhere
is denoted ek. The (d × d) identity matrix is denoted by Id or simply by I. Whenever
the notation hides the dimension, say d, of the underlying Euclidean space, then d will
be clear from context. The Hadamard product of two matrices A,B yields the matrix
A ◦ B = (ai,jbi,j), i.e., the matrices are multiplied entrywise. With diag(p) we denote the
diagonal matrix build up from a vector p (i.e. the components of p are on the main diagonal
and the remaining is zero). The trace norm of A ∈ Rm×n, denoted |||A|||tr, is defined as the
sum of all singular values of A. Let ‖ · ‖ denote a vector norm. The notation ‖A‖ is
understood as the norm of the mn-dimensional vector that results by concatenating the n
m-dimensional columns of A so as to form a single mn-dimensional vector. For example,
the Euclidean norm applied to a matrix yields

‖A‖2 =

√∑
i,j

A2
i,j ,

and this is sometimes called the Frobenius norm of A. The operator norm associated with
‖ · ‖ is given by

|||A||| = max
‖v‖=1

‖Av‖ = max
‖v‖≤1

‖Av‖ .

For example, the operator norm associated with the Euclidean norm is given by

|||A|||2 = max
‖v‖2=1

‖Av‖2 = max
‖v‖2≤1

‖Av‖2 ,

and this is sometimes called the spectral norm of A. We remind the reader to the following
facts:

|||A|||2 = |||A>|||2 , |||AA>|||2 = |||A>A|||2 = |||A|||22 , |||A|||2 ≤ ‖A‖2
|||A|||2 = max

‖u‖2=‖v‖2=1
u>Av = max

‖u‖2,‖v‖2≤1
u>Av (1)

By viewing matrices as vectors, we may consider the inner product of two matrices. An inner
product without further specification refers to the standard scalar product. For example,
〈A,B〉 =

∑
i,j Ai,jBi,j . The dual of a norm ‖ · ‖ is given by

‖u‖∗ = max
‖v‖≤1

〈u, v〉 .

For example, L∞ is the dual of L1, and the trace norm is the dual of the spectral norm. It is
well known that ‖·‖∗∗ = ‖·‖, i.e., twofold dualization gives the original norm. Furthermore,
for two norms ‖ · ‖1, ‖ · ‖2 and every c > 0, we have

‖ · ‖1 ≤ c · ‖ · ‖2 ⇔ ‖ · ‖∗1 ≥
‖ · ‖∗2
c

.
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SQ- and CSQ-Dimension: Let p be a probability vector, i.e., p has non-negative com-
ponents that sum up to 1. Consider the inner product

〈x, y〉p :=
∑
i

pixiyi .

A collection of vectors u1, . . . , ud is said to be almost p-orthogonal if

∀k 6= l ∈ {1, . . . , d} : | 〈uk, ul〉p | ≤
1

d
.

The SQ-dimension of a matrix A ∈ Rm×n w.r.t. p is given by

SQdimp(A) = max{d ∈ {1, . . . , n} : there exist d almost p-orthogonal column vectors in A} .

The SQ-dimension of A is given by

SQdim(A) = max
p

SQdimp(A) .

A collection of (not necessarily different) vectors h1, . . . , hd ∈ [−1, 1]m is said to be univer-
sally correlated with A ∈ Rm×n if, for every m-dimensional probability vector p and every
j ∈ {1, . . . , n}, there exists k ∈ {1, . . . , d} such that | 〈hk, Aj〉p | ≥ 1/d. The CSQ-dimension
of A is given by

CSQdim(A) = min{d : there exists a collection of d vectors that is universally correlated with A} .

Margin Complexity: A d-dimensional (homogeneous linear) arrangement for a matrix
A ∈ Rm×n is given by vectors

u1, . . . , un; v1, . . . , vm ∈ Rd

whose Euclidean norm is bounded by 1. With an arrangement A = (u1, . . . , un; v1, . . . , vm)
for matrix A, we associate the margin parameters

γi,j(A|A) = 〈ui, vj〉 ·Ai,j .

The margin complexity of A is given by

mc(A) =

(
max
A

min
i,j

γi,j(A|A)

)−1
.

It is easy to see that, for every matrix A without zero-entries (the matrices we are mainly
interested in), there is always an arrangement that makes all margin parameters strictly
positive, which implies that the margin complexity of A is strictly positive and finite. As
outlined already by Linial et al. (2007) and Lee and Shraibman (2009), the so-called γ2-
norm and its dual, γ∗2 , are related to margin complexity as follows. Let r(M) denote the
largest Euclidean norm of a row of the matrix M . With this notation γ2 and γ∗2 , satisfy the
following equations (which, for the purpose of this paper, may also serve as a definition of
these norms):

γ2(A) = min
A=XY >

r(X)r(Y ) and γ∗2(A) = max
A

∑
i,j

γi,j(A|A) (2)
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Thus, γ∗2(A) is basically the largest “total margin” that can be achieved by an arrangement
for A.2 Let Y = (yi,j) be an (m × n)-dimensional matrix with non-negative entries that
sum up to 1. The Y -average margin complexity of A is given by

mcY (A) = (γ∗2(Y ◦A))−1 .

