
JMLR: Workshop and Conference Proceedings 19 (2011) 559–594 24th Annual Conference on Learning Theory

Online Learning: Beyond Regret

Alexander Rakhlin
Department of Statistics
University of Pennsylvania

Karthik Sridharan
TTI-Chicago

Ambuj Tewari
Department of Computer Science

University of Texas at Austin

Editor: Sham Kakade, Ulrike von Luxburg

Abstract

We study online learnability of a wide class of problems, extending the results of Rakhlin
et al. (2010a) to general notions of performance measure well beyond external regret. Our
framework simultaneously captures such well-known notions as internal and general Φ-
regret, learning with non-additive global cost functions, Blackwell’s approachability, cali-
bration of forecasters, and more. We show that learnability in all these situations is due to
control of the same three quantities: a martingale convergence term, a term describing the
ability to perform well if future is known, and a generalization of sequential Rademacher
complexity, studied in Rakhlin et al. (2010a). Since we directly study complexity of the
problem instead of focusing on efficient algorithms, we are able to improve and extend
many known results which have been previously derived via an algorithmic construction.

1. Introduction

In the companion paper Rakhlin et al. (2010a) (hereafter referred to as RST), we analyzed
learnability in the Online Learning Model when the value of the game is defined through
minimax regret. However, regret (also known as external regret) is not the only way to
measure performance of an online learning procedure. In the present paper, we extend the
results of RST to other performance measures, encompassing a wide spectrum of notions
which appear in the literature. Our framework gives the same footing to external regret,
internal and general Φ-regret, learning with non-additive global cost functions, Blackwell’s
approachability, calibration of forecasters, and more. We recover, extend, and improve some
existing results, and (what is more important) show that they all follow from control of the
same quantities. In particular, sequential Rademacher complexity, introduced in RST, plays
a key role in our derivations.

A reflection on the past two decades of research in learning theory reveals (in our
somewhat biased view) an interesting difference between Statistical Learning Theory and
Online Learning. In the former, the focus has been primarily on understanding complexity
measures rather than algorithms. There are good reasons for this: if a supervised problem
with i.i.d. data is learnable, Empirical Risk Minimization is the algorithm that will perform
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well if one disregards computational aspects. In contrast, Online Learning has been mainly
centered around algorithms. Given an algorithm, a non-trivial bound serves as a certificate
that the problem is learnable. This algorithm-focused approach has dominated research
in Online Learning for several decades. Many important tools (such as optimization-based
algorithms for online convex optimization) have emerged, yet the results lacked a unified
approach for determining learnability.

With the tools developed in RST, the question of learnability can now be addressed in
a variety of situations in a unified manner. In fact, RST presents a number of examples
of provably learnable problems for which computationally feasible online learning methods
have not yet been developed. In the present paper, we show that the scope of problems
whose learnability and precise rates can be characterized is much larger than those defined
in RST through external regret. Within this circle of problems are such well-known results
as Blackwell’s approachability and calibration of forecasters. For instance, our complexity-
based (rather than algorithm-based) approach yields a proof of Blackwell’s approachability
in Banach spaces without ever mentioning an algorithm. Let us remark that Blackwell’s ap-
proachability has been a key tool for showing learnability (Cesa-Bianchi and Lugosi, 2006);
as our results imply approachability, they can be utilized whenever Blackwell’s approach-
ability has been successful. The results can also be used in situations where phrasing a
problem as an approachability question is not necessarily natural. In Section 4.2, we dis-
cuss the relation of our results to approachability in greater detail. Our contributions can
be broken down into three parts:

1. We formulate the online learning problem, with a performance measure (a form of
regret), defined in terms of certain payoff transformations. While this formulation
might appear unusual, we show that it is general enough to encompass many seemingly
different frameworks, yet specific enough that we can provide generic upper bounds.

2. We develop upper and lower bounds on the value of the game under various natural
assumptions. These tools allow us to deal with performance measures well beyond
the standard additive notion of external regret. Such performance measures include
smooth non-additive functions of payoffs, generalizing the “cumulative payoff” notion
often considered in the literature. The abstract definition in terms of payoff trans-
formations lets us consider rich classes of mappings whose complexity can be studied
through random averages, covering numbers, and combinatorial parameters.

3. We apply our machinery to a number of well-known problems. Unfortunately, in this
extended abstract we are not able to fit all the details. We refer the reader to Rakhlin
et al. (2010b).

(a) For the usual notion of external regret, the results boil down to those of Rakhlin
et al. (2010a).

(b) For the more general Φ-regret (see e.g. Stoltz and Lugosi (2007); Gordon et al.
(2008); Hazan and Kale (2007)), we recover and improve several known results.
In particular, for convergence to Φ-correlated equilibria, we improve upon the
results of Stoltz and Lugosi (Stoltz and Lugosi, 2007).
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(c) We study the game of Blackwell’s approachability (Blackwell, 1956) in (possibly
infinite-dimensional) separable Banach spaces. Specifically, we show that varia-
tion of the worst-case martingale upper and lower-bounds (to within a constant)
the rate of convergence to the set.

(d) We also consider the game of calibrated forecasting. We improve upon the re-
sults of Mannor and Stoltz (Mannor and Stoltz, 2010) and prove (to the best of
our knowledge) the first known O(

√
T ) rates for calibration with more than 2

outcomes. Our approach is markedly different from those found in the literature.

(e) We use our framework to study games with global cost functions and as an
example we extend the bounds recently obtained by Even-Dar et al. (2009).

(f) We provide techniques for bounding notions of regret where algorithm’s perfor-
mance is measured against a time-varying comparator (see e.g. Herbster and
Warmuth (1998); Bousquet and Warmuth (2002); Zinkevich (2003)).

The intent of this paper is to provide a framework and tools for studying problems that
can be phrased as repeated games. However, unlike much of existing research in online
learning, we are not solving the general problem by exhibiting an algorithm and studying
its performance. Rather, we proceed by directly attacking the value of the game. Alas, the
value is a complicated object, and the non-invitingly long sequence of infima and suprema
can single-handedly extinguish any desire to study it. Our results attest to the power of
symmetrization, which emerges as a key tool for studying the value of the game. In the
literature, symmetrization has been used for i.i.d. data (Giné and Zinn, 1984). In RST
(see also Abernethy et al. (2009)), it was shown that symmetrization can also be used in
situations beyond the traditional setting. What is even more surprising, we are able to
employ symmetrization ideas even when the objective function is not a summation of terms
but rather a global function of many variables. We hope that these tools can have an impact
not only on online learning but also on game theory.

