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Abstract

Efficient estimation of the moments and Shannon entropy of data streams is an important
task in modern machine learning and data mining. To estimate the Shannon entropy, it
suffices to accurately estimate the α-th moment with ∆ = |1 − α| ≈ 0. To guarantee
that the error of estimated Shannon entropy is within a ν-additive factor, the method of
symmetric stable random projections requires O

(
1

ν2∆2

)
samples, which is extremely ex-

pensive. The first paper (Li, 2009a) in Compressed Counting (CC), based on skewed-stable
random projections, supplies a substantial improvement by reducing the sample complexity
to O

(
1

ν2∆

)
, which is still expensive. The followup work (Li, 2009b) provides a practical

algorithm, which is however difficult to analyze theoretically.
In this paper, we propose a new accurate algorithm for Compressed Counting, whose

sample complexity is only O
(

1
ν2

)
for ν-additive Shannon entropy estimation. The constant

factor for this bound is merely about 6. In addition, we prove that our algorithm achieves an
upper bound of the Fisher information and in fact it is close to 100% statistically optimal.
An empirical study is conducted to verify the accuracy of our algorithm.

Keywords: Data Streams, Entropy Estimation, Maximally-Skewed Stable Random Pro-
jections

1. Introduction

The problem of “scaling up for high dimensional data and high speed data streams” is
among the “10 challenging problems in data mining research” (Yang and Wu, 2006). This
paper is devoted to estimating entropy of data streams. Mining data streams in (e.g.,) 100
TB scale databases has become an important area of research, e.g., (Henzinger et al., 1999;
Domeniconi and Gunopulos, 2001; Aggarwal et al., 2004; Muthukrishnan, 2005), as the Web
and network data can easily reach that scale (Yang and Wu, 2006).

Consider the Turnstile stream model (Muthukrishnan, 2005). The input stream at =
(it, It), it ∈ [1, D] arriving sequentially describes the underlying signal A, meaning

At[it] = At−1[it] + It, (1)
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where the increment It can be either positive (insertion) or negative (deletion). For exam-
ple, in network measurements, It can be the increment of the packet size at the location
numbered by it.

In the model (1), restricting At[i] ≥ 0 results in the strict-Turnstile model, which suffices
for describing almost all natural phenomena (Muthukrishnan, 2005). This paper focuses on
efficient algorithms for estimating α-th frequency moment of data streams

F(α) =

D∑
i=1

At[i]
α. (2)

We are interested in the case of α → 1, which is crucial for the estimation of Shannon
entropy. Note that the first moment (i.e., the sum) F(1) =

∑t
s=0 Is can be computed using

a single counter.

1.1. Entropy, Moments, and Estimation Complexity

A widely useful summary statistic is the Shannon entropy

H = −
D∑
i=1

At[i]

F(1)
log

At[i]

F(1)
. (3)

There are various generalizations of the Shannon entropy. The Rényi entropy (Rényi, 1961),
denoted by Hα, and the Tsallis entropy (Havrda and Charvát, 1967; Tsallis, 1988), denoted
by Tα, are

Hα =
1

1− α
log

F(α)

Fα(1)

, Tα =
1

1− α

(
F(α)

Fα(1)

− 1

)
. (4)

As α→ 1, both Rényi entropy and Tsallis entropy converge to Shannon entropy:

lim
α→1

Hα = lim
α→1

Tα = H. (5)

Thus, both Rényi entropy and Tsallis entropy can be computed from the α-th frequency
moment; and one can approximate Shannon entropy using α ≈ 1. While this fact is well-
known, it appears that (Zhao et al., 2007) is the first study that applied (5) to Shannon
entropy estimation in data streams. Later (Harvey et al., 2008b,a) proposed criteria on
theoretically (and conservatively) how close to 1 the α needs to be. One can numerically
verify ∆ = |1 − α| < 10−7 in (Harvey et al., 2008b) or ∆ < 10−5 in (Harvey et al., 2008a)
are very likely.1

The difficulty in Shannon entropy estimation is reflected by the estimation variance. By
the definitions of the Rényi and Tsallis entropies, we need estimators of F(α) with variances

proportional to O
(
∆2
)

in order to cancel the term 1
(1−α)2 = 1

∆2 (otherwise the sample size

must be proportional to 1
∆2 ). In other words, the estimators of F(α) must be extremely

accurate.