In the special case where yi,j = piqj for two probability vectors p, q (so that Y = p · q>), we
introduce the notations

mcp,q(A) := mcpq>(A) , mcp(A) := mcp,1/n(A) , mc(A) := mc1/m,1/n(A)

so that

mc(A) =

(
1

mn
· γ∗2(A)

)−1
=

mn

γ∗2(A)
. (3)

Note that vector 1/n (resp. 1/m) makes the columns (resp. rows) of A uniformly distributed.
Considering the “smallest p-average margin” leads to the following definition:

mcp,MIN (A) =

(
max
A

min
j

∑
i

piγi,j(A|A)

)−1
.

The various margin complexities are obviously related as follows:

mc(A) ≤ max
p

mcp(A) ≤ max
p,q

mcp,q(A) ≤ max
Y

mcY (A) ≤ mc(A)

max
q

mcp,q(A) ≤ mcp,MIN (A)

We will argue later that maxY mcY (A) = mc(A) and maxq mcp,q(A) = mcp,MIN (A), but
for the remaining inequalities the gap between the smaller and larger parameter can be
exponentially large.

Some Variants of the Forster bound: It was shown by Forster and Simon (2006) that,
for every A ∈ Rm×n,

mc(A) ≥
√
mn

|||A|||2
. (4)

As for probability vectors p, q, we introduce the following notational convention: P and Q
are defined as the diagonal matrices containing the components of p and q , respectively.
That is P := diag(p) and Q := diag(q). But keep in mind that this convention is not
applied to letters different from P and Q. Let A be a real-valued matrix with m rows and
n columns. Consider the following variant of the Forster bound:

FBp,q(A) =
1

|||P 1/2AQ1/2|||2

For q = 1/n, we simply write FBp(A) instead of FBp,1/n. For this choice of q, Q = 1
nIn and

we obtain

FBp(A) =

√
n

|||P 1/2A|||2
.

2. Note that the arrangement that maximizes the total margin may have some negative individual margin
parameters.
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Similarly, if p = 1/m, we simply write FB(A) instead of FBp(A). For this choice of p,
P = 1

mIm and we obtain

FB(A) =

√
mn

|||A|||2
,

which is the “classical” Forster bound in (4). Here, and in what follows, we use the notation
A′ to indicate a sub-matrix of A that is formed by a subset of the columns of A. Let
n(A′) ≤ n denote the number of columns in A′. Note that

max
A′

FBp(A
′) ≤ max

q
FBp,q(A)

because FBp,q collapses to FBp(A
′) when the components of q are either 0 or 1/n(A′), and

the non-zero components are in one-to-one correspondence to the columns of A that are
used to build A′.

Semidefinite Programming (SDP): We write A � B iff A−B is a symmetric positive
semi-definite matrix. The following definitions and facts about semi-definite programming
are taken from Alizadeh (1995). A standard primal SDP is an optimization problem of the
following form:

min
X
〈C,X〉 s.t. ∀ρ = 1, . . . , r : 〈Aρ, X〉 = bρ , X � 0 (5)

Here, the matrices C,Ai are assumed to be symmetric. As in Linear Programming there
is a duality theory for SDPs. The variables for the dual are denoted y1, . . . , yr (one dual
variable per equality-constraint in the primal). We say that the equality-constraints of the
primal induce the matrix

∑r
ρ=1 yρAρ. The dual of (5) looks as follows:

max
y
〈b, y〉 s.t. C −

r∑
ρ=1

yρAρ � 0

If the optimal values of the primal and dual are equal, we achieve “strong duality”. Among
the well-known sufficient conditions for strong duality is the following-one (where “SCQ”
means “Slater’s Constraint Qualification”).

SCQ: There exists y such that
∑r

ρ=1 yρAρ is (strictly) positive definite.

Note that non-negativity constraints for individual variables wi can be expressed within a

constraint of the formX � 0 because the matrixX could be of the form

[
X ′ 0
0 diag(w1, . . . , ws)

]
.

We may therefore liberalize our definition of a standard primal SDP and allow constraints
of the form wi ≥ 0.

3. Margin Maximization and its Dual

The fact that the optimal margin can be computed in polynomial time using semi-definite
programming (SDP) had been observed first by Linial et al. (2007). In this section, we make
use of this observation and express several variants of margin optimization as instances of
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SDP. Throughout this section, A,M are (m×n)-matrices, X is an (m+n)×(m+n)-matrix
containing variables of the primal SDP, index i ranges from 1 to m, index j ranges from 1
to n, and index k ranges from 1 to m+ n.

We call into mind the fact that a semi-definite matrix X can be written in the form
X = W> ·W (e.g., Cholesky-decomposition). If X has m+n rows and columns, respectively,
then W has, say, d rows and m + n columns. Let W = [U V ] be the decomposition of W
with U containing the first m columns. Then,

W> ·W = [U V ]> · [U, V ] =

[
U>U U>V

(U>V )> V >V

]
.

