
JMLR: Workshop and Conference Proceedings 19 (2011) 515–536 24th Annual Conference on Learning Theory

Robust approachability and regret minimization in games
with partial monitoring

Shie Mannor shie@ee.technion.ac.il
Technion, Haifa
Israel

Vianney Perchet vianney.perchet@normalesup.org
Ecole normale supérieure, Cachan
France

Gilles Stoltz gilles.stoltz@ens.fr

Ecole Normale Supérieure – CNRS – INRIA, Paris

France

&

HEC Paris – CNRS, Jouy-en-Josas

France

Editor: Sham Kakade, Ulrike von Luxburg

Abstract

Approachability has become a standard tool in analyzing learning algorithms in the ad-
versarial online learning setup. We develop a variant of approachability for games where
there is ambiguity in the obtained reward that belongs to a set, rather than being a single
vector. Using this variant we tackle the problem of approachability in games with par-
tial monitoring and develop simple and efficient algorithms (i.e., with constant per-step
complexity) for this setup. We finally consider external and internal regret in repeated
games with partial monitoring, for which we derive regret-minimizing strategies based on
approachability theory.
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1. Introduction

Blackwell’s approachability theory and its variants has become a standard and useful tool
in analyzing online learning algorithms (Cesa-Bianchi and Lugosi, 2006) and algorithms for
learning in games (Hart and Mas-Colell, 2000, 2001). The first application of Blackwell’s
approachability to learning in the online setup is due to Blackwell himself in Blackwell
(1956b). Numerous other contributions are summarized in Cesa-Bianchi and Lugosi (2006).
Blackwell’s approachability theory enjoys a clear geometric interpretation that allows it to
be used in situations where online convex optimization or exponential weights do not seem
to be easily applicable and, in some sense, to go beyond the minimization of the regret
and/or to control quantities of a different flavor; e.g., in Mannor et al. (2009), to minimize
the regret together with path constraints, and in Mannor and Shimkin (2008), to minimize
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the regret in games whose stage duration is not fixed. Recently, it has been shown that
approachability and low regret learning are equivalent in the sense that efficient reductions
exist from one to the other (Abernethy et al., 2011). Another recent paper (Rakhlin et al.,
2011) showed that approachability can be analyzed from the perspective of learnability
using tools from learning theory.

In this paper we consider approachability and online learning with partial monitoring in
games against Nature. In partial monitoring the decision maker does not know how much
reward was obtained and only gets a (random) signal whose distribution depends on the
action of the decision maker and the action of Nature. There are two extremes of this setup
that are well studied. On the one extreme we have the case where the signal includes the
reward itself (or a signal that can be used to unbiasedly estimate the reward), which is
essentially the celebrated bandits setup. The other extreme is the case where the signal is
not informative (i.e., it tells the decision maker nothing about the actual reward obtained);
this setting then essentially consists of repeating the same situation over and over again,
as no information is gained over time. We consider a setup encompassing these situations
and more general ones, in which the signal is indicative of the actual reward, but is not
necessarily a sufficient statistics thereof. The difficulty is that the decision maker cannot
compute the actual reward he obtained nor the actions of Nature.

Regret minimization with partial monitoring has been studied in several papers in the
learning theory community. Piccolboni and Schindelhauer (2001); Mannor and Shimkin
(2003); Cesa-Bianchi et al. (2006) study special cases where an accurate estimation of the
rewards (or worst-case rewards) of the decision maker is possible thanks to some extra
structure. A general policy with vanishing regret is presented in Lugosi et al. (2008).
This policy is based on exponential weights and a specific estimation procedure for the
(worst-case) obtained rewards. In contrast, we provide approachability-based results for
the problem of regret minimization. On route, we define a new type of approachability
setup, with enables to re-derive the extension of approachability to the partial monitoring
vector-valued setting proposed by Perchet (2011a). More importantly, we provide concrete
algorithms for this approachability problem that are more efficient in the sense that, unlike
previous works in the domain, their complexity is constant over all steps. Moreover, their
rates of convergence are, as in Blackwell (1956b) but for the first time in this general
framework, independent of the game at hand. The paper is organized as follows. In Section 2
we recall some basic facts from approachability theory. In Section 3 we propose a novel setup
for approachability, termed “robust approachability,” where instead of obtaining a vector-
valued reward, the decision maker obtains a set, that represents the ambiguity concerning
his reward. We provide a simple characterization of approachable convex sets and an
algorithm for the set-valued reward setup. In Section 4 we show how to apply the robust
approachability framework to the repeated vector-valued games with partial monitoring. We
start in Section 4.1 with the case where the signaling structure is bi-piecewise linear. For this
important special case, we provide a simple and constructive algorithm. Previous results for
approachability in this setup were either non-constructive (Rustichini, 1999) or were highly
inefficient as they relied on some sort of lifting to the space of probability measures on mixed
actions (Perchet, 2011a) and typically required a grid that is progressively refined (leading
to a step complexity that is exponential in the number T of past steps). In Section 4.2 we
apply our results for both external and internal regret minimization with partial monitoring.
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In both cases our proofs are simple, lead to algorithms with constant complexity at each
step, and are accompanied with rates. Our results for external regret have rates similar to
Lugosi et al. (2008), but our proof is direct and simpler. For internal regret minimization
we present the first algorithm not relying on a grid being refined over time and the first
convergence rates. In Section 4.3 we mention the general signaling case and explain how it
is possible to approach certain special sets such as polytopes efficiently and general convex
sets inefficiently.

2. Some basic facts from approachability theory

In this section we recall the most basic versions of Blackwell’s approachability theorem for
vector-valued payoff functions.

We consider a vector-valued game between two players, a decision maker (first player)
and Nature (second player), with respective finite action sets A and B, whose cardinalities
are referred to as NA and NB. We denote by d the dimension of the reward vector and
equip Rd with the `2–norm ‖ · ‖2. The payoff function of the first player is given by a
mapping m : A × B → Rd, which is multi-linearly extended to ∆(A) × ∆(B), the set of
product-distributions over A× B.

We consider two frameworks, depending on whether pure or mixed actions are taken.