We believe that there are many more examples falling under the present framework. We
only chose a few to demonstrate how upper and lower bounds arise from the complexity
of the problem. Along with an upper bound, a (computationally inefficient) algorithm can
always be recovered from the minimax analysis. Finding efficient algorithms is often a
difficult enterprise, and it is important to be able to understand the inherent complexity
even before focusing on computation.

2. The Setting

At a very abstract level, the problem of online learning can be phrased as that of optimiza-
tion of a given function RT (f1, x1, . . . , fT , xT ) with coordinates being chosen sequentially
by the player and the adversary. Of course, at this level of generality not much can be
said. Hence, we make some minimal assumptions on the function RT which lead to mean-
ingful guarantees on the online optimization process.1 These assumptions are satisfied by
a number of natural performance measures, as illustrated by the examples below.

1. The question of general conditions on the function under which such sequential minimization is possible
was put forth by Peter Bartlett a few years ago in a coffee conversation. This paper paves way towards
addressing this question.
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Let F and X be the sets of moves of the learner (player) and the adversary, respectively.
Generalizing the Online Learning Model considered in RST, we study the following T -
round interaction between the learner and the adversary: On round t = 1, . . . , T , the learner
chooses a mixed strategy qt (distribution on F), the adversary picks xt ∈ X , the learner
draws ft ∈ F from qt and receives payoff (loss) signal `(ft, xt) ∈ H.

We would like to specify that we are in the full information setting and that at the end
of each round both the player and the adversary observe each other’s moves ft, xt. The
payoff space H is a (not necessarily convex) subset of a separable Banach space B. Both
the player and the adversary can be randomized and adaptive. The goal of the learner is
to minimize the following general form

RT = B(`(f1, x1), . . . , `(fT , xT ))− inf
φ∈ΦT

B(`φ1(f1, x1), . . . , `φT (fT , xT )) (1)

of performance measure, where

(1) The function ` : F × X 7→ H is an H-valued payoff (or loss) function.

(2) The function B : HT 7→ R is a (not necessarily additive or convex) form of cumulative
payoff.

(3) The set ΦT consists of sequences φ = (φ1, . . . , φT ) of measurable payoff transformation
mappings φt : HF×X 7→ HF×X that transform the payoff function ` into a payoff
function `φt .

The goal of the adversary is to maximize the same quantity (1), making it a zero-sum game.
This paper is concerned with learnability and with identifying complexity measures that

govern learnability. But complexity of what should we focus on? After all, the general online
learning problem is defined by the choice of five components: B, `,F ,X , and ΦT . In RST,
the choice was easy: it should be the complexity of the function class F that plays the key
role. That was natural because the payoff was written as `(f, x) = f(x), which suggested
that the function class F is the object of study. The present formulation, however, is much
more general. When this work commenced, it seemed likely that complexity of the problem
will be some interaction between the complexity of ΦT and complexity of F . As we show
below, one may just focus on the complexity of ΦT , while F and X are now on the same
footing. For instance, even if it might seem unusual at first, we will introduce a notion of
a cover of the set of sequences of payoff transformations ΦT . In summary, while all five
components B, `,F ,X , and ΦT play a role in determining learnability, we will mainly refer
to the complexity of the payoff mapping ` and the payoff transformation ΦT without an
explicit reference to F , X , and B. We emphasize that most flexibility comes from the payoff
mapping ` and from the transformations ΦT of the payoffs.

Important classes of payoff transformation mappings are those that transform the payoff
function ` by acting only on the first argument of `, i.e. only modifying the player’s action.
Formally, a class of sequences of payoff transformations ΦT is said to be a departure mapping
class if there exists a class Φ′T of sequences φ′ = (φ′1, . . . , φ

′
T ) with φ′i : F 7→ F such

that for each φ ∈ ΦT there exists a φ′ ∈ Φ′T with `φt(f, x) := `(φ′t(f), x) that for all
t ∈ [T ], f ∈ F and x ∈ X . We shall slightly abuse notation and use ΦT to represent both
the class of payoff transformation and the class of departure mappings from F to itself.
Another class of interest are payoff transformations that do not vary with time. We say
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that ΦT is time-invariant if all sequences of payoff transformation are constant in time:
ΦT = {(φ, . . . , φ) : φ ∈ Φ}, where Φ is a “basis” class of mappings HF×X 7→ HF×X .

In the following, we assume that F and X are subsets of a separable metric space.
Let Q and P be the sets of probability distributions on F and X , respectively. Assume
that Q and P are weakly compact. From the outset, we assume that the adversary is
non-oblivious (that is, adaptive). Formally, define a learner’s strategy π as a sequence of
mappings πt : (P × F × X )t−1 7→ Q for each t ∈ [T ]. The form (1) of the performance
measure gives rise to the value of the game:

VT (`,ΦT ) = inf
q1

sup
x1

E
f1∼q1

. . . inf
qT

sup
xT

E
fT∼qT

sup
φ∈ΦT

{B(`(f1, x1), . . . , `(fT , xT )) (2)

−B(`φ1(f1, x1), . . . , `φT (fT , xT ))}

where qt and xt range over Q and X , respectively. With this definition of a value, the
(deterministic) strategy of the adversary is a sequence of mappings (Q×F×X )t−1×Q 7→ X
for each t ∈ [T ]. The problem is said to be online learnable if lim supT→∞ VT (`,ΦT ) = 0.

The value of the game is defined as an expected performance measure. As such, it yields
“in probability” statements. While beyond the scope of this paper, we can also define the
value of the game using a high probability performance measure, leading to “almost sure”
convergence (Rakhlin et al., 2010b).

2.1. Examples

A reader might wonder why we have defined the game in terms of abstract payoff trans-
formation mappings. It turns out that with this definition, various seemingly different
frameworks become nothing but special cases, as illustrated by the following examples.