Imposing constraints like Xi,i = 〈Ui, Ui〉 = 1, Xm+j,m+j = 〈Vj , Vj〉 = 1, we can view X as
a representation of an arrangement A given by the columns of U and the columns of V .
Note that γi,j(A|A) = Ai,j 〈Ui, Vj〉 = Ai,jXi,m+j . This is why many variants of margin-
maximization problems can be expressed as instances of SDP. The following results are
applications of strong SDP-duality.

Theorem 1 For every A ∈ Rm×n: mc(A) = maxY mcY (A).

Proof We will prove the equivalent statement

max
A

min
i,j

γi,j(A|A) = min
Y

γ∗2(Y ◦A)
(2)
= min

Y
max
A

∑
i,j

γi,j(Y ◦A|A) . (6)

Finding an arrangement A for M = Y ◦A that maximizes
∑

i,j γi,j(M |A) can be expressed
as a standard SDP-problem (with optimal value γ∗2(Y ◦A)) as follows:

min
X
−1

2
·
∑
i,j

Mi,j(Xi,m+j +Xm+j,i) s.t. ∀k : Xk,k = 1 and X � 0 (7)

There are m+n equality constraints, which leads to dual variables y1, . . . , ym+n. The matrix
induced by the equality-constraints equals diag(y1, . . . , ym+n). Obviously, condition SCQ is
satisfied so that we have strong duality. The cost matrix of the primal is given by

C =
1

2
·
[

0 −M
−M> 0

]
Thus, the dual problem (with variables −yk/2 substituted for yk and Y ◦A substituted for
M) looks as follows:

min
y

1

2
·
∑
k

yk s.t.

[
diag(y1, . . . , ym) −(Y ◦A)
−(Y ◦A)> diag(ym+1, . . . , ym+n)

]
︸ ︷︷ ︸

=:S

� 0 (8)

Finding an arrangement A for A that maximizes mini,j γi,j(A|A) can be expressed as a
standard SDP-problem (with slack variables si,j) as follows:

min
X,µ,s

−µ s.t. ∀k : Xk,k = 1 , ∀i, j : Ai,j(Xi,m+j+Xm+j,i)−si,j = 2µ , X � 0 , si,j ≥ 0 , µ ≥ 0
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The (m+ n+mn+ 1)× (m+ n+mn+ 1)-matrix of primal variables is then given by X 0 0
0 diag(s1,1, . . . , sm,n) 0
0 0 µ

 .

The dual variables are denoted yk and yi,j . Setting Y = (yi,j), the matrix induced by the
equality-constraints equals

diag(y1, . . . , ym) Y ◦A 0 0
(Y ◦A)> diag(ym+1, . . . , ym+n) 0 0

0 0 −diag(y1,1, . . . , ym,n) 0
0 0 0 −2

∑
i,j yi,j

 .

It is easy to see that condition SCQ is satisfied: one may assign value −1 to every variable
yi,j and a sufficiently large value to every variable yk so that all eigenvalues must be strictly
positive according to the Geršgorin Disc Theorem. Thus, we have strong duality. The dual
problem (with variables −yk/2 substituted for yk and yi,j/2 substituted for yi,j) looks as
follows:3

min
Y,y

1

2

∑
k

yk s.t.
∑
i,j

yi,j = 1 , yi,j ≥ 0 ,

[
diag(y1, . . . , ym) −(Y ◦A)
−(Y ◦A)> diag(ym+1, . . . , ym+n

]
� 0

(9)
By strong duality, (9) equals maxAmini,j γi,j(A|A), and (8) equals γ∗2(Y ◦A). A comparison
of (9) with (8) shows that (6) holds.

One can show that any arrangement of arbitrary dimension can be transformed (by
virtue of Cholesky decomposition) into another arrangement of dimension at most m+n+
mn + 1 that achieves the same values for the respective margin parameters. Combined
with a straightforward compactness and continuity argument this shows that there exists a
maximizer A∗ for mini,j γi,j(A|A), and there exists a minimizer Y ∗ for γ∗2(Y ◦A). According
to (6), both problems have the same optimal value, say γ∗, i.e.,

γ∗ := min
i,j

γi,j(A|A∗) = γ∗2(Y ∗ ◦A) .

The following set K(A) represents the “hard part” of the matrix A ∈ Rm×n (thereby playing
a similar role as support vectors in SVM optimization problems):

K(A|A∗) := {(i, j) : γi,j(A|A) = γ∗} and K(A) :=
⋂
A∗
K(A|A∗)

In the definition of K(A), A∗ ranges over all maximizers for mini,j γi,j(A|A). We say that
Y is centered on K ⊆ {1, . . . ,m} × {1, . . . , n} if yi,j = 0 for all (i, j) /∈ K. With these
notations, the following holds:

3. The constraint C −
∑
ρ yρAρ � 0 forces the yi,j to be non-negative and to satisfy

∑
i,j yi,j − 1 ≥ 0, but

it is obvious that, for an optimal assignment to the variables yi,j , their values will sum up to 1 exactly.
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Corollary 2 1. Every minimizer Y ∗ for γ∗2(Y ◦A) is centered on K(A).