Pure actions taken and observed. We denote by A1, A2, . . . and B1, B2, . . . the
actions in A and B sequentially taken by each player; they are possibly given by randomized
strategies, i.e., the actions At and Bt were obtained by random draws according to respective
probability distributions denoted by xt ∈ ∆(A) and yt ∈ ∆(B). For now, we assume that
the first player has a full monitoring of the pure actions taken by the opponent player: at
the end of round t, when receiving the payoff m(At, Bt), the pure action Bt is revealed to
him.

Definition 1 A set C ⊆ Rd is m–approachable with pure actions if there exists a strategy1

of the first player such that for all strategies of the second player,

lim sup
T→∞

inf
c∈C

wwwwwc− 1

T

T∑
t=1

m
(
At, Bt

)wwwww
2

= 0 a.s.

That is, the first player has a strategy that ensures that the average of his vector-valued
payoffs converges to the set C.

Mixed actions taken and observed. In this case, we denote by x1, x2, . . . and
y1, y2, . . . the actions in ∆(A) and ∆(B) sequentially taken by each player. We also assume
a full monitoring for the first player: at the end of round t, when receiving the payoff
m(xt,yt), the mixed action yt is revealed to him.

1. The original definition given by Blackwell requires uniformity w.r.t. the strategy set of the opponent.
We ignore the uniformity to avoid excessive nomenclature.
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Definition 2 In this context, a set C ⊆ Rd is m–approachable with mixed actions if there
exists a strategy of the first player such that for all strategies of the second player,

lim sup
T→∞

inf
c∈C

wwwwwc− 1

T

T∑
t=1

m
(
xt,yt

)wwwww
2

= 0 a.s.

Necessary and sufficient condition for approachability. For closed convex sets
there is a simple characterization of approachability that is a direct consequence of the
minimax theorem; the condition is the same for the two settings, whether pure or mixed
actions are taken and observed.

Theorem 3 (Blackwell 1956a, Theorem 3) A closed convex set C ⊆ Rd is approach-
able (with pure or mixed actions) if and only if

∀y ∈ ∆(B), ∃x ∈ ∆(A), m(x,y) ∈ C .

In the latter case, an explicit strategy achieves the following convergence rates. We denote
by M a bound in norm over m, i.e.,

max
(a,b)∈A×B

wwm(a, b)
ww

2
6M .

With mixed actions taken and observed, for all strategies of the second player, with proba-
bility 1,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

m
(
xt,yt

)wwwww
2

6
2M√
T
.

With pure actions taken and observed, for all δ ∈ (0, 1) and for all strategies of the second
player, with probability at least 1− δ,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

m
(
At, Bt

)wwwww
2

6
2M√
T

(
1 + 2

√
ln(2/δ)

)
.

The proof is standard and is omitted from this article; it is detailed in the extended version
of this paper (Mannor et al., 2011a).

An associated strategy (that is efficient depending on the geometry of C).
Blackwell suggested a simple strategy with a geometric flavor.

Play an arbitrary x1. For t > 1, given the vector-valued quantities

m̂t =
1

t

t∑
τ=1

m(xτ , Bτ ) or m̂t =
1

t

t∑
τ=1

m(xτ ,yτ ) ,

depending on whether pure or mixed actions are taken and observed, compute the projection
ct (in `2–norm) of m̂t on C. Find a mixed action xt+1 that solves the minimax equation

min
x∈∆(A)

max
y∈∆(B)

〈
m̂t − ct,m(x,y)

〉
, (1)
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where 〈 · , · 〉 is the Euclidian inner product in Rd. The minimax problem above is easily
seen to be a (scalar) zero-sum game and is therefore efficiently solvable using, e.g., linear
programming: the associated complexity is polynomial in NA and NB. All in all, this
strategy is efficient as soon as the computations of the required projections onto C in `2–
norm can be performed efficiently.

In the case when pure actions are taken and observed, it only remains to draw At+1 at
random according to xt+1.

3. Robust approachability

In this section we extend the results of the previous section to set-valued payoff functions.
To this end, we denote by S

(
Rd
)

the set of all subsets of Rd and consider a set-valued payoff
function m : A× B → S

(
Rd
)
.

Pure actions taken and observed. At each round t, the players choose simultaneously
respective actions At ∈ A and Bt ∈ B, possibly at random according to mixed distributions
xt and yt. Full monitoring still takes place for the first player: he observes Bt at the end
of round t. However, as a result, the first player gets the subset m(At, Bt) as a payoff. This
models the ambiguity or uncertainty associated with some true underlying payoff gained.

We extend m multi-linearly to ∆(A) × ∆(B) and even to ∆(A × B), the set of joint
probability distributions on A× B, as follows. Let

µ =
(
µa,b

)
(a,b)∈A×B

be such a joint probability distribution; then m(µ) is defined as a finite convex combination2

of subsets of Rd,
m(µ) =

∑
a∈A

∑
b∈B

µa,bm(a, b) .

When µ is the product-distribution of some x ∈ ∆(A) and y ∈ ∆(B), we use the notation
m(µ) = m(x,y).

We denote by

πT =
1

T

T∑
t=1

δ(At,Bt)

the empirical distribution of the pairs (At, Bt) of actions taken during the first T rounds
and will be interested in the behavior of

1

T

T∑
t=1

m(At, Bt) ,

which can also be rewritten here in a compact way as m(πT ), by linearity of the extension
of m.

2. For two sets S, T and α ∈ [0, 1], the convex combination αS + (1− α)T is defined as{
αs+ (1− α)t, s ∈ S and t ∈ T

}
.
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Definition 4 Let C ⊆ Rd be some set; C is m–approachable with pure actions if there exists
a strategy of the first player such that for all strategies of the second player,

lim sup
T→∞

sup
d∈m(πT )

inf
c∈C
‖c− d‖2 = 0 a.s.

That is, when C is m–approachable with pure actions, the first player has a strategy
that ensures that the average of the sets of payoffs converges to the set C: the sets m(πT )
are included in εT –neighborhoods of C, where the sequence of εT tends almost-surely to 0.