1. In (Harvey et al., 2008b), ∆ = c
16 log(1/c)

, c = ν
4 log(D) log(m)

, where m is the number of streaming

updates. If we let D = 264, m = 264, ν = 0.1, then ∆ ≈ 7 × 10−8. If we let m = 106, ν = 0.1, then
∆ ≈ 2.5 × 10−7. Harvey et al. (2008a) provides some improvements, to allow slightly larger ∆, which is
still extremely small.
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1.2. Some Applications of Shannon Entropy

Real-Time Network Anomaly Detection Network traffic is a typical example of high-
rate data streams. An effective measurement of network traffic in real-time is crucial for
anomaly detection and network diagnosis; and one such measurement metric is the Shannon
entropy (Feinstein et al., 2003; Lakhina et al., 2005; Xu et al., 2005; Brauckhoff et al., 2006;
Lall et al., 2006; Zhao et al., 2007). The Turnstile data stream model (1) is naturally suitable
for describing network traffic, especially when the goal is to characterize the statistical
distribution of the traffic. In its empirical form, a statistical distribution is described by
histograms, At[i], i = 1 to D. It is possible that D = 264 (or larger) if one is interested in
measuring the traffic streams of all unique sources or destinations.

The Distributed Denial of Service (DDoS) attack, as a representative example of net-
work anomalies, attempts to make computers unavailable to intended users, either by forcing
users to reset the computers or by exhausting the resources of service-hosting sites. Since a
DDoS attack often changes the statistical distribution of network traffic, a common practice
to detect such an attack is to monitor the network traffic using certain summary statistics.
As the Shannon entropy is well-suited for characterizing a distribution, a popular detection
method is to measure the time-history of entropy and alarm anomalies when the entropy
becomes abnormal (Feinstein et al., 2003; Lall et al., 2006).

Entropy measurements do not have to be “perfect” for detecting attacks. It is, however
crucial that the algorithm should be computationally efficient at low memory cost, because
the traffic data generated by large high-speed networks are enormous and transient. Al-
gorithms should be real-time and one-pass, as the traffic data are unlikely to be stored
permanently. Many algorithms have been proposed for “sampling” the traffic streaming
data for estimating entropy (Lall et al., 2006; Zhao et al., 2007; Bhuvanagiri and Ganguly,
2006; Guha et al., 2006; Chakrabarti et al., 2006, 2007; Harvey et al., 2008b,a; Zhao et al.,
2010).

Entropy of Query Logs in Web Search Mei and Church (2008) proposed to estimate
the Shannon entropy of some commercial search logs, to help answer some basic problems
in Web search, such as, how big is the web? The search logs can be viewed as data streams,
and Mei and Church (2008) analyzed several “snapshots” of a sample of the search logs,
which contained 10 million <Query, URL, IP> triples; each triple corresponded to a click
from a particular IP address on a particular URL for a particular query. (Mei and Church,
2008) drew their important conclusions on this (hopefully) representative sample. Alter-
natively, one could apply new data stream algorithms on the entire history of the search logs.

Entropy in Neural Computations A workshop in NIPS’03 was devoted to entropy
estimation (www.menem.com/~ilya/pages/NIPS03), owing to the wide-spread use of en-
tropy in neural computations (Paninski, 2003), e.g., for studying the underlying structure
of spike trains.

Graph Estimation As demonstrated in a recent paper (Gupta et al., 2010), Shannon
entropy estimation plays a crucial role in graph estimation and density estimation in high
dimensions.
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1.3. Symmetric Stable Random Projections and Prior Work on Compressed
Counting

The problem of estimating F(α) has been heavily studied since the pioneering work of (Alon
et al., 1996). For 0 < α ≤ 2, the method of symmetric stable random projections (Indyk,
2006; Li, 2008; Li and Hastie, 2007) in many applications provides a practical algorithm,
with a sample complexity of O

(
1
ε2

)
(even for α = 1), to estimate F(α) within a 1 ± ε

multiplicative factor.
Compressed Counting (CC) (Li, 2009a,b) is a recent breakthrough, which is based on

maximally-skewed stable random projections. Li (2009a) provided two algorithms, using
the geometric mean and harmonic mean. The geometric mean algorithm has the variance
proportional to O(∆) in the neighborhood of α = 1, where ∆ = |1 − α|. This is the
first algorithm that reflected the intuition that, in the neighborhood of α = 1, the moment
estimation algorithms should work better and better as α→ 1, in a continuous fashion. The
geometric mean algorithm for CC, unfortunately, did not provide an adequate mechanism
for entropy estimation. It only led to an entropy estimation algorithm with a complexity
of O

(
1

ν2∆

)
, but (theoretically) ∆ has to be extremely small.

Based on the geometric mean algorithm of CC (Li, 2009a), Harvey et al. (2008a) de-
veloped a complicated multi-point method for Shannon entropy estimation, with a sam-
ple (word) complexity of O

(
1
ν2 logM

)
and a very large (like 107) constant2, where (e.g.,)

M =
∑D

i=1 |At[i]| can be viewed as the ”universe size.“ In comparison, our new algorithm
is very simple with a sample (word) complexity of O

(
1
ν2

)
and a small constant (about 6),

without the logM term.
Li (2009b) proposed a practical algorithm based on numerical optimization and achieved

very good performance. Since that estimator was complicated and implicit, Li (2009b) did
not analyze the sample complexity and statistical efficiency and left them as open problems.