2. maxAmini,j γi,j(A|A) = maxAmin(i,j)∈K(A) γi,j(A|A).

Proof

1. The claim is proved indirectly. Consider a matrix Y such that, for some (i′, j′) /∈ K(A),
yi′,j′ > 0. According to the definition of K(A), there must exist a maximizer A∗ for
mini,j γi,j(A|A) such that (i′, j′) /∈ K(A|A∗). This implies that A∗ achieves a Y -
average margin strictly greater than γ∗. Thus, Y is not a minimizer for γ∗2(Y ◦A).

2. Let Y ′ range over all Y that are centered on K(A). A straightforward modification
of the proof of (6) shows that

max
A

min
(i,j)∈K(A)

γi,j(A|A) = min
Y ′

γ∗2(Y ′ ◦A) (10)

Thus it suffices to show that

min
Y

γ∗2(Y ◦A) = min
Y ′

γ∗2(Y ′ ◦A) .

But this is evident from the first part of the corollary.

The proof of the following result is similar to the proof of Theorem 1. It is found in
Section A.

Theorem 3 For every A ∈ Rm×n and every probability vector p: mcp,MIN (A) = maxq mcp,q(A).

3.1. Bounds on Average Margin Complexity

We make use of the inequalities

|||M |||tr ≤ γ∗2(M) ≤
√
mn · |||M |||2 . (11)

Because of (3), the second inequality is equivalent to (4), and it can also be found in (Linial
et al., 2007). The first inequality is probably known as well but, since we are not aware of a
proper reference, we will now provide the reader with a short proof for sake of completeness.
Since the spectral norm is the dual of the trace norm, it suffices to show that

γ2(M) ≤ |||M |||2 .

We denote the rank of M by r, and we make use of the singular value decomposition

M = U · diag(σ1, . . . , σr) · V > = (U · diag(
√
σ1, . . . ,

√
σr)︸ ︷︷ ︸

=:X

·(V · diag(
√
σ1, . . . ,

√
σr)︸ ︷︷ ︸

=:Y

> . (12)

Here, U is an (m × r)-matrix whose columns U1, . . . , Ur have unit norm and are pairwise
orthogonal. Likewise, V is an (n× r)-matrix whose columns V1, . . . , Vr have unit norm and
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are pairwise orthogonal. σ1 ≥ σ2 ≥ · · · ≥ σr > 0 are the singular values of M . As a matter
of fact, |||M |||2 = σ1. Now obviously

γ2(M)
(2)

≤ r(X) · r(Y ) ≤
√
σ1 ·
√
σ1 = |||M |||2

which concludes the verification of (11). Because of (3), (11) is equivalent to

√
mn

|||M |||2
≤ mc(M) ≤ mn

|||M |||tr
. (13)

3.2. Exact Determination of Average Margin Complexity

In general, the bounds (11) and (13) leave a gap. In this section, we consider families of
matrices whose average margin complexity can be determined exactly: Hadamard matrices
and matrices composed of all reflections of a single Boolean function.

By definition, a Hadamard matrix H of order n is a sign-matrix that satisfies H ·H> = n ·I.

Corollary 4 Let H be a Hadamard matrix of order n. Then, mc(H) =
√
n.

Proof A Hadamard matrix H of order n satisfies σ1(H) = · · · = σn(H). Thus, |||H|||tr =
n · |||H|||2, which makes the upper bound in (13) collapse to the lower bound in (13).

Lemma 5 If M ∈ Rn×n and the matrices U, V in its singular value decomposition (12)
have only entries from {±1/

√
n}, then γ∗2(M) = n · |||M |||2.

Proof According to (11), γ∗2(M) ≤ n · |||M |||2. By duality of norms, the converse direction is
equivalent to γ2(M) ≤ |||M |||tr/n. An inspection of (12) shows that, given our assumptions on
the entries of U and V , r(X) = r(Y ) =

√
|||M |||tr/n. Thus, γ2(M) ≤ r(X)r(Y ) = |||M |||tr/n,

as required.

We briefly note that the assumptions of Lemma 5 can be weakened: it suffices to assume
that the first columns of U and V , respectively, have entries from {±1/

√
n}. The proof will

then make use of strong SDP duality.

Corollary 6 Let f : {−1, 1}d → {−1, 1} be a Boolean function, and let L∞(f) denote
the largest Fourier-coefficient in terms of absolute value. Consider the (2d × 2d)-matrix
Fx,y := f(x ◦ y) where x ◦ y := (x1y1, . . . , xdyd). Then: mc(F ) = 1/L∞(f).