Mixed actions taken and observed. At each round t, the players choose simulta-
neously respective mixed actions xt ∈ ∆(A) and yt ∈ ∆(B). Full monitoring still takes
place for the first player: he observes yt at the end of round t; he however gets the subset
m(xt,yt) as a payoff (which, again, accounts for the uncertainty).

The product-distribution of two elements x = (xa)a∈A ∈ ∆(A) and y = (yb)b∈B ∈ ∆(B)
will be denoted by x⊗y; it gives a probability mass of xayb to each pair (a, b) ∈ A×B. We
consider the empirical joint distribution of mixed actions taken during the first T rounds,

νT =
1

T

T∑
t=1

xt ⊗ yt ,

and will be interested in the behavior of

1

T

T∑
t=1

m(xt,yt) ,

which can also be rewritten here in a compact way as m(νT ), by linearity of the extension
of m.

Definition 5 Let C ⊆ Rd be some set; C is m–approachable with mixed actions if there
exists a strategy of the first player such that for all strategies of the second player,

lim sup
T→∞

sup
d∈m(νT )

inf
c∈C
‖c− d‖2 = 0 a.s.

A useful continuity lemma. Before proceeding we provide a continuity lemma. It can
be reformulated as indicating that for all joint distributions µ and ν over A × B, the set
m(µ) is contained in a M ‖µ− ν‖1–neighborhood of m(ν), where M is a bound in `2–norm
on m; this is a fact that we will use repeatedly below.

Lemma 6 Let µ and ν be two probability distributions over A × B. We assume that the
set-valued function m is bounded in norm by M , i.e., that there exists a real number M > 0
such that

∀(a, b) ∈ A× B, sup
d∈m(a,b)

‖d‖2 6M .

Then
sup

d∈m(µ)
inf

c∈m(ν)
‖d− c‖2 6M ‖µ− ν‖1 6M

√
NANB ‖µ− ν‖2 ,

where the norms in the right-hand side are respectively the `1 and `2–norms between proba-
bility distributions.
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Proof Let d be an element of m(µ); it can be written as

d =
∑
a∈A

∑
b∈B

µa,b θa,b

for some elements θa,b ∈ m(a, b). We consider

c =
∑
a∈A

∑
b∈B

νa,b θa,b ,

which is an element of m(ν). Then by the triangle inequality,

‖d− c‖2 =

wwwww∑
a∈A

∑
b∈B

(
µa,b − νa,b

)
θa,b

wwwww
2

6
∑
a∈A

∑
b∈B

∣∣µa,b−νa,b∣∣ ‖θa,b‖2 6M ∑
a∈A

∑
b∈B

∣∣µa,b−νa,b∣∣ .
This entails the first claimed inequality. The second one follows from an application of the
Cauchy-Schwarz inequality.

Necessary and sufficient condition for approachability. We state the condition in
the theorem below, as well as the associated convergence rates. Explicit strategies can be
deduced from the proof, which is based on Theorem 3; these strategies are efficient as soon
as projections in `2–norm onto the set C̃ defined in (3) can be computed efficiently. The
latter fact depends on the respective geometries of m and C.

Theorem 7 Suppose that the set-valued function m is bounded in norm by M . A closed
convex set C ⊆ Rd is approachable (with pure or mixed actions) if and only if the following
robust approachability condition is satisfied,

∀y ∈ ∆(B), ∃x ∈ ∆(A), m(x,y) ⊆ C . (RAC)

In the latter case, the following convergence rates are achieved by a strategy constructed in
the proof. With mixed actions taken and observed, for all strategies of the second player,
with probability 1,

sup
d∈m(νT )

inf
c∈C
‖c− d‖2 6

2M√
T

√
NANB .

With pure actions taken and observed, for all δ ∈ (0, 1) and for all strategies of the second
player, with probability at least 1− δ,

sup
d∈m(πT )

inf
c∈C
‖c− d‖2 6

2M√
T

√
NANB

(
1 + 2

√
ln(2/δ)

)
.

Proof that Condition (RAC) is necessary. If the condition does not hold, then there
exists y0 ∈ ∆(B) such that for every x ∈ A, the set m(x,y0) is not included in C, i.e., it
contains at least one point not in C. We then define a mapping D : ∆(A)→ R by

∀x ∈ ∆(A), D(x) = sup
d∈m(x,y0)

inf
c∈C
‖c− d‖2 .
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Since C is closed, distances of given individual points to C are achieved; therefore, by the
choice of y0, we get that D(x) > 0 for all x ∈ ∆(A).

We now show thatD is continuous on the compact set ∆(A); it thus attains its minimum,
whose value we denote by Dmin > 0. More precisely, it suffices to show that for all x, x′ ∈
∆(A), the condition ‖x′ − x‖1 6 ε implies that D(x)−D(x′) 6Mε. Indeed, fix δ > 0 and
let dδ,x ∈ m(x,y0) be such that

D(x) 6 inf
c∈C

wwc− dδ,xww2
+ δ . (2)

By Lemma 6 (with the choices µ = x ⊗ y0 and ν = x′ ⊗ y0) there exists dδ,x′ ∈ m(x′,y0)
such that

wwdδ,x − dδ,x′
ww

2
6Mε+ δ. The triangle inequality entails that

inf
c∈C

wwc− dδ,xww2
6 inf

c∈C

wwc− dδ,x′
ww

2
+Mε+ δ .

Substituting in (2), we get that

D(x) 6Mε+ 2δ + inf
c∈C

wwc− dδ,x′
ww

2
6Mε+ 2δ +D(x′) ,

which, letting δ → 0, proves our continuity claim.
Assume now that the second player chooses at each round yt = y0 as his mixed action.

In the case of mixed actions taken and observed, denoting

xT =
1

T

T∑
t=1

xt ,

we get that νt = xT ⊗ y0, and hence, for all strategies of the first player and for all T > 1,

sup
d∈m(νT )

inf
c∈C
‖c− d‖2 = D(xT ) > Dmin > 0 ,

which shows that C is not approachable. The case of pure actions taken and observed is
treated similarly, with the sole addition of a concentration argument. By repeated uses of
the Hoeffding-Azuma inequality together with an application of the Borel-Cantelli lemma,
δT = ‖πT − νT ‖1 → 0 almost surely as T →∞. By applying Lemma 6 as above, we get

sup
d∈m(πT )

inf
c∈C
‖c− d‖2 > sup

d∈m(νT )
inf
c∈C
‖c− d‖2 −MδT > Dmin −MδT ;

we simply take the lim inf in the above inequalities to conclude the argument.