1.4. Another Perspective for Entropy Estimation

By the definition of Rényi entropy (4), instead of estimating F(α), it suffices to estimate
J(α), where

J(α) = F
−1/∆
(α) =

[
D∑
i=1

At[i]
α

]−1/∆

, (6)

because, if ∆ = 1− α > 0, then

Hα =
1

1− α
log

F(α)

Fα(1)

=
1

∆
log

J−∆
(α)

Fα(1)

= − log J(α) −
1

∆
logFα(1). (7)

Since 1
∆ logFα(1) is computed exactly, we only need to estimate J(α). Our new algorithm will

provide a ν-multiplicative estimate of J(α) with a complexity of O
(

1
ν2

)
. For small ν, this

translates into:

2. In Sec. 5.2 of (Harvey et al., 2008a), their sample complexity bound is O
([

200(z + 1)3
]2 1

ν2
logM

)
,

where z = log(1/ν) + log logM . The constant
[
200(z + 1)3

]2
will exceed 107, even just for z = 3.
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1. An ε = ν∆-multiplicative estimate of F(α), with a sample complexity of O
(

1
ν2

)
. For

example, denote the estimate of J(α) by Ĵ(α), then

Pr
(
Ĵ(α) ≥ (1 + ν)J(α)

)
= Pr

(
Ĵ−∆

(α) ≤ (1 + ν)−∆F(α)

)
Pr
(
Ĵ(α) ≤ (1− ν)J(α)

)
= Pr

(
Ĵ−∆

(α) ≥ (1− ν)−∆F(α)

)
.

For small ν, we have (1 + ν)−∆ ≈ 1− ν∆ = 1− ε and (1− ν)−∆ ≈ 1 + ν∆ = 1 + ε.

2. A ν-additive estimate of log J(α), with a sample complexity of O
(

1
ν2

)
. For example

Pr
(
Ĵ(α) ≥ (1 + ν)J(α)

)
= Pr

(
log Ĵ(α) ≥ log(1 + ν) + log J(α)

)
Pr
(
Ĵ(α) ≤ (1− ν)J(α)

)
= Pr

(
log Ĵ(α) ≤ log(1− ν) + log J(α)

)
.

For small ν, we have log(1 + ν) ≈ ν and log(1− ν) ≈ −ν.

2. The Proposed Algorithm

Consider the strict-Turnstile data stream model (1). Conceptually, we multiply the data
stream vector At ∈ RD by a random matrix R ∈ RD×k, resulting in a vector X = At×R ∈
Rk with entries

xj = [At ×R]j =
D∑
i=1

rijAt[i], j = 1, 2, ..., k

where rij ’s are random variables generated as follows:

rij =
sin (αvij)

[sin vij ]
1/α

[
sin (vij∆)

wij

]∆
α

, ∆ = 1− α > 0, (8)

where vij ∼ Uniform(0, π) (i.i.d.) and wij ∼ Exp(1) (i.i.d.), an exponential distribution
with mean 1. In data stream computations, the matrix R is not materialized. The standard
procedure is to (re)generate entries of R on-demand (Indyk, 2006). Whenever a stream
element at = (it, It) arrives, one updates entries of X:

xj ← xj + Itritj , j = 1, 2, ..., k.

The cost of (re)generating (pseudo) random numbers is proportional to the sample size
k. As our work substantially reduces the sample size, it also tremendously reduces the
processing time.

Here, our goal is to estimate J(α) = F
−1/∆
(α) (and hence also F(α)). Our proposed algo-

rithm is

Ĵ(α) =
∆

k

k∑
j=1

x
−α/∆
j , (9)
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from which one can estimate the Shannon entropy, for example, by the Rényi entropy as

Ĥα = − log Ĵ(α) −
1

∆
logFα(1) (10)

The following Lemma provides the moments of Ĵ(α).

Lemma 1

E
(
Ĵ(α)

)
= J(α), (11)

V ar
(
Ĵ(α)

)
=
J2

(α)

k
(3− 2∆) , (12)

E
(
Ĵ(α) − J(α)

)3
=
J3

(α)

k2

(
17− 21∆ + 6∆2

)
, (13)

E
(
Ĵ(α) − J(α)

)4
= 3

J4
(α)

k2
(3− 2∆)2 +

J4
(α)

k3

(
142− 252∆ + 140∆2 − 24∆3

)
. (14)

�

The first two moments immediately imply that the sample complexity of Ĵ(α) is O
(

1
ν2

)
for a ν-multiplicative approximation of J(α). The higher moments in Lemma 1 are also
useful for the proof of Lemma 10.