Example 1 (External Regret Game, Section 4.1.1) Let H = R, let B(z1, . . . , zT ) =
1
T

∑T
t=1 zt, and

ΦT = {(φf , . . . , φf ) : f ∈ F and φf : F 7→ F is a constant mapping φf (g) = f ∀g ∈ F} .

It is easy to see that (1) becomes external regret:

RT =
1

T

T∑
t=1

`(ft, xt)− inf
f∈F

1

T

T∑
t=1

`(f, xt).

Example 2 (Φ-Regret, Section 4.1) Let H = R, let B(z1, . . . , zT ) = 1
T

∑T
t=1 zt, and

ΦT = {(φ, . . . , φ) : φ ∈ Φ} for a fixed family Φ of F 7→ F mappings. Performance measure
in (1) becomes

RT =
1

T

T∑
t=1

`(ft, xt)− inf
φ∈Φ

1

T

T∑
t=1

`(φ(ft), xt). (3)

This example covers a variety of notions such as external, internal, and swap regrets.
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Example 3 (Blackwell Approachability, Section 4.2) Let H a subset of a Banach

space B, S ⊂ B be a closed convex set, and B(z1, . . . , zT ) = infc∈S

∥∥∥ 1
T

∑T
t=1 zt − c

∥∥∥. The

set ΦT contains sequences (φ1, . . . , φT ) such that `φt(f, x) = ct ∈ S for all f ∈ F , x ∈ X ,
and 1 ≤ t ≤ T . Eq. (1) becomes the distance to the set S:

RT = inf
c∈S

∥∥∥∥∥ 1

T

T∑
t=1

`(ft, xt)− c

∥∥∥∥∥ (4)

Example 4 (Calibration of Forecasters, Section 4.3) Let H = Rk, F the probability
simplex in Rk, and X the vertices of F . Define `(f, x) = 0. Further, B(z1, . . . , zT ) =

−
∥∥∥ 1
T

∑T
t=1 zt

∥∥∥ for some norm ‖ · ‖ on Rk, and ΦT = {(φp,λ, . . . , φp,λ) : p ∈ ∆(k), λ >

0} contains time-invariant mappings defined by `φp,λ(f, x) = 1 {‖f − p‖ ≤ λ} · (f − x).
Performance measure in (1) then becomes

RT = sup
λ>0

sup
p∈∆(k)

∥∥∥∥∥ 1

T

T∑
t=1

1 {‖ft − p‖ ≤ λ} · (ft − xt)

∥∥∥∥∥ . (5)

Example 5 (Global Cost Online Learning Game, Section 4.4) (see also the origi-
nal paper Even-Dar et al. (2009)) Let H = Rk, X = [0, 1]k, F = ∆(k), `(f, x) = f � x =

(f1 · x1, . . . , fk · xk). Let B(z1, . . . , zT ) =
∥∥∥ 1
T

∑T
t=1 zt

∥∥∥ and

ΦT = {(φf , . . . , φf ) : f ∈ F and φf : F 7→ F is a constant mapping φf (g) = f ∀g ∈ F} .

Then

RT =

∥∥∥∥∥ 1

T

T∑
t=1

ft � xt

∥∥∥∥∥− inf
f∈F

∥∥∥∥∥ 1

T

T∑
t=1

f � xt

∥∥∥∥∥ . (6)

2.2. Notation

We let Ex∼p denote expectation w.r.t. a random variable x with a distribution p. For ran-
dom variables x1, . . . , xT with distributions p1, . . . , pT , we will use the shorthand Ex1:T∼p1:T

to denote expectation w.r.t. all these variables. Let q and p be distributions on F and X , re-
spectively. We define a shorthand `(q, p) = Ef∼q,x∼p`(f, x) and `φ(q, p) = Ef∼q,x∼p`φ(f, x).
The Dirac delta distribution is denoted by δx. A Rademacher random variable is symmetric
{±1}. The notation xa:b denotes the sequence xa, . . . , xb. The indicator of an event A is
denoted by 1 {A}. The set {1, . . . , T} is denoted by [T ], while the k-dimensional probability
simplex is denoted by ∆(k). The set of all functions from X to Y is denoted by YX , and
the t-fold product is denoted by X t. Whenever a supremum (infimum) is written as supa
without a being quantified, it is assumed that a ranges over the set of all possible values
which will be understood from the context. For a separable Banach space B equipped with
a norm ‖ · ‖, let B‖·‖ be the unit ball. Let B∗ denote the dual space and B‖·‖∗ the corre-
sponding dual ball. For a ∈ B∗, ‖a‖∗ = supb∈B‖·‖ | 〈a, b〉 |. For b ∈ B, we write 〈a, b〉 = a(b)
for the continuous linear functional a ∈ B∗ on B. Let φid be identity payoff transformation
`φid

(f, x) = `(f, x) for all f ∈ F , x ∈ X . The singleton set containing the time-invariant
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sequence of identity transformations is denoted by I = {(φid, . . . , φid)}. Following RST, we
define binary trees as follows. Given some set Z, a Z-valued tree of depth T is a sequence
(z1, . . . , zT ) of T mappings zi : {±1}i−1 7→ Z. The root of the tree z is the constant function
z1 ∈ Z. Unless specified otherwise, ε = (ε1, . . . , εT ) ∈ {±1}T will define a path. Slightly
abusing the notation, we will write zt(ε) instead of zt(ε1:t−1).

3. General Upper Bounds

This section is devoted to upper bounds on the value of the game. We start by introducing
the Triplex Inequality, which requires no assumptions beyond those described in Section 2.
Under the additional weak assumption of subadditivity of B, we can perform symmetrization
and further upper bound two of the three terms in Triplex Inequality by a non-additive
version of sequential Rademacher complexity. As we progress through the section, we make
additional assumptions and specialize and refine the upper bounds. The following definition
generalizes the notion of sequential Rademacher complexity, introduced in RST, to “global”
functions B of the payoff sequence.