Proof that Condition (RAC) is sufficient. We first show that there exists a strategy
of the first player such that, for all strategies of the opponent player, the sequences (πT ) or
(νT ) of the empirical distributions of actions converge to the set

C̃ =
{
µ ∈ ∆(A× B) : m(µ) ⊆ C

}
(3)

in `2–norm, at the rates prescribed by Theorem 3.
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To do so, we identify probability distributions over A × B with vectors in RA×B and
consider the vector-valued payoff function

m : (a, b) ∈ A× B 7−→ δ(a,b) ∈ RA×B ,

which we extend multi-linearly to ∆(A)×∆(B). We have that

πT =
1

T

T∑
t=1

m(At, Bt) and νT =
1

T

T∑
t=1

m(xt,yt)

and we therefore only need to show that C̃ is m–approachable (with pure or mixed actions).
Since m is a linear function on ∆(A × B) and C is convex, the set C̃ is convex as well.

In addition, since C is closed, C̃ is also closed. We can therefore apply the original version
of the approachability theorem (stated in Theorem 3). The desired existence result follows
therefore from the fact that by assumption, for all y ∈ ∆(B), there exists some x ∈ ∆(A)
such that µ = m(x,y), the product-distribution between x and y, belongs to C̃, as it
satisfies m(µ) = m(x,y) ⊆ C.

Let PC̃ denote the projection operator onto C̃. We therefore have proved the existence of
explicit (and possibly efficient) strategies—along the lines of the ones presented around (1)—
such that, for all strategies of the second player, with probability 1− δ,

εT :=
wwwπT − PC̃(πT )

www
2

= inf
µ∈C̃
‖πT − µ‖2 6

2√
T

(
1 +

√
2 ln(2/δ)

)
,

and with probability 1, ε′T :=
wwwνT − PC̃(νT )

www
2

= inf
µ∈C̃
‖νT − µ‖2 6

2√
T
.

Lemma 6 entails that the sets m(πT ) are included in M
√
NANB εT –neighborhoods of

m
(
PC̃(πT )

)
, and thus, by definition of C̃, in M

√
NANB εT –neighborhoods of C. A similar

statement holds for the sets the sets m(νT ) and this completes the proof.

4. Application to games with partial monitoring

A repeated vector-valued game with partial monitoring is described as follows (see, e.g.,
Mertens et al., 1994; Rustichini, 1999 and the references therein). The players have respec-
tive finite action sets I and J . We denote by r : I × J → Rd the vector-valued payoff
function of the first player and extend it multi-linearly to ∆(I) × ∆(J ). At each round,
players simultaneously choose their actions It ∈ I and Jt ∈ J , possibly at random accord-
ing to probability distributions denoted by pt ∈ ∆(I) and qt ∈ ∆(J ). At the end of a
round, the first player does not observe Jt or r(It, Jt) but only a signal. There is a finite set
H of possible signals; the feedback St that is given to the first player is drawn at random
according to the distribution H(It, Jt), where the mapping H : I ×J → ∆(H) is known by
the first player.

Some additional notation will be useful. We denote by R the norm of (the linear exten-
sion of) r,

R = max
(i,j)∈I×J

wwr(i, j)ww
2
.
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The cardinalities of the finite sets I, J , and H will be referred to as NI , NJ , and NH.
Definition 1 can be extended as follows in this setting; the only new ingredient is the

signaling structure, the aim is unchanged.

Definition 8 Let C ⊆ Rd be some set; C is r–approachable for the signaling structure H if
there exists a strategy of the first player such that for all strategies of the second player,

lim sup
T→∞

inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

= 0 a.s.

That is, the first player has a strategy that ensures that the sequence of his average vector-
valued payoffs converges to the set C, even if he only observes the random signals St as a
feedback.

A necessary and sufficient condition for r–approachability with the signaling structure
H was stated and proved by Perchet (2011a); we therefore need to indicate where our
contribution lies. First, both proofs are constructive but our strategy can be efficient (as
soon as some projection operator can be efficiently implemented) whereas the one of Perchet
(2011a) relies on auxiliary strategies that are calibrated and that require a grid that is
progressively refined to be so (leading to a step complexity that is exponential in the number
T of past steps). Second, we are able to exhibit convergence rates. Third, as far as elegancy
is concerned, our proof is short, compact, and more direct than the one of Perchet (2011a),
which relied on several layers of complicated notions (internal regret in games with partial
monitoring, calibration of auxiliary strategies, etc.).

To recall the mentioned approachability condition of Perchet (2011a) we need some
additional notation: for all q ∈ ∆(J ), we denote by H̃(q) the element in ∆(H)I defined as
follows. For all i ∈ I, its i–th component is given by the following convex combination of
probability distributions over H,

H̃(q)i = H(i, q) =
∑
j∈J

qjH(i, j) .

Finally, we denote by F the set of feasible vectors of probability distributions over H:

F =
{
H̃(q) : q ∈ ∆(J )

}
.

A generic element of F will be denoted by σ ∈ F . The necessary and sufficient condition
exhibited by Perchet (2011a) for the r–approachability of C for the signaling structure H
can now be recalled.

Condition 1 The signaling structure H, the vector-payoff function r, and the set C satisfy

∀ q ∈ ∆(J ), ∃p ∈ ∆(I), ∀ q′ ∈ ∆(J ), H̃(q) = H̃(q′) ⇒ r(p, q′) ∈ C .