The next Lemma provides the precise tail bounds.

Lemma 2 1. The right tail bound: for ν > 0,

Pr
(
Ĵ(α) ≥ (1 + ν)J(α)

)
≤ exp

(
−k ν

2

GR

)
(15)

ν2

GR
= − log

(
1 +

∞∑
n=1

tnRe
nH(n; ∆)

)
+ tR(1 + ν) (16)

where tR is the solution to

−
∑∞

n=1 nt
n−1
R enH(n; ∆)

1 +
∑∞

n=1 t
n
Re

nH(n; ∆)
+ (1 + ν) = 0 (17)

and

H (n; ∆) =
n−1∏
i=0

n− i∆
e(n− i)

(18)

2. The left tail bound: for 0 < ν < 1,

Pr
(
Ĵ(α) ≤ (1− ν)J(α)

)
≤ exp

(
−k ν

2

GL

)
(19)

ν2

GL
= − log

(
1 +

∞∑
n=1

(−tL)nenH(n; ∆)

)
− tL(1− ν) (20)
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where tL is the solution to∑∞
n=1(−1)nn(tL)n−1enH(n; ∆)

1 +
∑∞

n=1(−tL)nenH(n; ∆)
+ (1− ν) = 0. (21)

�

While the expressions for the tail bounds in Lemma 2 appear sophisticated, they are
carefully formulated so that they can be accurately evaluated numerically; see Figure 1.
The function H(n; ∆) in (18) approaches e−n when ∆→ 1, and it is always upper bounded
by 1√

2πn
even as ∆→ 0, since

n−1∏
i=0

n− i∆
n− i

≤ nn

n!
≤ nn

(n− 1)!
≤ en√

2πn

according to Stirling’s series (Gradshteyn and Ryzhik, 1994, 8.327)

Γ(n) = (n− 1)! =
√

2πn
(n
e

)n [
1 +

1

12n
+

1

288n2
− 139

51840n3
− ...

]
.

Interestingly, we can obtain closed-form expressions when ν → 0.

Lemma 3 As ν → 0, the constants GR and GL in (16) and (20), respectively, become

GR → 6− 4∆, GL → 6− 4∆. (22)

�

In addition, when ∆ → 1−, we can actually analytically express the tail bounds in
closed-forms.

Lemma 4 When ∆→ 1−, i.e., α→ 0+,

ν2

GR
= − log(1 + ν) + ν, ν > 0 (23)

ν2

GL
= − log(1− ν)− ν, 0 < ν < 1. (24)

�

We summarize the complexity bound of our algorithm in a theorem.

Theorem 5 The proposed algorithm Ĵ(α) in (9) provides a ν-multiplicative approximation
of J(α) and a ν-additive approximation of the Shannon entropy with a probability at least

1− δ, using C
ν2 log 2/δ samples (words). The constant C approaches 6− 4∆ as ν → 0.�

3. More Intuition and Explanation

The proposed algorithm (9) is based on the idea of maximally-skewed stable random pro-
jections.
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Figure 1: Numerical values of GR (left panel) and GL (right panel) in the tail bounds (16)
and (20), for ∆ = 10−2 and ∆ = 10−6, together with the closed-form expressions
for ∆ = 1 as obtained in Lemma 4. Note that as ν → 0, both GR and GL
approach 6− 4∆, as proved in Lemma 3.

3.1. Review Maximally-Skewed Stable Random Projections and Estimators

The method for sampling from skewed stable distributions was proposed by Chambers
et al. (1976). To sample from S(α, β = 1, 1), i.e., α-stable maximally-skewed (β = 1) with
unit scale, one first generates an exponential random variable with mean 1, W ∼ Exp(1),
and a uniform random variable U ∼ Uniform

(
−π

2 ,
π
2

)
. Then the following nonlinear

transformation of W and U results in the desired random variable:

Z ′ =
sin (α(U + ρ))

[cosU cos (ρα)]1/α

[
cos (U − α(U + ρ))

W

] 1−α
α

∼ S(α, β = 1, 1), (25)

where ρ = π
2 when α < 1 and ρ = π

2
2−α
α when α > 1. Note that cos

(
π
2α
)
→ 0 as α → 1.

For convenience (and to avoid numerical problems), we use

Z = Z ′ cos1/α (ρα) ∼ S (α, β = 1, cos (ρα)) .