Definition 1 The sequential complexity with respect to the payoff function ` and payoff
transformation mappings ΦT is defined as

RT (`,ΦT ,B) = sup
f ,x

Eε1:T sup
φ∈ΦT

B
(
ε1`φ1(f1(ε),x1(ε)), . . . , εT `φT (fT (ε),xT (ε))

)
where the outer supremum is taken over all (F × X )-valued trees of depth T and ε =
(ε1, . . . , εT ) is a sequence of i.i.d. Rademacher random variables.

Whenever B is clear from the context, we will omit it from the notation: RT (`,ΦT ). If
ΦT is a set of sequences of time-invariant transformations obtained from the base class Φ, we
will simply write RT (`,Φ). Let us remark that the moves of the player and the adversary
appear “on the same footing” in RT and in the above definition of sequential complex-
ity. The “asymmetry” of sequential Rademacher complexity as studied in RST (where the
supremum is taken over the player’s best choice) arises precisely from the asymmetry of the
notion of external regret, which, in turn, is due to ΦT acting on the player choice only. In
Section 4.1.1, we show that the notion studied in RST is indeed recovered for the case of
external regret. An equivalent way to write sequential complexity is

RT (`,ΦT ,B) = sup
f1,x1

Eε1 sup
f2,x2

Eε2 . . . sup
fT ,xT

EεT sup
φ∈ΦT

B
(
ε1`φ1(f1, x1), . . . , εT `φT (fT , xT )

)
(7)

where the supremum on t-th step is over ft ∈ F , xt ∈ X .

3.1. Triplex Inequality

The following theorem is the starting point for all further analysis. Because of its impor-
tance, we shall call it the Triplex Inequality. The three terms in the upper bound of the
theorem are the three key players in the process of online learning: martingale convergence,
the ability to perform well if the future is known, and complexity of the class in terms of
sequential complexity.
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Theorem 2 (Triplex Inequality) The following 3-term upper bound on the value of the
game holds:

VT (`,ΦT ) (8)

≤ sup
p1,q1

E
x1,f1

. . . sup
pT ,qT

E
xT ,fT

{
B(`(f1, x1), . . . , `(fT , xT ))− E

x′1:T ,f
′
1:T

B(`(f ′1, x
′
1), . . . , `(f ′T , x

′
T ))
}

+ sup
p1

inf
q1
. . . sup

pT

inf
qT

sup
φ∈ΦT

E
x1:T ,f1:T

{
B(`(f1, x1), . . . , `(fT , xT ))−B(`φ1

(f1, x1), . . . , `φT
(fT , xT ))

}
+ sup
p1,q1

E
x1,f1

. . . sup
pT ,qT

E
xT ,fT

sup
φ∈ΦT

{
E

x′1:T ,f
′
1:T

B
(
`φ1

(f ′1, x
′
1), . . . , `φT

(f ′T , x
′
T )
)
−B

(
`φ1

(f1, x1), . . . , `φT
(fT , xT )

)}
In the statement of the theorem, the random variables ft, f

′
t have distribution qt while xt, x

′
t

have distribution pt. We remark that convexity of B is not required for the Triplex Inequality
to hold. Under a subadditivity condition, the following result gives upper bounds on the
first and third terms.

Theorem 3 If B is subadditive, then the last term in the Triplex Inequality is upper
bounded by twice the sequential complexity, 2RT (`,ΦT ,B), and the first term is bounded
by 2RT (`, I,B) where I is the singleton set consisting of the identity mapping. Similarly,
if −B is subadditive, then the last term is upper bounded by 2RT (`,ΦT ,−B) and the first
term is bounded by 2RT (`, I,−B).

Discussion of Theorem 2 and Theorem 3 We note that the first and the third terms
are similar in their form. In fact, the first term can be equivalently written in a form similar
to the third term, with only one difference that φ belongs to a singleton set I containing
the identity mapping. If I ⊆ ΦT , then, trivially, RT (`, I,B) ≤ RT (`,ΦT ,B) and, therefore,
an upper bound on the third term yields and upper bound on the first. However, in some
situations ΦT is “simpler” or incomparable to I and, hence, the first and the third term in
the Triplex Inequality are distinct.

What exactly is achieved by Theorem 3? Let us compare the third term in the Triplex
Inequality to its sequential complexity upper bound given by Eq. (7). Both quantities
involve interleaved suprema and expected values. However, in the former, the suprema are
over the choice of distributions pt, qt and the expected values are draws of xt, ft from these
mixed strategies. In contrast, sequential complexity, as written in Eq. (7), contains suprema
over the choices xt, ft followed by a random draw of the next sign εt. Crucially, it is easier to
work with the sequential complexity as opposed to the third term in the Triplex Inequality
since in the former the only randomness comes from the random signs. In mathematical
terms, the σ-algebra is generated by {εt} rather than a complicated stochastic process
arising from the Triplex Inequality. This is one of the key observations of the paper.

Depending on a particular problem, some of the terms in the Triplex Inequality might be
easier to control than others. However, it is often the case that the first term is the easiest,
as it naturally leads to the question of martingale convergence. The second term is typically
bounded by providing a specific response strategy for the player if the mixed strategy of the
adversary is known. This response strategy is similar to the so-called Blackwell’s condition
for approachability (see Section 4.2 for further comparison). The third term is arguably the
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most difficult as it captures complexity of the set of payoff transformations ΦT . Under the
subadditivity assumption on B, Theorem 3 upper bounds the first and third terms by the
sequential complexity.

The following observation gives us a simple condition under which we can replace B
with some other B′, and we shall find it useful in scenarios when it is difficult to di-
rectly deal with B. If B : HT 7→ R and B′ : HT 7→ R are such that ∀z1, . . . , zT ∈ H,
B(z1, . . . , zT ) ≤ B′(z1, . . . , zT ) then we have that for any class of transformations ΦT ,
RT (`,ΦT ,B) ≤ RT (`,ΦT ,B

′).
This completes our discussion of the main theorems. We now turn to the question of

upper bounding the terms in the Triplex Inequality. To this end, we need to define the
notion of a smooth function. A function g : H 7→ R is said to be (σ, p)-uniformly smooth
for some p ∈ (1, 2] and σ ≥ 0 if for all z, z′ ∈ H we have,

g(z) ≤ g(z′) +
〈
∇g(z′), z − z′

〉
+ σ

p‖z − z
′‖p .