Defining the set-valued function m, for all p ∈ ∆(I) and σ ∈ F , by

m(p, σ) =
{
r(p, q′) : q′ ∈ ∆(J ) such that H̃(q′) = σ

}
,

the condition can be equivalently reformulated as

∀σ ∈ F , ∃p ∈ ∆(I), m(p, σ) ⊆ C .
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This condition is necessary. The subsequent sections show (in a constructive way
and by constructing strategies) that Condition 1 is sufficient for r–approachability of closed
convex sets C given the signaling structure H. That this condition is necessary was already
proved in Perchet (2011a); a slightly simpler argument can however be found in the extended
version of this paper (Mannor et al., 2011a).

4.1. Approachability in bi-piecewise linear games

In this section we consider the case where the signaling structure has some special property
described below; the case of general signaling structures is considered in Section 4.3.

To define bi-piecewise linearity of a game, we start from a technical lemma that is
needed to show that m(p, σ) can be written as a finite convex combination of sets of the
form m(p, b), where b belongs to some finite set B ⊆ F that depends on the game. Under
the additional assumption of piecewise-linearity of the thus defined mappings m( · , b), we
then describe a (possibly) efficient strategy for approachability followed by convergence rate
guarantees.

4.1.1. Bi-piecewise linearity of a game – A preliminary technical result

With general signaling structures, m is not linear, it only satisfies that for all p ∈ ∆(I), all
pairs σ, σ′ ∈ F , and all α ∈ [0, 1],

αm(p, σ) + (1− α)m(p, σ′) ⊆ m
(
p, ασ + (1− α)σ′

)
,

with a strict inclusion in general. (Specific examples can be provided.) Therefore, a direct
appeal to Theorem 7 is not possible.

However, a suitable linearity property on a lifted finite set is almost given by the geo-
metric lemma stated below. It follows from an application of Rambau and Ziegler (1996,
Proposition 2.4), which entails that since H̃ is linear on the polytope ∆(J ), its inverse
application H̃−1 is a piecewise linear mapping of F into the subsets of ∆(J ); the detailed
proof can be found in the extended version of this paper (Mannor et al., 2011a,b).

Lemma 9 For any game of partial monitoring, there exists a finite set B ⊂ F and a
piecewise-linear (injective) mapping Φ : F → ∆(B) such that

∀σ ∈ F , ∀p ∈ ∆(I), m(p, σ) =
∑
b∈B

Φb(σ)m(p, b) ,

where we denoted the convex weight vector Φ(σ) ∈ ∆(B) by
(
Φb(σ)

)
b∈B.

The results of this subsection will rely on the following assumption.

Assumption 1 A game is bi-piecewise linear if m( · , b) is piecewise linear on ∆(I) for
every b ∈ B.

Assumption 1 means that for all b ∈ B there exists a decomposition of ∆(I) into
polytopes each on which m( · , b) is linear. Since B is finite, there exists a finite number of
such decompositions, and thus there exists a polytopial decomposition that refines all of

525



Mannor Perchet Stoltz

them. (The latter is generated by the intersection of all considered polytopes as b varies.) By
construction, every m( · , b) is linear on any of the polytopes of this common decomposition.
We denote by A ⊂ ∆(I) the finite subset of all their vertices: a construction similar to
the one used in the proof of Lemma 9 then leads to a piecewise linear (injective) mapping
Θ : ∆(I)→ ∆(A), where Θ(p) is the decomposition of p on the vertices of the polytope(s)
of the decomposition to which it belongs, satisfying

∀ b ∈ B, ∀p ∈ ∆(I), m(p, b) =
∑
a∈A

Θa(p)m(a, b) ,

where we denoted the convex weight vector Θ(p) ∈ ∆(B) by
(
Θa(p)

)
a∈A. Therefore, on a

lifted space, m is seen to coincide with a bi-linear mapping.

Definition 10 We denote by m the linear extension to ∆(A × B) of the restriction of m
to A× B, so that for all p ∈ ∆(I) and σ ∈ F ,

m(p, σ) = m
(
Θ(p), Φ(σ)

)
.

4.1.2. Construction of a strategy to approach C

The approaching strategy for the original problem is based on a strategy Ψ form–approachability
of C, provided by Theorem 7 and thus solving repeatedly minimax problems of the form (1).
We therefore first need to prove the existence of such a Ψ.

Lemma 11 Under Condition 1, the closed convex set C is m–robust approachable.

Proof We show that Condition (RAC) in Theorem 7 is satisfied, that is, that for all
y ∈ ∆(B), there exists some x ∈ ∆(A) such that m(x,y) ⊆ C. With a given such y ∈ ∆(B),
we associate the feasible vector of signals σ =

∑
b∈B yb b and let p be given by Condition 1,

so3 that m(p, σ) ⊂ C. By linearity of m (for the first equality), by definition of m (for the
first inclusion), by Lemma 9 (for the second and fourth equalities), by construction of A
(for the third equality),

m
(
Θ(p),y

)
=
∑
a∈A

Θa(p)
∑
b∈B

ybm(a, b) ⊆
∑
a∈A

Θa(p)m(a, σ) =
∑
a∈A

Θa(p)
∑
b∈B

Φb(σ)m(a, b)

=
∑
b∈B

Φb(σ)m(p, b) = m(p, σ) ⊂ C ,

which concludes the proof.

We consider the strategy described in Figure 1. It forces exploration at a γ rate, as is
usual in situations with partial monitoring. One of its key ingredient, that conditionally
unbiased estimators are available, is extracted from Lugosi et al. (2008, Section 6): in block
n we consider

Ĥt =
I{St=s}I{It=i}

pIt,n
∈ RH×I ;

3. Note however that we do not necessarily have that Φ(σ) and y are equal, as Φ is not a one-to-one
mapping.
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Parameters: an integer block length L > 1, an exploration parameter γ ∈ [0, 1], a strategy Ψ for
m–approachability of C
Notation: u ∈ ∆(I) is the uniform distribution over I, PF denotes the projection operator in `2–
norm of RH×I onto F
Initialization: compute the finite set B and the mapping Φ : F → ∆(B) of Lemma 9, pick an
arbitrary θ1 ∈ ∆(A)

For all blocks n = 1, 2, . . .,

1. define xn =
∑

a∈A θn,a a and pn = (1− γ)xn + γ u;

2. for rounds t = (n− 1)L+ 1, . . . , nL,

2.1 drawn an action It ∈ I at random according to pn;

2.2 get the signal St;

3. form the estimated vector of probability distributions over signals,

σ̃n =

 1

L

nL∑
t=(n−1)L+1

I{St=s}I{It=i}

pIt,n


(i,s)∈I×H

;

4. compute the projection σ̂n = PF
(
σ̃n
)
;

5. choose θn+1 = Ψ
(
θ1, Φ

(
σ̂1
)
, . . . , θn, Φ

(
σ̂n
))
.