It turns out, the random variable Z with α < 1 has good properties. This study only
considers α = 1−∆ < 1, i.e, ρ = π

2 . After simplification, we obtain

Z =
sin (αV )

[sinV ]1/α

[
sin (V∆)

W

]∆
α

, (26)

where V = π
2 + U ∼ Uniform(0, π). This explains (8).
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Let X = At ×R, where entries of R are i.i.d. samples of S
(
α, β = 1, cos

(
π
2α
))

. Then
by properties of stable distributions, the entries of X are

xj = [At ×R]j =

D∑
i=1

ri,jAt[i] ∼ S
(
α, β = 1, cos

(π
2
α
)
F(α)

)
,

where F(α) =
∑D

i=1At[i]
α as defined in (2). Li (2009a) provided two algorithms using on

the geometric mean and harmonic mean estimators, based on the following basic moment
formula.

Lemma 6 (Li, 2009a). If X ∼ S(α, β = 1, F(α) cos
(
απ
2

)
), then X > 0, and for any

−∞ < λ < α < 1,

E
(
Xλ
)

= F
λ/α
(α)

Γ
(
1− λ

α

)
Γ (1− λ)

.

�

3.1.1. The Geometric Mean Estimator

Assume xj , j = 1 to k, are i.i.d. samples from S(α, β = 1, F(α) cos
(
απ
2

)
). After simplifying

the corresponding expression in (Li, 2009a), we obtain

F̂(α),gm =

[
Γ
(
1− α

k

)
Γ
(
1− 1

k

)]k k∏
j=1

x
α/k
j , (27)

which is unbiased and has asymptotic variance

Var
(
F̂(α),gm

)
=
F 2

(α)

k

π2

6
∆ (1 + α) +O

(
1

k2

)
(28)

As ∆ = 1− α→ 0, the asymptotic variance approaches zero at the rate of only O (∆) (not
O
(
∆2
)
).

3.1.2. The Harmonic Mean Estimator

F̂(α),hm =
k 1

Γ(1+α)∑k
j=1 x

−α
j

(
1− 1

k

(
2Γ2(1 + α)

Γ(1 + 2α)
− 1

))
, (29)

which is asymptotically unbiased and has variance

Var
(
F̂(α),hm

)
=
F 2

(α)

k

(
2Γ2(1 + α)

Γ(1 + 2α)
− 1

)
+O

(
1

k2

)
. (30)
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3.2. Limitations of the Geometric Mean and Harmonic Mean Estimators

In order to estimate the Shannon entropy with a guaranteed ν-additive accuracy, the vari-
ance of the estimator of F(α) should be O

(
∆2
)
; or equivalently, the sample complexity

should be O
(

1
ν2

)
.

The geometric mean estimator has variance proportional to only O (∆); or equivalently,
its complexity is O

(
1

ν2∆

)
, where ∆ needs to be extremely small (e.g., < 10−5). For the

harmonic mean estimator in Li (2009a), the following Lemma says its variance is also
proportional to O (∆).

Lemma 7 As ∆ = 1− α→ 0,

2Γ2(1 + α)

Γ(1 + 2α)
− 1 = ∆ + ∆2

(
2− π2

6

)
+O

(
∆3
)
. (31)

�

In other words, the harmonic mean estimator improves the geometric mean estimator by
reducing the variance by a factor of π2

6 2 = 3.29. Thus, we must develop significantly better
algorithms.

3.3. The Distribution Function

This section provides the distribution function of Z ∼ S
(
α < 1, β = 1, cos

(
π
2α
))

, which
will be needed for better understanding the proposed estimator (9).

Lemma 8 Suppose a random variable Z ∼ S
(
α < 1, β = 1, cos

(
π
2α
))
. The cumulative

distribution function (CDF) is

FZ(t) = Pr (Z ≤ t) =
1

π

∫ π

0
exp

(
−t−α/∆g (θ; ∆)

)
dθ. (32)

where

g(θ; ∆) =
[sin (αθ)]α/∆

[sin θ]1/∆
sin (θ∆) , θ ∈ (0, π)

g (0+; ∆) = lim
θ→0+

g(θ; ∆) = ∆αα/∆.

�

Note that g (0+; ∆) = ∆αα/∆ ≈ ∆e−1 approaches zero as ∆ → 0. Thus, one might
be wondering if we replace g (θ; ∆) by g (0+; ∆), the errors may be quite small, as seen in
Figure 2.
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Figure 2: We plot the CDF curves as derived in Lemma 8, for ∆ = 10−5 and 10−4. As ∆→
0, the exact CDF (solid curves) is very close to the approximate CDF (dashed
curves), which we obtain by replacing the exact g(θ; ∆) function in Lemma 8 with
the limit g(0+; ∆).