We say that g is uniformly smooth if there exist finite σ and p such that g is (σ, p)-uniformly
smooth. We say that a norm ‖ · ‖ is (σ, p)-smooth if ‖ · ‖p/p is a (σ, p)-smooth function.

A function B which is smooth in its arguments can be “sequentially linearized”, with ad-
ditional second-order terms appearing as norms of the increments. Informally, the smooth-
ness assumption provides a link from a “global” function B of coordinates to a sum of its
parts. From the point of view of online learning, this is very promising, as it appears to
be difficult to sequentially optimize a “global” function of many decisions. Due to limited
space in this extended abstract, we will not present the most general bounds based solely on
smoothness of B (we refer the reader to Rakhlin et al. (2010b) for these results). However,
we will state bounds for a smooth function of the average of coordinates.

3.2. When B is a Function of the Average

For the rest of this sub-section we assume that B = G
(

1
T

∑T
t=1 zt

)
, where (some power of)

G is an appropriately smooth function on the convex set conv(H). This form of B occurs
naturally in many games including Blackwell’s approachability and calibration. Among
the most basic smooth functions are powers of norms. For the `q norms, the following
smoothness results are known. For any q ∈ (1, 2], G(z) = ‖z‖qq is (q, q)-uniformly smooth
and for any q ∈ [2,∞) the function G(z) = ‖z‖2q is (2(q − 1), 2)-uniformly smooth. The `∞
cannot be made smooth by raising it to any finite power s. However, for any z ∈ H and any
q′ ∈ (1,∞), ‖z‖∞ ≤ ‖z‖q′ . Hence as discussed above, RT (`,ΦT ,B) ≤ RT (`,ΦT ,B

′) where

B′(z1, . . . , zT ) =
∥∥∥ 1
T

∑T
t=1 zt

∥∥∥
q′

. By choosing q′ appropriately and using the smoothness of

the `q′ norm we can provide upper bounds for the value of the game. Similarly to `∞, no
finite power of the `1 norm is smooth. However if H ⊆ Rd, we can upper bound the `1
norm by, say, `2 norm multiplied by a factor

√
d. Smoothness of this latter norm can then

be used. This is indeed the approach that is employed for proving rates for calibration.
The following result shows that if G is 1-Lipschitz and G2 is 2-smooth, we obtain a

O(1/
√
T ) convergence rate whenever ΦT is a finite set. We refer to Rakhlin et al. (2010b)

for the case when G is not Lipschitz, as well as for the case of a (γ, p)-smooth function G
for 1 < p ≤ 2.
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Lemma 4 Let ΦT be a finite set of payoff transformations. Let

B(z1, . . . , zT ) = G

(
1

T

T∑
t=1

zt

)

where G is 1-Lipschitz with respect to a norm ‖ · ‖ and G(0) = 0. Suppose that G2 is
(γ, 2)-smooth function on the convex set conv(H). Further, suppose that for any x ∈ X ,
f ∈ F , φ ∈ ΦT and t ∈ [T ], it is true that ‖`φt(f, x)‖ ≤ η. Then it holds that

RT (`,ΦT ) ≤
√
γη2 log(2|ΦT |)

T
.

Having a bound on the complexity of a finite set of payoff transformations, we seek to
extend the results to infinite sets. A natural approach is to pass to a finite cover of the set
at an expense of losing an amount proportional to the resolution of the cover. The following
definition can be seen as a generalization of the corresponding notion introduced in RST.
We remark that the object, for which we would like to provide a cover, is the set ΦT .
Whenever payoff transformations are simply constant time-invariant departure mappings,
complexity of ΦT identical to that of F , yielding the online cover of class F . In general,
however, the set of payoff transformations can be much more complex than (or not even
comparable to) F .

Definition 5 A set V of H-valued trees of depth T is an α-cover (with respect to `p-norm)
of ΦT on an (F × X )-valued tree (f ,x) of depth T if

∀φ ∈ ΦT , ∀ε ∈ {±1}T ∃v ∈ V s.t.
1

T

T∑
t=1

‖vt(ε)− `φt(ft(ε),xt(ε))‖
p ≤ αp . (9)

The covering number of the set of payoff transformations ΦT on a given tree (f ,x) is defined
as

Np(α,ΦT , (f ,x)) = min{|V | : V is an α-cover w.r.t. `p-norm of ΦT on (f ,x) tree} .

Further define Np(α,ΦT , T ) = sup(f ,x)Np(α,ΦT , (f ,x)), the maximal `p covering number of
ΦT .

In sections that follow, we specialize this definition to fit particular assumptions on ΦT .
The next theorem shows that sequential complexity can be bounded above in terms of the
covering number, integrated over all the scales. This is a generalization of the analogous
result in RST.

Theorem 6 Assume that B(z1, . . . , zT ) = G
(

1
T

∑T
t=1 zt

)
where G is 1-Lipschitz with re-

spect to a norm ‖ · ‖ and G(0) = 0. Suppose that G2 is (γ, 2)-smooth function on the convex
set conv(H). Further, suppose that for any x ∈ X , f ∈ F , φ ∈ ΦT and t ∈ [T ], it is true
that ‖`φt(f, x)‖ ≤ η. Then it holds that

RT (`,ΦT ) ≤ 4 inf
α>0

{
α+ 3

√
γ

T

∫ η

α

√
logN∞(β,ΦT , T )dβ

}
.
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3.3. General Bounds Under Linearity Assumptions on B

The general results of the previous section can be restated in simpler terms if more assump-
tions are made. In particular, some of the terms in the Triplex Inequality can be dropped
as soon as B is linear. While some of the results below can be repeated for a more general
form of B, for simplicity we assume that B is an average of its arguments and that H ⊆ R:
B(z1, . . . , zT ) = 1

T

∑T
t=1 zt .

Corollary 7 Under the assumption on B made above, the following statements hold:

(a) The first term in the Triplex Inequality is zero.

(b) If ΦT is a class of departure mappings, then the second term in the Triplex Inequality
is non-positive. Hence,

VT (`,ΦT ) ≤ 2RT (`,ΦT ) .