Figure 1: The proposed strategy, which plays in blocks.

averaging over the respective random draws of It and St according to pn and H(It, Jt), i.e.,
taking the conditional expectation Et with respect to pn and Jt, we get

Et
[
Ĥt

]
= H̃

(
δJt
)
. (4)

This is why, by concentration-of-the-measure argument, we will be able to show that for L
large enough, σ̃n is close to H̃

(
q̂n
)
, where

q̂n =
1

L

nL∑
t=(n−1)L+1

δJt . (5)

Actually, since F ⊆ ∆(H)I , we have a natural embedding of F into RH×I and we can define
PF , the convex projection operator onto F (in `2–norm). Instead of using directly σ̃n, we
consider in our strategy σ̂n = PF

(
σ̃n
)
, which is even closer to H

(
q̂n
)
.

4.1.3. Performance guarantee

We provide a performance bound for fixed parameters γ and L tuned as functions of T . The
proof is provided in the extended version of this paper (Mannor et al., 2011a,b). Adaptation
to T →∞ can be performed either by resorting to a standard doubling trick (see, e.g., Cesa-
Bianchi and Lugosi 2006, page 17) or by taking time-varying parameters γt and Lt.
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Theorem 12 Consider a closed convex set C and a game (r,H) for which Condition 1 is
satisfied and that is bi-piecewise linear in the sense of Assumption 1. Then, for all T > 1,
the strategy of Figure 1, run with parameters L =

⌈
T 3/5

⌉
and γ = T−1/5 and fed with a

strategy Ψ for m–approachability of C (provided by Lemma 11) is such that, with probability
at least 1− δ,

inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

6 �

(
T−1/5

√
ln
T

δ
+ T−2/5 ln

T

δ

)

for some constant � depending only on C and on the game (r, H) at hand.

The efficiency of the strategy of Figure 1 depends on whether it can be fed with an
efficient approachability strategy Ψ, which in turn depends on the respective geometries of
m and C, as was indicated before the statement of Theorem 7. (Note that the projection onto
F can be performed in polynomial time, as the latter closed convex set is defined by finitely
many linear constraints, and that the computation of m can be performed beforehand.)

4.2. Application to regret minimization

In this section we analyze external and internal regret minimization in repeated games
with partial monitoring from the approachability perspective. Using the results developed
for vector-valued games with partial monitoring, we show how to—in particular—minimize
regret in both setups.

4.2.1. External regret

We consider in this section the framework and aim introduced by Rustichini (1999) and
studied, sometimes in special cases, by Piccolboni and Schindelhauer (2001); Mannor and
Shimkin (2003); Cesa-Bianchi et al. (2006); Lugosi et al. (2008). We show that our general
strategy can be used for regret minimization.

Scalar payoffs are obtained (but not observed) by the first player: the payoff function r
is a mapping I × J → R; we still denote by R a bound on |r|. We define in this section

q̂T =
1

T

T∑
t=1

δJT

as the empirical distribution of the actions taken by the second player. The external regret
of the first player at round T equals by definition

Rext
T = max

p∈∆(I)
ρ
(
p, H̃

(
q̂T
))
− 1

T

T∑
t=1

r(It, Jt) ,

where ρ : ∆(I)×F is defined as follows: for all p ∈ ∆(I) and σ ∈ F ,

ρ(p, σ) = min
{
r(p, q) : q such that H̃(q) = σ

}
.

The function ρ is continuous in its first argument and therefore the supremum in the defining
expression of Rext

T is a maximum.
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We recall briefly why, intuitively, this is the natural notion of external regret to consider
in this case. Indeed, the first term in the definition of Rext

T is (close to) the worst-case
average payoff obtained by the first player when playing consistently a mixed action p
against a sequence of mixed actions inducing the same laws on the signals.

The following result is an easy consequence of Theorem 12, as is explained below; it
corresponds to the main result of Lugosi et al. (2008), with the same convergence rate
but with a different strategy. (However, Perchet 2011b, Section 2.3 exhibited an efficient
strategy achieving a convergence rate of order T−1/3, which is optimal; a question is thus
whether the rates exhibited in Theorem 12 could be improved.)

Corollary 13 For all T , the first player has a strategy such that, for all strategies of the
second player and with probability at least 1− δ,

Rext
T 6 �

(
T−1/5

√
ln
T

δ
+ T−2/5 ln

T

δ

)

for some constant � depending only on the game (r, H) at hand.

The proof below is an extension to the setting of partial monitoring of the original proof
and strategy of Blackwell (1956b) for the case of external regret under full monitoring: in
the case of full monitoring the vector-payoff function r and the set C considered in our proof
are equal to the ones considered by Blackwell.

Proof We embed F into RH×I so that in this proof we will be working in the vector space
R × RH×I . We consider the closed convex set C and the vector-valued payoff function r
respectively defined by

C =

{
(z, σ) ∈ R×F : z > max

p∈∆(I)
ρ(p, σ)

}
and r(i, j) =

[
r(i, j)

H̃(δj)

]
,

for all (i, j) ∈ I × J .
We now first show that Assumption 1 is satisfied. To do so, we will actually prove the

stronger property that the mappings m(·, σ) are piecewise linear for all σ ∈ F ; we fix such
a σ in the sequel. Only the first coordinate of r depends on p, so the desired property is
true if and only if the mapping m1( · , σ) defined by

p ∈ ∆(I) 7−→ m1(p, σ) =
{
r(p, q′) : q ∈ ∆(J ) such that H̃(q) = σ

}
is piecewise linear. Since H̃ is linear, the set{

q ∈ ∆(J ) such that H̃(q) = σ
}

is a polytope, thus, the convex hull of some finite set {qσ,1, . . . , qσ,M} ⊂ ∆(J ). Therefore,
for every p ∈ I, by linearity of r (and by the fact that it takes one-dimensional values),

m1(p, σ) = co
{
r(p, qσ,1), . . . , r(p, qσ,M )

}
=

[
min

k∈{1,..,M}
r(p, qσ,k) , max

k′∈{1,..,M}
r(p, qσ,k′)

]
,
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where co stands for the convex hull. Since all applications r( · , qσ,k) are linear, their min-
imum and their maximum are piecewise linear functions, thus m1( · , σ) is also piecewise
linear.