Proof Let F̂ be the matrix with the Fourier-coefficients of f on its main diagonal and zeros
elsewhere. Let H denote the Silvester-type Hadamard matrix of order 2d. It is well-known
(e.g., Doliwa et al., 2008) that the spectral decomposition of 2−dF has the form

2−dF = 2−d/2H · F̂ · 2−d/2H .
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This implies that |||F |||2 = 2d · L∞(f) and that M = 2−dF satisfies the assumptions of
Lemma 5 so that γ∗2(F ) = 2d|||F |||2 = 22dL∞(f). Thus, according to (3) with n = m = 2d,
mc(F ) = 1/L∞(f).

4. The Replication Trick

We have learned the replication trick from Sherstov (2008). He used it (together with the
classical Forster bound on dimension complexity) to show that, for every sign-matrix A,
SQdim(A) = maxp SQdimp(A) is bounded from above by twice the square of the dimension
complexity of A. Here, we will use the trick (together with (4)) for showing that, for every
real-valued matrix A, mcp,q(A) ≥ FBp,q(A).

Lemma 7 Let A ∈ Rm×n. Let p be an m-dimensional probability vector with rational
components ri/R (so that

∑m
i=1 ri = R). Similarly, let q be an n-dimensional probability

vector with rational components sj/S (so that
∑n

j=1 sj = S). Let As be the matrix that
results from A by duplicating the j-th column sj-times. Let Ar,s denote the matrix that
results from As by duplicating the i-th row ri-times. With this notation, the following holds:

mcp,q(A) = mc(Ar,s) and
√
RS · |||P 1/2AQ1/2|||2 = |||Ar,s|||2 (14)

Proof We first show that mcp,q(A) ≤ mc(Ar,s). Any arrangementA = (u1, . . . , um; v1, . . . , vn)
for A induces an arrangement A′ for Ar,s where the k-th duplicate of row i (resp. column
j) is represented by the (same) vector ui (resp. vj). The average margin achieved by A′
equals

1

RS

∑
i

∑
j

risj 〈ui, vj〉Ai,j =
∑
i

∑
j

ri
R

sj
S
〈ui, vj〉Ai,j .

But the right hand-side equals the (p, q)-average margin achieved by A.
Now, we show that mc(Ar,s) ≤ mcp,q(A). To this end, we start with an arrangement A′ for
Ar,s where the k-th duplicate of row i (resp. column j) is represented by ui(k) (resp. vj(k)).
The average margin achieved by A′ equals

1

RS

∑
i

∑
j

ri∑
ki=1

sj∑
lj=1

〈ui(ki), vj(lj)〉Ai,j =
1

RS

∑
i

∑
j

〈
ri∑

ki=1

ui(ki),

sj∑
lj=1

vj(lj)

〉
Ai,j

=
∑
i

∑
j

ri
R

sj
S

〈
1

ri

ri∑
ki=1

ui(ki),
1

sj

sj∑
lj=1

vj(lj)

〉
Ai,j .

But the final term coincides with the (p, q)-average margin that is achieved for A by the
vectors

ui =
1

ri

ri∑
ki=1

ui(ki) and vj =
1

sj

sj∑
lj=1

vj(lj) .

Note that, by the triangle inequality, ‖ui‖2 is bounded by 1 provided that ‖ui(1)‖2, . . . , ‖ui(ri)‖2
are bounded by 1. The analogous argument applies to vj .
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As for the second equation in (14), it suffices to show that |||
√
SAQ1/2|||2 = |||As|||2. (We

can then apply this equality with P 1/2A substituted for A and proceed with a symme-
try argument.) Our proof for |||

√
SAQ1/2|||2 = |||As|||2 will make use of (1). We first show

that |||
√
SAQ1/2|||2 ≤ |||As|||2. Note that the entry (i, j) of matrix

√
SAQ1/2 coincides with√

sjAi,j . With any n-dimensional vector v, we associate the S-dimensional vector v′ which
is composed of sub-vectors v′(1), . . . , v′(n) of dimensions s1, . . . , sn, respectively, such that
v′(j) =

vj√
sj
· 1. Note that ‖v′‖2 = ‖v‖2. Furthermore note that

u>Asv
′ =

∑
i

∑
j

sjui
vj√
sj
Ai,j =

∑
i

∑
j

uivj(
√
sjAi,j) = u>(

√
SAQ1/2)v .

Now, we show that |||As|||2 ≤ |||
√
SAQ1/2|||2. To this end, we consider an m-dimensional

vector u and an S-dimensional vector v′. We can think of v′ as being composed of sj-
dimensional sub-vectors v′(j) for j = 1, . . . , n. Then,

u>Asv
′ =

∑
i

∑
j

sj∑
kj=1

uiv
′(j)kjAi,j =

∑
j

(∑
i

uiAi,j

) sj∑
kj=1

v′(j)kj

 .

Setting vj := 1√
sj

∑sj
kj=1 v

′(j)kj , the latter term equals∑
i

∑
j

uivj(
√
sjAi,j) = u>(

√
SAQ1/2)v .

Note that

v2j =
1

sj
·
〈
v′(j),1

〉2 ≤ 1

sj
·
〈
v′(j), v′(j)

〉
· 〈1,1〉 =

〈
v′(j), v′(j)

〉
,

which implies that ‖v‖2 ≤ ‖v′‖2.