(c) For H ⊆ [−1, 1], and assuming |`(f, x)| ≤ η for any x ∈ X and f ∈ F ,

RT (`,ΦT ) ≤ 4 inf
α≥0

{
α+ 3

√
2

∫ η

α

√
logN∞(δ,ΦT , T )

T
dδ

}
.

Experts in the area will notice the use of `∞ (as opposed to `2 in the classical Dudley integral
bound) covering numbers in the two results above. This can certainly be done (Rakhlin
et al., 2010b) for Corollary 7 and most probably even for the more general Theorem 6.
However, in applications, one seldom loses more than a mild logarithmic factor (in T ) due
to the use of `∞ covering numbers.

When B is the average of its coordinates, the sequential complexity takes on a familiar
form:

RT (`,ΦT ) = sup
f ,x

Eε1:T

{
sup
φ∈ΦT

1

T

T∑
t=1

εt`φt(ft(ε),xt(ε))

}
.

Further, for H ⊆ R, Eq. (9) in definition of the cover becomes

∀φ ∈ ΦT , ∀ε ∈ {±1}T ∃v ∈ V s.t.
1

T

T∑
t=1

|vt(ε)− `φt(ft(ε),xt(ε))|
p ≤ αp

where V is now a set of R-valued trees. A further simplification of various notions is obtained
for time-invariant payoff transformations. Moreover, for time-invariant payoff transforma-
tions we can define combinatorial parameters, generalizing the Littlestone (Littlestone, 1988;
Ben-David et al., 2009) and (online) fat-shattering dimensions (Rakhlin et al., 2010a). This
is the subject of the next section.

3.3.1. Combinatorial Parameters for Time-Invariant Payoff
Transformations

Assume H ⊆ R. Consider time-invariant payoff transformations generated from some base
class of payoff transformations Φ. That is, ΦT = {(φ, . . . , φ) : φ ∈ Φ}. We have the following
definition of a generalized shattering dimension.

569



Rakhlin Sridharan Tewari

Definition 8 Let H = {±1}. An (F × X )-valued tree (f ,x) of depth d is shattered2

by a payoff transformation class Φ if for all ε ∈ {±1}d, there exists φ ∈ Φ such that
`φ(ft(ε),xt(ε)) = εt for all t ∈ [d]. The shattering dimension Sdim(Φ) is the largest d such
that Φ shatters an (F × X )-valued tree of depth d.

We can also define the scale-sensitive version of the shattering dimension, generalizing
the fat-shattering dimension of RST.

Definition 9 An (F ×X )-valued tree (f ,x) of depth d is α-shattered by a payoff transfor-
mation class Φ, if there exists an R-valued tree s of depth d such that

∀ε ∈ {±1}d, ∃φ ∈ Φ s.t. ∀t ∈ [d], εt

(
`φ(ft(ε),xt(ε))− st(ε)

)
≥ α/2

The tree s is called the witness to shattering. The fat-shattering dimension fatα(Φ) at scale
α is the largest d such that Φ α-shatters an (F × X )-valued tree of depth d.

Slightly abusing notation, we write Np(α,Φ, (f ,x)) instead of Np(α,ΦT , (f ,x)) whenever
ΦT consists of sequences of time-invariant payoff transformations with a base class Φ.

The combinatorial parameters are useful if they can be shown to control problem com-
plexity through, for instance, covering numbers. We state the following two results without
proofs, as the arguments are identical to the ones given in the companion paper RST. To
be precise, the (f ,x) tree here plays the role of the x tree in RST, `φ for φ ∈ Φ plays the
role of f ∈ F in RST.

Theorem 10 Let H ⊆ {0, . . . , k} and fat2(Φ) = d2, fat1(Φ) = d1. Then

N∞(1/2,Φ, T ) ≤
d2∑
i=0

(
T

i

)
ki ≤ (ekT )d2 , N (0,Φ, T ) ≤

d1∑
i=0

(
T

i

)
ki ≤ (ekT )d1 .

In particular, the result holds for binary-valued payoffs (k = 1), in which case fat1(Φ) =
Sdim(Φ). We now show that the covering numbers are bounded in terms of the fat-shattering
dimension.

Corollary 11 Suppose H ⊆ [−1, 1]. Then for any α > 0, any T > 0, and any (F × X )-
valued tree (f ,x) of depth T ,

N1(α,Φ, (f ,x)) ≤ N2(α,Φ, (f ,x)) ≤ N∞(α,Φ, (f ,x)) ≤
(

2eT

α

)fatα(Φ)

The generality of these results is evident, as both the combinatorial parameters and
covering numbers are defined for any performance measure (1) with time-invariant payoff
transformations. In particular, this includes Φ-regret (see Section 4.1).

2. As an aside, the term “shattered set” was introduced by J. Michael Steele in his Ph.D. thesis in 1975.
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3.4. Covering Number Bounds for Slowly-Varying Payoff Transformations

In this subsection, we lift the assumption of time-invariance and observe that size of ΦT or
an appropriately behaving covering number N (α,ΦT , T ) is key for bounding the sequential
complexity. If payoff transformations change wildly in time, there is little hope of getting
non-trivial bounds. Under some assumptions on the variability of the sequences in ΦT , we
can get a bound on the covering number of ΦT . It has been shown in Herbster and Warmuth
(1998); Bousquet and Warmuth (2002) that it is possible to have small external regret
against comparators that change a limited number of times. In Zinkevich (2003), dynamic
regret is defined with respect to a comparator whose path length is bounded. In general, one
can consider situations where we would like to compete with a budgeted comparator. We
now show that the assumptions of slowly-varying or budgeted comparators are naturally
captured by our framework through the notion of slowly-changing payoff transformations
ΦT . Furthermore, the control of covering numbers of ΦT becomes transparent under such
assumptions. Our goal here is not to provide a comprehensive list of possible results, but
rather to show versatility of our framework.

Suppose ΦT consists of payoff transformations (φ1, . . . , φT ) which are “almost” time-
invariant within each of k + 1 intervals. Consider the following definition:

Φk,α
T =

{
(φ1, . . . , φT ) : 1 = i0 ≤ . . . ≤ ik ≤ T,

sup
f,x
‖`φt(f, x)− `φt′ (f, x)‖ ≤ α if is ≤ t ≤ t′ < is+1 for s ≥ 0

}
.