3.4. One Intuition Behind the Proposed Algorithm

The difficulty in developing accurate algorithms lies in that FZ in (32) has no closed-form
expression. From Lemma 8 and Figure 2, it appears that if one replaces the exact g(θ; ∆)
with its approximation g(0+; ∆), the error may be small. Thus, we consider a random
variable Y with CDF

FY (t) = Pr (y ≤ t) = exp
(
−t−α/∆∆αα/∆

)
, t ∈ [0,∞). (33)

It is indeed a CDF because it is an increasing function of t ∈ [0,∞), FY (0) = 0, and
FY (∞) = 1.

Here, we are interested in estimating cα from k i.i.d. samples xj = cyj , j = 1 to
k. Statistics theory tells us that the maximum likelihood estimator (MLE) achieves the
(asymptotic) optimality. Because FY has a closed-form expression, we can compute the
MLE exactly.

Lemma 9 Suppose yj, j = 1 to k, are i.i.d. samples from a distribution whose CDF is
given by (33). Let xj = cyj, where c > 0. Then the maximum likelihood estimator of cα is
given by

1

∆∆αα

[
k∑k

j=1 x
−α/∆
j

]∆

. (34)

�
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In comparison, our proposed algorithm for estimating J(α) = F
−1/∆
(α) is defined in (9),

which provides an estimator of F(α):

F̂(α) =
1

∆∆

[
k∑k

j=1 x
−α/∆
j

]∆

, (35)

which is almost identical to (34). Note that, as ∆ → 0, the extra term in (34), αα → 1,
converges much faster than ∆∆ → 1. In other words, αα is negligible.

Therefore, we should expect that our proposed estimator (35) is actually very close
to the true MLE, even though we can not explicitly derive the MLE. Indeed, in the next
section, Lemma 11 says that our algorithm is close to be 100% statistically optimal.

4. Additional Technical Results

4.1. The Moments of F̂(α)

The following Lemma analyzes the mean square error: MSE = E
[
F̂(α) − F(α)

]2
= V ar

(
F̂(α)

)
+ Bias2.

Lemma 10 The estimator F̂(α) is asymptotically unbiased:

E
(
F̂(α)

)
= F(α)

(
1 +O

(
∆

k

))
. (36)

The mean square error (MSE) is

E
[
F̂(α) − F(α)

]2
=
F 2

(α)

k
∆2

(
(3− 2∆) +O

(
1

k

))
. (37)

More precisely

0 ≤ E
(
F̂(α) − F(α)

)
≤

∆F(α)

k
e2+∆

(
(1 + ∆)(3− 2∆)/2 +

k

k −∆

)
. (38)

and∣∣∣∣∣∣E
(
F̂(α)

F(α)
− 1

)2

− ∆2

k
(3− 2∆)− ∆2

k2
C∗3 (∆)

∣∣∣∣∣∣ ≤ ∆2C∗4 (∆)

4k2
(3− 2∆)2 +O(∆2k−3 log k)

(39)

where C∗3 (∆) = (1 + ∆)(17 − 21∆ + 6∆2) = 17 + O(∆) and C∗4 (∆) = e4+2∆(11 + 18∆ +
7∆2) + e5+2∆(6 + 11∆ + 6∆2 + ∆3) = 11e4 + 6e5 +O(∆). �
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4.2. Statistical Optimality

Recall we have k i.i.d. samples xj ∼ S
(
α, β = 1, cos

(
π
2α
)
F(α)

)
. The goal is to estimate

J(α) = F
−1/∆
(α) . The classical theory of the Cramér-Rao lower bound tells us that the variance

of the estimator is lower bounded by 1
k

1
I(J(α))

, where I(J(α)) is the Fisher Information of

J(α).
A natural question is how much more improvement can we expect, after we have de-

veloped the estimator Ĵ(α) (9), whose variance is
J2

(α)

k (3 − 2∆)? Lemma 11 provides the
answer.

Lemma 11 For a distribution S
(
α, β = 1, cos

(
π
2α
)
F(α)

)
, the Fisher Information of J(α) =

F
−1/∆
(α) is given by

I(J(α)) =
1

J2
(α)

(I2 − 1) , I2 =

∫ ∞
0

[
1
π

∫ π
0 sg2e−sgdθ

]2
1
π

∫ π
0 ge−sgdθ

ds (40)

where g = g(θ; ∆) = [sin(αθ)]α/∆

[sin θ]1/∆
sin (θ∆). The Fisher Information of F(α) is given by

I(F(α)) =
1

∆2F 2
(α)

(I2 − 1) . (41)

Furthermore, I2 is bounded by I2 ≤ 2. Therefore the following bounds hold:

I
(
J(α)

)
≤ 1

J2
(α)

, I
(
F(α)

)
≤ 1

∆2F 2
(α)

. (42)

�

The Fisher information bounds (42) suggest that the optimal estimator (if one can

find it) of J(α) (or F(α)) exhibits variance of at least
J2

(α)

k (or
F 2

(α)

k ∆2). In this sense, our
proposed estimator is statistically optimal (up to a constant factor) in the framework of
CC. Furthermore, the integral I2 in (40) can be numerically evaluated. Figure 3 plots 1

I2−1
(dashed curve) and 3−2∆ (solid curve). Our proposed estimator is close to be 100% optimal
and hence there is little room for improvement.