We then show that Condition 1 is satisfied for the considered convex set C and game
(r,H). To do so, we associate with each q ∈ ∆(J ) an element φ(q) ∈ ∆(I) such that

φ(q) ∈ argmax
p∈∆(I)

ρ
(
p, H̃(q)

)
.

Then, given any q ∈ ∆(J ), we note that for all q′ satisfying H̃(q′) = H̃(q), we have, by
definition of ρ,

r
(
φ(q), q′

)
> ρ
(
φ(q), H̃(q′)

)
= max

p∈∆(I)
ρ
(
p, H̃(q′)

)
,

which shows that r
(
φ(q), q′

)
∈ C. The required condition is thus satisfied.

Theorem 12 can therefore be applied to exhibit the convergence rates; we simply need
to relate the quantity of interest here to the one considered therein. To that end we use the
fact that the mapping

σ ∈ F 7−→ max
p∈∆(I)

ρ(p, σ)

is Lipschitz, with Lipschitz constant in `2–norm denoted by Lρ; the proof of this fact is
detailed in the extended version of this paper (Mannor et al., 2011a,b). Now, the regret is
non positive as soon as

∑T
t=1 r(It, Jt)/T belongs to C; we therefore only need to consider the

case when this average is not in C. In the latter case, we denote by (r̃T , σ̃T ) its projection in
`2–norm onto C. We have first that the defining inequality of C is an equality on its border,
so that

r̃T = max
p∈∆(I)

ρ
(
p, σ̃T

)
;

and second, that

Rext
T = max

p∈∆(I)
ρ
(
p, H̃

(
q̂T
))
− 1

T

T∑
t=1

r(It, Jt)

6

∣∣∣∣ max
p∈∆(I)

ρ
(
p, H̃

(
q̂T
))
− max

p∈∆(I)
ρ
(
p, σ̃T

)∣∣∣∣+

∣∣∣∣∣ r̃T − 1

T

T∑
t=1

r(It, Jt)

∣∣∣∣∣
6 Lρ

wwwH̃(q̂T )− σ̃Twww
2

+

∣∣∣∣∣ r̃T − 1

T

T∑
t=1

r(It, Jt)

∣∣∣∣∣
6
√

2 max
{
Lρ, 1

} wwwww
[
r̃T
σ̃T

]
− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

=
√

2 max
{
Lρ, 1

}
inf
c∈C

wwwwwc− 1

T

T∑
t=1

r(It, Jt)

wwwww
2

.

As claimed, the rates are now seen to follow from the ones indicated in Theorem 12.
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4.2.2. Internal / swap regret

Foster and Vohra (1999) defined internal regret with full monitoring as follows. A player
has no internal regret if, for every action i ∈ I, he has no external regret on the stages when
this specific action i was played. In other words, i is the best response to the empirical
distribution of action of the other player on these stages.

With partial monitoring, the first player evaluates his payoffs in some pessimistic way
through the function ρ defined above. This function is not linear over ∆(I) in general (it
is concave), so that the best responses are not necessarily pure actions i ∈ I but mixed
actions, i.e., elements of ∆(I). Following Lehrer and Solan (2007) we therefore should
partition the stages not depending on the pure actions actually played but on the mixed
actions pt ∈ ∆(I) used to draw them. To this end, it is convenient to assume that the
strategies of the first player need to pick these mixed actions in a finite (but possibly thin)
grid of ∆(I), which we denote by

{
pg, g ∈ G

}
, where G is a finite set. At each round, the

first player picks an index Gt ∈ G and uses the distribution pGt
to draw his action It. Up

to a standard concentration-of-the-measure argument, we will measure the payoff at round
t with r

(
pGt

, Jt
)

rather than with r(It, Jt).
For each g ∈ G, we denote by NT (g) the number of stages in {1, . . . , T} for which we

had Gt = g and, whenever NT (g) > 0,

q̂T,g =
1

NT (g)

∑
t:Gt=g

δJt .

We define q̂T,g is an arbitrary way when NT (g) = 0. The internal regret of the first player
at round T is measured as

Rint
T = max

g,g′∈G

NT (g)

T

(
ρ
(
pg′ , H̃

(
q̂T,g

))
− r
(
pg, q̂T,g

))
.

Actually, our proof technique rather leads to the minimization of some swap regret (see
Blum and Mansour, 2007 for the definition of swap regret in full monitoring):

Rswap
T =

∑
g∈G

NT (g)

T

(
max
g′∈G

ρ
(
pg′ , H̃

(
q̂T,g

))
− r
(
pg, q̂T,g

))
.

Again, the following bound on the swap regret easily follows from Theorem 12; the
latter constructs a simple and direct strategy to control the swap regret, thus also the
internal regret. It therefore improves on the results of Lehrer and Solan (2007); Perchet
(2009), two articles which presented complicated strategies to do so (strategies based on
auxiliary strategies using a grid that needs to be refined over time and whose complexities
is exponential in the size of these grids). Moreover, we provide convergence rates.

Corollary 14 For all T , the first player has an explicit strategy such that, for all strategies
of the second player and with probability at least 1− δ,

Rswap
T 6 �

(
T−1/5

√
ln
T

δ
+ T−2/5 ln

T

δ

)
for some constant � depending only on the game (r, H) at hand and on the size of the finite
grid G.
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The proof of this corollary is based on ideas similar to the ones used in the proof of
Corollary 13; it can be found in the extended version of this paper (Mannor et al., 2011a,b).