One can think of the time-invariant segments as “accumulation points” where the payoff
transformations do not vary much. This, of course, includes the case when ΦT is constant
over the k+ 1 intervals by setting α = 0. The following result controls the covering number
of Φk,α

T .

Lemma 12 If N∞(α,Φ, T ) is finite, N∞(2α,Φk,α
T , T ) ≤

(
T
k

)
· N∞(α,Φ, T )k+1.

Further extending the above results, we will now study the size of an online cover
if ΦT consists of payoff transformations of bounded length. In general, “length” can be
defined as some budget given by the setting at hand. Here, we present a straightforward
approach without an attempt to give very general and tight bounds. The length of a
sequence (φ1, . . . , φT ) of payoff transformations (with respect to L∞ distance) is defined as
len(φ1, . . . , φT ) :=

∑T−1
t=1 supf,x

∥∥`φt(f, x)− `φt+1(f, x)
∥∥.

Lemma 13 Assume that for all (φ1, . . . , φT ) ∈ ΦT , we have len(φ1, . . . , φT ) ≤ L. Then,
we have,

N∞(2α,ΦT , T ) ≤
(
T

L/α

)
· N∞(α,Φ, T )L/α+1 .

4. Examples and Comparison to Known Results

We now turn to several specific settings studied in the literature and look at them through
the prism of our general results. While we believe that online learnability in many different
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scenarios can be established through our framework, we decided to focus on several major
problems. On the surface, these problems are quite different; yet, through our unified
approach we show that learnability can be seamlessly established for all of them. The
unification not only leads to simpler proofs and sharper results, but also yields insight into
the inherent complexity of problems.

4.1. Φ-Regret

In this section, we consider a particular notion of performance measure, known as Φ-regret
(Stoltz and Lugosi, 2007; Gordon et al., 2008; Hazan and Kale, 2007). In our framework,
this means that we restrict ourselves to only time-invariant departure mapping classes ΦT

specified by a base class Φ of mappings from F to itself. The particular choices of Φ lead to
various notions, such as external, internal, swap regret, and more. To define Φ-regret, we
fix a set Φ of departure mappings which map F to F and define the set of time-invariant
departure mappings ΦT := {(φ, . . . , φ) : φ ∈ Φ}. Then the measure of performance becomes
Φ-regret (Eq. (3)). Since B is the average of its arguments, Corollary 7 implies that in the
setting of Φ-regret, VT (`,Φ) ≤ 2R(`,Φ). Specializing the definition of sequential complexity
to Φ-regret, we obtain:

Definition 14 The sequential complexity for Φ-regret is defined as

RT (`,Φ) = sup
(f ,x)

Eε1:T sup
φ∈Φ

1

T

T∑
t=1

εt`(φ ◦ ft(ε),xt(ε)) . (10)

Sequential complexity for Φ-regret enjoys some of the nice properties of the sequential
Rademacher complexity for external regret. Suppose ` is convex in the first argument and
conv(Φ) maps F into F . Then RT (`, conv(Φ)) = RT (`,Φ). This allows us to obtain bounds
for convex hulls of finite sets Φ.

To capture complexity via covering numbers, Definition 5 can be specialized to the case
of Φ-regret:

Definition 15 A set V of R-valued trees of depth T is an α-cover (with respect to `p-norm)
of ΦT on the F × X -valued tree (f ,x) of depth T if

∀φ ∈ Φ, ∀ε ∈ {±1}T ∃v ∈ V s.t.
1

T

T∑
t=1

|vt(ε)− `(φ ◦ ft(ε),xt(ε))|p ≤ αp

4.1.1. External Regret

External regret is the simplest example of Φ-regret. We separate it from the general discus-
sion in order to show that for external regret the various notions introduced in this paper
reduce to the ones proposed in RST. Considering the definitions in Example 1, notice that
the time-invariant departure mappings class ΦT is chosen to be the class of sequences of
constant mappings {(φf , . . . , φf ) : f ∈ F and φf (g) = f ∀g ∈ F}. It is precisely because
of this constancy of φ that the dependence on the F-valued tree f disappears from all the
definitions and results. Further, because of the obvious bijection between elements of ΦT

and F , minimization (maximization) over ΦT can be written as minimization (maximiza-
tion) over F . Notice that the action of φf on the payoff is `φf (ft, xt) = `(f, xt). Let us
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turn to Definition 14 of the sequential complexity for Φ-regret. Because each φf ∈ Φ is a
constant mapping, we have

RT (`,Φ) = sup
f ,x

Eε1:T sup
f∈F

1

T

T∑
t=1

εt`(f,xt(ε)) = sup
x

Eε1:T sup
f∈F

1

T

T∑
t=1

εt`(f,xt(ε)). (11)

If payoff is written as `(f, x) = f(x), this is precisely the sequential Rademacher complex-
ity defined in RST. Next, we show that Definition 15 reduces to the definition of online
covering given in RST. Indeed, `φf (ft(ε),xt(ε)) = `(f,xt(ε)) for the constant mappings
φ = (φf , . . . , φf ). Further, the payoff space H ⊆ R. With these simplifications, the close-
ness to a covering element in Definition 15 becomes

∀f ∈ F , ∀ε ∈ {±1}T ∃v ∈ V s.t.
1

T

T∑
t=1

|vt(ε)− `(f,xt(ε))|p ≤ αp

where V is a set of R-valued trees. It is then immediate that Corollary 7 recovers the corre-
sponding result of RST. For a detailed study of external regret, we refer to the companion
paper RST.