Corollary 8 For all probability vectors p, q: mcp,q(A) ≥ FBp,q(A).

Proof With the notation from Lemma 7, the following holds for all rational probability
vectors p, q:

mcp,q(A) = mc(Ar,s)
(4)

≥ FB(Ar,s) = FBp,q(A) .

In order to generalize this equality to arbitrary probability vectors (with possibly non-
rational components), we can use that fact that Q is dense in R and apply an obvious
continuity argument.
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5. SQ-Dimension and Margin-Complexity

In this section we focus on sign matrices. We establish two more relations (see Lemmas 9
and 10), and then we put all pieces together and arrive at the inequalities in (15) and (16).
As a by-product, we obtain two results, see (17) and (18), which might be of independent
interest.

Lemma 9 For every A ∈ {−1, 1}m×n: mcp,MIN (A) <
√

SQdimp(A) · (SQdimp(A) + 1).

Proof Let d := SQdimp(A). Select a subset S = {s(1), . . . , s(d)} ⊆ {1, . . . , n} such that(
∀k 6= l ∈ S : | 〈Ak, Al〉p | ≤

1

d

)
∧
(
∀j ∈ {1, . . . , n}, ∃k(j) ∈ {1, . . . , d} : |

〈
Aj , As(k(j))

〉
p
| > 1

d+ 1

)
.

Let σj := sign(
〈
Aj , As(k(j))

〉
p
). We define a d-dimensional arrangement for A as follows:(

∀i = 1, . . . ,m : ui =
1√
d
· (Ai,s(1), . . . , Ai,s(d))

)
∧
(
∀j = 1, . . . , n : vj = σj · ek(j)

)
It follows that 〈ui, vj〉 = σj ·Ai,s(k(j))/

√
d, and our embedding exhibits the margin parame-

ters

γi,j = 〈ui, vj〉 ·Ai,j =
σj ·Ai,s(k(j)) ·Ai,j√

d
.

Averaging w.r.t. to p yields∑
i

piγi,j =
1√
d
· |
〈
Aj , As(k(j))

〉
p
| > 1√

d · (d+ 1)
.

Since this holds for every choice j, we get mcp,MIN (A) <
√
d · (d+ 1), as desired.

The proof of the following result builds on a proof by Sherstov (2008) for a quite similar
result:

Lemma 10 For every A ∈ {−1, 1}m×n: SQdimp(A) < 2 ·maxA′ FBp(A
′)2.

Proof Let d = SQdimp(A), and let S ⊆ {1, . . . , n} be chosen as in the proof of Lemma 9.
Let A′ be the submatrix that is formed by the columns s(1), . . . , s(d) of A. It follows that

C := A′>PA′ = (P 1/2A′)>(P 1/2A′) ∈ Rd×d

has ones on the main diagonal and entries of absolute value at most 1/d elsewhere. We
apply an argument of Sherstov (2008) and conclude that

|||C|||2 ≤ |||C − Id|||2 + |||Id|||2 ≤ ‖C − Id‖2 + |||Id|||2 =

√
d(d− 1)

d2
+ 1 < 2 .

Note that
|||C|||2 = |||P 1/2A′|||22 .
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The proof is now accomplished as follows:

FBp(A
′)2 ≥ d

|||P 1/2A′|||22
=

d

|||C|||2
>
d

2

The combination of Lemma 9, Lemma 10, and Corollary 8 demonstrates that the pa-
rameters SQdimp(A), maxA′ FBp(A

′), maxq FBp,q(A), and maxq mcp,q(A) = mcp,MIN (A)
are related as follows:

SQdimp(A) < 2 max
A′

FBp(A
′)2 ≤ 2 max

q
FBp,q(A)2 ≤ 2 max

q
mcp,q(A)2 < 2SQdimp(A)(SQdimp(A)+1)2

(15)
Applying the operation “maxp” to (15), we get

SQdim(A) < 2·max
p,q

FBp,q(A)2 ≤ 2·max
p,q

mcp,q(A)2 < 2·SQdim(A)·(SQdim(A)+1)2 . (16)

Since maxp,q mcp,q(A) = maxp,q mcp,q(A
>) — an analogous remark is valid for maxp,q FBp,q

— it follows from (16) that

SQdim(A>) < 2 · SQdim(A) · (SQdim(A) + 1)2 . (17)

This improves on a result by Sherstov (2008): he used a polynomial relation between
SQdim(A) and the discrepancy of A with respect to product distributions for showing
that SQdim(A>) ≤ 32 · SQdim(A)4.

Recall that, by convention, A′ ranges over all sub-matrices of A which can be composed
by (complete) columns of A. Let A′′ range over all sub-matrices of A. We claim that

max
A′′

FB(A′′) ≤ max
p,q

FBp,q(A) < 64 · (1 + o(1)) ·max
A′′

FB(A′′)9 . (18)

The first inequality is obvious. The last inequality is obtained by applying (15) twice, the
first time on A and the second time on the transpose of A′.