5. Experiments

This section demonstrates that the proposed estimator Ĵ(α) in (9) is a practical algorithm,
while the previously proposed geometric mean algorithm (Li, 2009a) is inadequate for en-
tropy estimation. We also demonstrate that algorithms based on symmetric stable random
projections (Indyk, 2006; Li, 2009a; Li and Hastie, 2007) are not suitable for entropy es-
timation in practice. Note that Lemma 7 has shown that the harmonic mean algorithm
proposed in (Li, 2009a) is only 3.29-fold better than the geometric mean algorithm and
hence it makes no essential difference for entropy estimation.
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Figure 3: Dashed (red) curve: 1
I2−1 as in (40). Solid (black) curve: 3− 2∆.

5.1. Data

Since the estimation accuracy is what we are interested in, we simply use static data instead
of real data streams, because the projected data vector X = RTAt is the same at the end
of the stream, regardless of whether it is computed at once (i.e., static) or incrementally
(i.e., dynamic). As summarized in Table 1, 8 English words are selected from a chunk of
Web crawl data, i.e., 8 vectors whose entries are the numbers of word occurrences in each
document. The words are selected fairly randomly, although we make sure they cover a wide
range of data sparsity, from function words (e.g., “A”), to common words (e.g., “FRIDAY”)
to rare words (e.g., “TWIST”).

5.2. Estimating Shannon Entropies

We used the estimated frequency moments to estimate the Shannon entropies. For the data
vector “TWIST”, we present the results at sample sizes k = 3, 10, 100, 1000, and 10000. For
all other vectors, we did not use k = 10000. Figure 4 presents the normalized mean square
errors (MSEs).

Using our proposed algorithm (middle panels), only k = 10 samples already produces
fairly accurate estimates. In fact, for some vectors (such as “A”), even k = 3 may provide
reasonable estimates. We believe the performance of the new estimator is remarkable.
Another nice property is that the estimation errors become stable after (e.g.,) ∆ < 10−3

(or 10−4). This essentially frees practitioners from specifying ∆.
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Table 1: The data set consists of 8 English words selected from a corpus of Web pages,
forming 8 vectors whose values are the word occurrences. The table lists their
fractions of non-zeros (sparsity) and the Shannon entropies (H). The last column
is the variance ratio for comparing CC with another algorithm named CRS; the
details are in Section 6.

Word Sparsity Entropy H Improvement over CRS

TWIST 0.004 5.4873 2.1
FRIDAY 0.034 7.0487 38.9
FUN 0.047 7.6519 23.1
BUSINESS 0.126 8.3995 48.7
NAME 0.144 8.5162 65.9
HAVE 0.267 8.9782 67.7
THIS 0.423 9.3893 84.4
A 0.596 9.5463 113.7

In comparison, the performance of the geometric mean algorithm (left panels) is not
satisfactory. This is because its variance decreases only at the rate of O(∆), not O(∆2).
Also clearly, using symmetric stable random projections (right panels) would not provide
good estimates of the Shannon entropy (unless the sample size is extremely large with a
carefully chosen ∆).
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Figure 4: Normalized MSEs for estimating Shannon entropies using the geometric mean
algorithm (left panels) proposed in (Li, 2009a), the proposed new algorithm
Ĵ(α) (9) (middle panels) in this paper, and the geometric mean algorithm for
symmetric stable random projections (right panels) in (Li, 2008).
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6. Comparisons with Conditional Random Sampling (CRS)

Conditional Random Sampling (CRS), which is applicable to data stream computations, is
another randomized algorithm (Li and Church, 2007; Li et al., 2008) particularly designed
for sampling from sparse data. The significant advantage of CRS is that the method is
“one sketch for all,” meaning that the same set of “sketches” can be used to estimate a
very wide range of summary statistics and distances including histograms, cross-entropy,
χ2 distances, inner products, general lα distances (for any α). In comparison, the methods
of (symmetric and skewed) α-stable random projections are generally limited to 0 < α ≤ 2
and one has to re-do the projections (and keep multiple sets of samples) if the application
requires to use multiple α values.3 A recent manuscript (Zhao et al., 2010) compared CRS
with a variety of other algorithms on the network data provided by ATT Labs.

