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Abstract

To what extent is learnability impeded when information is missing in learning instances?
We present relevant known results and concrete open problems, in the context of a natural
extension of the PAC learning model that accounts for arbitrarily missing information.
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1. Learning from Partial Observations

In the PAC learning model (Valiant, 1984), examples are drawn from some unknown fixed
probability distribution D over {0, 1}n. A boolean-valued label for each example is deter-
mined by applying an unknown fixed target function f ∈ C on the example; the class C of
all such targets is the concept class. Given access to a set of labeled examples during a
training phase, a learner seeks to produce, efficiently and with high probability, a hypothe-
sis function h ∈ H that predicts, with high probability, the labels of examples drawn from
D and labeled according to f ; the class H of all such hypotheses is the hypothesis class.

Explicit in the definition of the PAC learning model is the requirement that each exam-
ple offers sufficient information to determine its label; the primary challenge of learning is,
thus, to efficiently identify how to determine the label. In certain settings (e.g., in a typical
medical database), however, not all information necessary to determine the label is available
in an example (e.g., due to medical tests that were not performed). Furthermore, this hap-
pens during both the training and the testing phase, and the manner in which information is
missing may critically depend on the information itself. In the spirit of supervised learning,
we consider only settings where example labels are never missing during the training phase.

These partial (but noiseless) views of examples we shall call observations. We represent
them as ternary vectors obs ∈ {0, 1, ∗}n, with the value ∗ indicating that the corresponding
attribute was not observed. Examples are mapped to observations through a masking
process, a stochastic process mask : {0, 1}n → {0, 1, ∗}n that induces a probability distri-
bution over observations, which may depend on the example being mapped. The noiseless
nature of observations implies that whenever an observation obs is drawn from mask(exm),
it holds that obs[i] ∈ {exm[i], ∗}, where obs[i] and exm[i] correspond, respectively, to the
value of the i-th attribute according to obs and exm. Such an observation obs is said to
mask the example exm, and each attribute with obs[i] = ∗ is said to be masked in obs.

Each observation is assumed to be drawn from the oracle sense(D; f ; mask) in unit time,
by means of the following process: (i) an example exm is drawn from D; (ii) the label of exm
is computed to be f(exm); (iii) an observation obs that masks exm is drawn from mask(exm);
(iv) the label of obs is assigned to equal f(exm); (v) both obs and f(exm) are returned.
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As in the PAC learning model, a learner in the model that we consider seeks to produce
a hypothesis for predicting the labels. The hypothesis is a boolean-valued function over the
boolean attributes, and encodes (learned) knowledge about the structure of the underlying
examples — not knowledge about the structure of observations and the way the masking
process hides information (cf. Schuurmans and Greiner, 1994). The PAC learning model can
be viewed as the special case of this model when the masking process mask is an identity.

Since a hypothesis h is defined over boolean attributes but evaluated on observations, its
prediction h(obs) on observation obs may possibly remain undefined; this occurs exactly
when h(exm) is not constant across all examples exm masked by obs. In such a case, h
abstains from making a prediction. Abstentions are not penalized, as they are not actively
chosen by the hypothesis. We shall say that a hypothesis h has a consistency conflict
with an observation obs if h does not abstain, and h(obs) differs from the label of obs.

A hypothesis h is ε-inconsistent w.r.t. oracle sense(D; f ; mask) if h has a consistency
conflict with an observation obs drawn from sense(D; f ; mask) with probability at most ε.

Definition 1 A concept class C is consistently learnable by a hypothesis class H if there
exists an algorithm L such that for every natural number n, every probability distribution
D over {0, 1}n, every target function f ∈ C over n attributes, every masking process mask

over n attributes, and every pair of real numbers δ, ε ∈ (0, 1], algorithm L is such that:

given the parameters n, C, H, δ, ε as input, and given access to the oracle sense(D; f ; mask),
algorithm L runs in time polynomial in n, 1/δ, 1/ε, and the size of f , and returns, with
probability at least 1− δ, a hypothesis h ∈ H that is ε-inconsistent w.r.t. sense(D; f ; mask).

The definition of consistent learnability insists that the typical PAC guarantees hold, but
for every masking process. It is worth pointing out that the resulting learning requirements
are not overly demanding, since exactly when learnability may suffer due to less information
in observations, hypotheses may abstain more and avoid consistency conflicts. Abstentions
cannot, however, be abused, as they cannot be actively invoked. It is the masking process
that effectively determines when hypotheses abstain, and this is beyond the learner’s control.

The model of consistent learnability presented herein is a special case of the autodidactic
learning model (Michael, 2008, 2010), where there is no distinguished label for observations,
and the aim of the learning process is to complete the values of the masked attributes. The
results in the section that follows were obtained in the context of the latter model. Proofs
of the results, details about that model, and comparison to other extensions of the PAC
learning model that accommodate missing information, can be found in the cited works.

2. Known Results and Open Problems

Since consistent learnability implies PAC learnability, the latter is a necessary condition
for the former. PAC learnability in conjunction with either the monotone or the read-once
property holding for the concept class is a sufficient condition for consistent learnability.

Theorem 2 A concept class C that comprises either monotone or read-once formulas is
consistently learnable by a hypothesis class H, assuming that C is PAC learnable by H.
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Thus, the concept classes of conjunctions and linear thresholds (Kearns and Vazirani,
1994) are consistently learnable. Unlike what holds in the PAC learning model, a learning
reduction cannot be readily employed to establish the learnability of k-CNFs for constant
values of k ≥ 2. This holds because k-CNFs cannot be evaluated modularly on observations
(unlike on examples). Indeed, the value of a certain conjunction of two subformulas on some
observation may not be determinable only by the values of the subformulas (e.g., when they
are undefined), but may require knowledge of the subformulas themselves. Hence:

Problem 3 Is the concept class C of 2-CNFs consistently learnable by a hypothesis class H?
Is the question true for any concept class of formulas that are not modularly evaluatable?

The case of learning 3-CNFs presents an additional challenge when compared to the case
of learning 2-CNFs, since the former formulas are not believed to be evaluatable efficiently.
Indeed, their evaluation on the observation ∗n implies deciding their satisfiability. Hence:

Problem 4 Is the concept class C of 3-CNFs consistently learnable by a hypothesis class H?
Is the question true for any concept class of formulas that are not efficiently evaluatable?

Despite being a necessary condition, PAC learnability is not, by itself, a sufficient condi-
tion for consistent learnability — at least not when the hypothesis class H and the concept
class C are required to coincide, and the complexity condition RP 6= NP is assumed.

Theorem 5 The concept class C that comprises either parities or monotone-term 1-decision
lists is not consistently learnable by the hypothesis class H = C, unless RP = NP.

The negative result holds despite C being PAC learnable byH = C (Kearns and Vazirani,
1994), and even when at most three attributes are masked in each observation. Hence:

Problem 6 Is the concept class C that comprises either parities or monotone-term 1-
decision lists consistently learnable by a hypothesis class H that differs from C?

Refining the necessary and sufficient conditions for consistent learnability would help
clarify which PAC learnability results remain true when information is missing arbitrarily,
and, hence, which can be applied in realistic settings where the masking process is unknown.
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