6. CSQ-Dimension and Margin Complexity

Feldman (2008) has shown the following result. If a concept class C over domain X has
CSQ-dimension d, then there exists a family W consisting of d Boolean base functions
such every function in C can be written as the majority of O(log(|X |)d2) functions properly
chosen from W . Viewing a sign-matrix A as a concept class, it is not hard to infer from that
result an upper bound on mc(A) in terms of CSQdim(A). However, a direct derivation of
such an upper bound (as in the proof of the following lemma) leads to a tighter relationship:

Lemma 11 For every A ∈ Rm×n: mc(A) ≤ CSQdim(A)1.5.
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Proof Let d := CSQdim(A), and let h1, . . . , hd ∈ Rm be universally correlated with A.
According to Lemma 1, there exists a matrix Y = (yi,j) such that mc(A) = mcY (A). We
will present a d-dimensional arrangement u1, . . . , um; v1, . . . , vn whose Y -average margin
equals 1/d1.5 (which proves the lemma). To this end, we set

ui :=
1√
d
· (hi,1, . . . , hi,d)

where hi,k denotes the i-th component of vector hk. Note that ‖ui‖2 ≤ 1. Furthermore,
let Yj := y1,j + · · · + ym,j , and let the m-dimensional probability vector pj be given by
(pj)i := yi,j/Yj . Because h1, . . . , hd is universally correlated with A, the following holds.
For every j, there exists k(j) ∈ {1, . . . , d} such that |

〈
hk(j), Aj

〉
pj
| ≥ 1/d. Now we set

σj := sign(
〈
hk(j), Aj

〉
pj

), vj := σj · ek(j), and we bound the Y -average margin from below

as follows:∑
i

∑
j

yi,j 〈ui, vj〉Ai,j =
1√
d
·
∑
j

Yjσj
∑
i

yi,j
Yj
hi,k(j)Ai,j =

1√
d
·
∑
j

Yj |
〈
hk(j), Aj

〉
pj
| ≥ 1

d1.5

As for the converse direction, we get the following result:

Lemma 12 For every A ∈ Rm×n and `(m,n) := 32 ln(4mn):

CSQdim(A) ≤
⌈
`(m,n) ·mc(A)2

⌉
Proof Consider an arrangement A that maximizes γ := mini,j γi,j(A|A) so that mc(A) =
1/γ. It is well-known4 thatA can be transformed into another arrangementA′ = (u1, . . . , um; v1, . . . , vn)
that is d-dimensional for d := d`(m,n)/γ2e and still satisfies mini,j γi,j(A|A′) ≥ γ/2. For
every k ∈ {1, . . . , d}, let ui,k denote the i-th component of uk. We will show that h1, . . . , hd
given by

hk = (u1,k, . . . , um,k)

is universally correlated with A. To this end, let p be an arbitrary but fixed m-dimensional
probability vector, and let v′j = ‖vj‖−11 · vj so that

‖v′j‖1 =
d∑

k=1

|v′j,k| = 1 . (19)

Note that ‖vj‖1 ≤
√
d since A′ is a d-dimensional arrangement. It follows that

min
i,j

〈
ui, v

′
j

〉
Ai,j ≥

γ

2
√
d
,

4. This is a typical application of random projections (see Johnson and Lindenstrauss, 1984; Arriaga and
Vempala, 1999). E.g., apply Corollary 19 in the paper by Ben-David et al. (2002).
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and the following holds for every j ∈ {1, . . . , n}:

γ

2
√
d
≤

∑
i

pi
〈
ui, v

′
j

〉
Ai,j =

∑
i

piAi,j

d∑
k=1

|v′j,k| sign(vj,k)ui,k

=
d∑

k=1

|v′j,k|
∑
i

pi sign(vj,k)ui,kAi,j =
d∑

k=1

|v′j,k| 〈sign(vj,k)hk, Aj〉p

The latter sum is a convex combination of inner products because of (19), and, as the above
calculation shows, the inner products achieve a value of at least γ/(2

√
d) on the average.

By the pigeon-hole principle, there exists k(j) ∈ {1, . . . , d} such that

sign(vj,k(j)) ·
〈
hk(j), Aj

〉
p
≥ γ

2
√
d
.

It is easily checked that γ/(2
√
d) ≥ 1/d (by solving this inequality for d and comparing

with the above definition of d). It follows that, as announced above, h1, . . . , hd is univer-
sally correlated with A.

Conclusions: Looking back, we have seen a hierarchy of margin optimization problems,
and the dual versions of these problems nicely reflect why the optimal values become smaller
when we go up in the hierarchy. In the dual setting, we are always faced with a problem of
maximizing the total margin of a matrix of the form Y ◦A (which is the Y -average margin
of A). The crucial issues are the structure of the the matrix Y and whether its choice is
under control of “nature” or under control of an “intelligent adversary”:

(a) The easiest problem from the perspective of the margin-maximizer results when Y is
of the form pq> for fixed and “benign” p, q. Here “benign” means that the distribution
p on the rows of A (= instances of the domain) and the distribution q on the columns
of A (= possible target concepts) are resulting from a learning application (and not
from settings within a worst-case analysis). In this situation the goal of the margin-
maximizer roughly corresponds to achieving a reasonably large “soft margin” on the
average.