4.3. Approachability in the case of general games

Unfortunately, as is illustrated in the extended version of this paper (Mannor et al., 2011b),
there exist games with partial monitoring that are not bi-piecewise linear.

However, we will show that if Condition 1 holds there exist strategies with a constant
per-round complexity to approach polytopes even when the game is not bi-piecewise linear.
That is, by considering simpler closed convex sets C, no assumption is needed on the pair
(r,H). We will conclude this subsection by indicating that thanks to a doubling trick,
Condition 1 is still seen to be sufficient for approachability in the most general case when
no assumption is made neither on (r,H) nor on C, at the cost however of inefficiency.

4.3.1. Approachability of the negative orthant in the case of general
games

For the sake of simplicity, we start with the case of the negative orthant Rd−. Our argument
will be based on Lemma 9; we use in the sequel the objects and notation introduced therein.
We denote by r = (rk)16k6d the components of the d–dimensional payoff function r and
introduce, for all k ∈ {1, . . . , d}, the set-valued mapping m̃k defined by

m̃k : (p, b) ∈ ∆(I)× B 7−→ m̃k(p, b) =
{
rk(p, q) : q ∈ ∆(J ) such that H̃(q) = b

}
.

The mapping m̃ is then defined as the Cartesian product of the m̃k; formally, for all p ∈ ∆(I)
and b ∈ B,

m̃(p, b) =
{

(z1, . . . , zd) : ∀k ∈ {1, . . . , d}, zk ∈ m̃k(p, b)
}
.

We then linearly extend this mapping into a set-valued mapping m̃ defined on ∆(I)×∆(B)
and finally consider the set-valued mapping m̆ defined on ∆(I)×F by

∀ b ∈ B, ∀p ∈ ∆(I), m̆(p, σ) = m̃
(
p,Φ(σ)

)
=
∑
b∈B

Φb(σ) m̃(p, b) ,

where Φ refers to the mapping defined in Lemma 9. The lemma below indicates why m̆ is
an excellent substitute to m in the case of the approachability of the orthant Rd−.

Lemma 15 The set-valued mappings m̆ and m are linked by the following two properties:
for all p ∈ ∆(I) and σ ∈ F ,

1. the inclusion m(p, σ) ⊆ m̆(p, σ) holds;

2. if m(p, σ) ⊆ Rd−, then one also has m̆(p, σ) ⊆ Rd−.

The interpretations of these two properties are that 1. m̆–robust approaching a set C is
more difficult than m–robust approaching it; and 2. that if Condition 1 holds for m and
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Rd−, it also holds for m̆ and Rd−.

Proof For property 1., note that by construction of m̆,

∀ b ∈ B, ∀p ∈ ∆(I), m(p, b) ⊆ m̃(p, b) ;

Lemma 9 and the linear extension of m̃ then show that

∀σ ∈ F , ∀p ∈ ∆(I), m(p, σ) ⊆ m̃
(
p, Φ(σ)

)
= m̆(p, σ) .

As for property 2., it suffices to note that (by Lemma 9 again) the stated assumption
exactly means that

∑
b∈B Φb(σ)m(p, b) ⊂ Rd−. In particular, rewriting the non-positivity

constraint for each of the d components of the payoff vectors, we get∑
b∈B

Φb(σ) m̃k(p, b) ⊆ R− ,

for all k ∈ {1, . . . , d}; thus, in particular,
∑

b∈B Φb(σ) m̃(p, b) = m̆(p, σ) ⊆ Rd−.

We can then extend the result of the previous section as announced; note that no bi-
piecewise linearity assumption is needed on the game.

Theorem 16 If Condition 1 is satisfied for m and Rd−, then there exists a strategy for
(r,H)–approaching Rd− at a rate of the order of T−1/5, with a constant per-round complexity.

Proof (sketched) The assumption of the theorem and Property 2. of Lemma 15 imply
that Condition 1 holds for Rd− and m̆; furthermore, the latter corresponds to a bi-piecewise
linear game as can be seen by noting, similarly to what was done in the section devoted to
regret minimization, that each m̃k, thus also m̆, is a piecewise linear function. Thus, (the
proof of) Theorem 12 guarantees that C is m̆–robust approachable. Now, Property 1. of
Lemma 15 implies that any m̆–robust approachability strategy of C = Rd− is also a m–robust
approachability strategy. Therefore, C is m–robust approachable, hence, following again the
methodology used in the proof of Theorem 12, is also (r,H)–approachable.

4.3.2. Approachability of polytopes in the case of general games

If that the target set C is a polytope, then C can be written as the intersection of a finite
number of half-planes, i.e., there exits a finite family

{
(ek, fk) ∈ Rd×R, k ∈ K

}
such that

C =
{
z ∈ Rd : 〈z, ek〉 6 fk, ∀ k ∈ K

}
.

Given the original (not necessarily bi-piecewise linear) game (r,H), we introduce another
game (rC , H), whose payoff function rC : I × J → RK is defined as

∀ i ∈ I, ∀ j ∈ J , rC(i, j) =
[
〈r(i, j), ek〉 − fk

]
k∈K

.

The following lemma is an exercise of mere rewriting.
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Lemma 17 Given a polytope C, the (r,H)–approachability of C and the
(
rC , H

)
–approachability

of Rd− are equivalent in the sense that all strategies for one problem translates to a strategy
for the other problem.

In addition, Condition 1 holds for (r,H) and C if and only if it holds for
(
rC , H

)
and

Rd−.

Via the lemma above, Theorem 16 indicates that Condition 1 for (r,H) and C is a
sufficient condition for the (r,H)–approachability of C and provides a strategy to do so.

4.3.3. Approachability of general convex sets in the case of general games

A general closed convex set can always be approximated arbitrarily well by a polytope
(where the number of vertices of the latter however increases as the quality of the approx-
imation does). There, via a doubling trick, Condition 1 is also seen to be sufficient to
(r,H)–approach any general closed convex set C, However, the computational complexity
of the resulting strategy is much larger: the per-round complexity increases over time (as
the numbers of vertices of the approximating polytopes do).
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