It is interesting to compare CC (using the new estimator in this paper) with CRS for
estimating Shannon entropy. Suppose we use the estimator (10) with sufficiently small ∆.
Then the estimation variance is roughly just 3

k , essentially independent of the original data.
Using the generic approximate variance formula in Li et al. (2008), the variance for entropy

estimation is denoted by V ar
(
ĤCRS

)
:

V ar
(
Ĥα

)
≈ 3

k
+O

(
1

k2

)
, for sufficiently small ∆ (43)

V ar
(
ĤCRS

)
≈ |{i|At[i] > 0}|

k


D∑
i=1

[
At[i]

F(1)
log

At[i]

F(1)

]2

− 1

D

[
D∑
i=1

At[i]

F(1)
log

At[i]

F(1)

]2
+O

(
1

k2

)
.

(44)

Table 1 (last column) already presents the variance ratios:
V ar(ĤCRS)
V ar(Ĥα)

for the data used

in our experiments. The ratios range from 2.1 to 113.7. The comparison further conforms
that CC is extremely accurate for entropy estimation. On the other hand, CRS is actually
also pretty good for entropy estimation, considering it is “one-sketch-for-all.” Another
significant advantage of CRS is that it is not limited to the strict-Turnstile data stream
model, or even the general Turnstile model. It is particularly useful when applications
require using nonlinearly transformed data (e.g., TF-IDF weighting in search and natural
language processing) instead of the original data.

3. We should mention that the method of normal (l2) random projections was recently extended (Li et al.,
2010) to estimating lα distances for α = 4, 6, 8, ... in massive (static) data matrices.

493



Li Zhang

7. Conclusion

Many machine learning (e.g., neural computation, graph estimation) and data mining (e.g.,
anomaly detection) problems require estimating the Shannon entropy. When the data are
dynamic (e.g., data streams), efficient estimation of the Shannon entropy using small space
has been a challenging problem. It is known that we can approximate the Shannon entropy
using the α-th frequency moment of the stream with α very close to 1, if the estimator of the
moment is accurate enough with variance proportional to O(∆2), where ∆ = |1− α|. Our
paper provides such a practical estimator. Our method is an ideal solution to the problem
of entropy estimation when the data streams follow the strict-Turnstile model.

For ν-additive Shannon entropy estimation, the sample complexity of the algorithm is
only O

(
1
ν2

)
. The constant factor for this bound is merely about 6. In addition, we prove

that our algorithm achieves an upper bound of the Fisher information and in fact it is close
to 100% statistically optimal. An empirical study is also conducted to verify the accuracy
of our algorithm.

Further research: To further reduce the processing cost in order to better accommodate
high-rate data streams, it is desirable to replace the dense matrix of skewed stable variables
by a sparse matrix of Pareto-type variables. This is closely related to the prior study of
very sparse symmetric stable random projections (Li, 2007). However, the extension to CC
requires further work.
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Alfred Rényi. On measures of information and entropy. In The 4th Berkeley Symposium on
Mathematics, Statistics and Probability 1960, pages 547–561, 1961.

Constantino Tsallis. Possible generalization of boltzmann-gibbs statistics. Journal of Sta-
tistical Physics, 52:479–487, 1988.

Kuai Xu, Zhi-Li Zhang, and Supratik Bhattacharyya. Profiling internet backbone traffic:
behavior models and applications. In SIGCOMM ’05: Proceedings of the 2005 conference
on Applications, technologies, architectures, and protocols for computer communications,
pages 169–180, Philadelphia, Pennsylvania, USA, 2005.

Qiang Yang and Xindong Wu. 10 challeng problems in data mining research. International
Journal of Information Technology and Decision Making, 5(4):597–604, 2006.

Haiquan Zhao, Ashwin Lall, Mitsunori Ogihara, Oliver Spatscheck, Jia Wang, and Jun Xu.
A data streaming algorithm for estimating entropies of od flows. In IMC, San Diego, CA,
2007.

Haiquan Zhao, Nan Hua, Ashwin Lall, Ping Li, Jia Wang, and Jun Xu. Towards a universal
sketch for origin-destination network measurements. Technical report, 2010.

496


	Introduction
	Entropy, Moments, and Estimation Complexity
	Some Applications of Shannon Entropy
	Symmetric Stable Random Projections and Prior Work on Compressed Counting
	Another Perspective for Entropy Estimation

	The Proposed Algorithm
	More Intuition and Explanation
	Review Maximally-Skewed Stable Random Projections and Estimators
	The Geometric Mean Estimator
	The Harmonic Mean Estimator

	Limitations of the Geometric Mean and Harmonic Mean Estimators
	The Distribution Function
	One Intuition Behind the Proposed Algorithm

	Additional Technical Results
	The Moments of ()
	Statistical Optimality

	Experiments
	Data
	Estimating Shannon Entropies

	Comparisons with Conditional Random Sampling (CRS)
	Conclusion