(b) The problem becomes harder when q (Case 1) or both of p, q (Case 2) are un-
der control of an adversary so that maxq mcp,q(A) = mcp,MIN (A) in Case 1 and
maxp,q mcp,q(A) = maxp mcp,MIN (A) in Case 2 would be the appropriate complexity
measures. Maximizing over all choices of q means choosing the target concept in a
worst-case fashion. Maximizing over all choices of p (as in Case 2) means that the
domain distribution is chosen in a worst-case fashion although it is still fixed (because
the chosen arrangement may depend on p). Because of the polynomial relation be-
tween average margin complexity and the SQ-dimension, Case 1 corresponds to weak
learning in the SQ model under a fixed distribution. A similar remark is valid for
Case 2 but here we have to cope with the hardest fixed distribution.

(c) The hardest problem results when an adversary controls Y , and Y is an arbitrary
matrix with non-negative entries summing up to 1 (as opposed to a matrix of the form
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pq>, which is the special case where Y has rank 1). Now maxY mcY (A) = mc(A) is the
appropriate complexity measure, and the learning goal is to achieve a reasonably large
hard margin for every possible target concept. Because of the polynomial relation
between mc(A) and the CSQ-dimension, the learning goal can be achieved iff the
concept class is distribution-independently weakly learnable in the CSQ model.

Feldman (2008) has shown that there exist classes (e.g., Boolean decision lists) which are
distribution independently (weakly or strongly)5 learnable in the SQ model but not (not
even weakly) in the CSQ model. This also shows that maxp,q mcp,q(A) and maxY mcY (A)
are not polynomially related. (There is even an exponential gap.) Thus imposing the rank
1 constraint on Y makes much of a difference.

Open Problems: The level of distribution-independent SQ-learning is located somewhere
between (b) and (c). It would be interesting to find a combinatorial parameter (or another
variant of margin optimization?) that characterizes this level. A parameter of this kind
must be lower-bounded by the SQ-dimension and upper-bounded by the CSQ-dimension.
It would furthermore be interesting to find a concept class that separates distribution-
independent SQ-learning from SQ-learning w.r.t. the hardest fixed distribution.
The correspondence between maximization of the average margin and typical soft-margin
optimization problems would be more convincing if we replaced γi,j(A|A) by min{γi,j(A|A), γ}
for some γ > 0 so that few extremely large margin parameters cannot provide compensation
for many small or negative margin parameters.6 It would be interesting to know whether
results similar to the ones in this paper can be shown for this “average clipped margin”.
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Appendix A. Proof of Theorem 3

We will prove the equivalent statement

max
A

min
j

∑
i

piγi,j(A|A) = min
q
γ∗2(pq> ◦A) . (20)

We know from the proof of Theorem 1 that γ∗2(pq> ◦ A) coincides with (8) provided that
Y = pq>. Let us now discuss the left hand-side of (20). Setting M := P · A, we obtain
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minj
∑

i piγi,j(A|A) = minj
∑

i γi,j(M |A).7 Finding an arrangement A for M that maxi-
mizes minj

∑
i γi,j(M |A) can be expressed as a standard SDP-problem (with slack variables

sj) as follows:

min
X,µ,s

−µ s.t. ∀k : Xk,k = 1 , ∀j :
∑
i

Mi,j(Xi,m+j+Xm+j,i)−sj = 2µ , X � 0 , µ ≥ 0 , sj ≥ 0

The (m+ 2n+ 1)× (m+ 2n+ 1)-matrix of primal variables is then given by X 0 0
0 diag(s1, . . . , sn) 0
0 0 µ

 .

The dual variables are denoted yk and qj . The matrix induced by the equality-constraints
equals 

diag(y1, . . . , ym) M ·Q 0 0
(M ·Q)> diag(ym+1, . . . , ym+n) 0 0

0 0 −Q 0
0 0 0 −2(q1 + · · ·+ qn)

 .

It is easy to see that condition SCQ is satisfied. Thus, we have strong duality. The dual
problem (with variables −yk/2 substituted for yk, qj/2 substituted for qj , and P ·A substi-
tuted for M) looks as follows:

min
q,y

1

2

∑
k

yk s.t.
∑
j

qj = 1 , qj ≥ 0 ,

[
diag(y1, . . . , ym) −(P ·A ·Q)
−(P ·A ·Q)> diag(ym+1, . . . , ym+n)

]
� 0

(21)
By strong duality, maxAminj

∑
i piγi,j(A|A) equals (21). As discussed above, γ∗2(pq> ◦ A)

equals (8) provided that Y = pq> so that Y ◦A = pq> ◦A = P ·A ·Q. A comparison of (21)
and (8) shows that (20) holds.

7. We remind the reader to the convention P = diag(p) and Q = diag(q).
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