4.1.2. Internal and Swap Regret

Assume the cardinality N = |F| is finite. For internal regret, Φ is the set of mappings
{φf→g : φf→g(f) = g and φf→g(h) = h ∀h 6= f, h ∈ F}. For swap regret (Blum
and Mansour, 2005; Cesa-Bianchi and Lugosi, 2006), Φ contains all NN functions from
F to itself. It is easy to see that applying Corollary 7 in the finite class case (|ΦT | <
∞) immediately recovers the O(

√
T logN) bound for internal and external regret and the

O(
√
TN logN) bound for the swap regret (Cesa-Bianchi and Lugosi, 2006). Our general

tools, however, allow us to go well beyond finite sets of departure mappings. In the following
sections, we consider several examples of infinite classes of departure mappings which have
been considered in the literature. In some of these cases, an explicit strategy requires
computation of a fixed-point (Foster and Vohra, 1997; Hazan and Kale, 2007; Gordon et al.,
2008). Since we are not providing efficient algorithms in order to obtain bounds, we are
able to get sharp results by directly focusing on the complexity of these infinite classes of
departure mappings.

4.1.3. Convergence to Φ-correlated Equilibria

A beautiful result of Foster and Vohra (1997) shows that convergence to the set of correlated
equilibria can be achieved if players follow internal regret minimization strategies. What
is surprising, no coordination is required to achieve this goal. Stoltz and Lugosi (2007)
extended this result to compact and convex sets of strategies in normed spaces. In this
section we show that their results can be improved in certain situations. Let us consider
their setting in a bit more detail. Suppose there are N players each playing in a strategy
set F . We could make the strategy set player dependent but it only complicates notation.
There are N loss functions mapping a strategy profile (f1, . . . , fN ) to {`k(f1, . . . , fN )}Nk=1,
the losses for each of the N players. Consider a set of departure mappings Φ ⊆ {φ : F → F}.
A Φ-correlated equilibrium is a distribution π over strategy profiles such that if the player
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jointly play according to it, no player has an incentive to unilaterally transform its action
using a mapping from Φ. That is, E(f1,...,fN )∼π [`k(fk, f−k)] ≤ E(f1,...,fN )∼π [`k(φ(fk), f−k)]
for all k ∈ [N ], φ ∈ Φ. Theorem 18 in Stoltz and Lugosi (2007) shows the following. If F is
convex compact subset of a normed vector space, `k’s are continuous and Φ is a separable
subset of C(F)3, then there exist regret minimizing algorithms such that, if every player
follows the algorithm then the sequence of empirical plays jointly converges to the set of
Φ-correlated equilibria.

Consider the case where F is some compact subset of the unit ball in some normed
space with a norm ‖ ·‖, the loss function `k is a 1-Lipschitz convex function, and the class Φ
of departure functions has finite metric entropy Nmetric(Φ, α) for all α > 0. Metric entropy
is simply the log covering number where covers of Φ are built for the supremum norm
‖φ‖∞ = supf∈F ‖φ(f)‖. Let us consider a typical situation where Nmetric(Φ, α) = Θ(1/αp).

The adversary’s set X here is simply {f 7→ `k(f, g) : g ∈ Fk−1}, where g is a strategy
profile over the remaining k− 1 players. To upper bound the Φ-regret we can always make
the set of adversary’s moves larger. In fact, we may set X = CF , where CF = {x : F →
R : x convex and 1-Lipschitz}. Moreover, the value of the convex-Lipschitz game is equal
to the value of the linear game (see Rakhlin et al. (2010b)): VT (CF ,F ,Φ) = VT (LF ,F ,Φ)
where LF = {x : F → R is linear and 1-Lipschitz}. Then the sequential complexity bound
is

sup
(f ,x)

Eε1:T sup
φ∈Φ

1

T

T∑
t=1

εt 〈φ(ft(ε)),xt(ε)〉 . (12)

Note that the set X is now just the set of 1-Lipschitz linear functions. Since ‖φ1 −
φ2‖∞ ≤ α implies |〈φ1(f), x〉 − 〈φ2(f), x〉| ≤ α for any x ∈ X , we can use metric en-
tropy inside Dudley’s integral to upper bound the sequential complexity by c infα{αT +√
T
∫ 1
α′=α

√
1/α′pdα′}. This behaves as O(

√
T ), if p < 2, as O(

√
T log(T )) if p = 2, and as

O(T (p−1)/p) if p > 2. These are better than the O(T (p+1)/(p+2)) bound (derived using an
explicit learning algorithm) given in Example 23 of Stoltz and Lugosi (2007).

4.2. Blackwell’s Approachability

Blackwell’s Approachability Theorem (Blackwell, 1956; Mertens et al., 1994; Lehrer, 2003;
Cesa-Bianchi and Lugosi, 2006) is a fundamental result for repeated two-player zero-sum
games. By means of this theorem, learnability (Hannan consistency) can be established for
a wide array of problems, as illustrated in Cesa-Bianchi and Lugosi (2006). For instance,
existence of calibrated forecasters can be deduced from Blackwell’s Approachability Theo-
rem (Mannor and Stoltz, 2010; Foster and Vohra, 1997). Let us first discuss the relation of
our results to Blackwell’s Theorem. A proof of Blackwell’s Theorem (e.g. Cesa-Bianchi and
Lugosi (2006)) reveals that (a) martingale convergence has to take place in the payoff space,
and (b) the so-called Blackwell’s one-shot approachability condition has to be satisfied. The
former is closely related to the first term in our Triplex Inequality, while the latter is related
to the second term (ability to play well if the next move is known). What is interesting, in
the literature, Blackwell’s Theorem is applied by embedding the problem at hand into an
often high-dimensional space. The dimensionality represents the complexity of the problem,
but this embedding is often artificial. In contrast, the problem complexity is captured by

3. The set of continuous functions on F equipped with the supremum norm.
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the third term of our decomposition, the sequential complexity, and it is explicitly written
as a complexity measure rather than an embedding into some other space. The ability to
upper bound problem complexity with tools similar to those developed in RST (e.g. cover-
ing numbers) means that learnability can be established for a wide class of problems. In this
section, we show that Blackwell’s approachability can be viewed as an online game with
a particular performance measure (distance to the set). Using the techniques developed
in this paper, we prove Blackwell’s approachability in Banach spaces for which martingale
convergence holds (Theorem 16). We also show that martingale convergence is necessary
for the result to hold (Theorem 17). To the best of our knowledge, both of these results are
novel. To define the problem precisely, suppose H a subset of a Banach space B and S ⊂ B
is a closed convex set. For the moves f ∈ F of the player and x ∈ X of the adversary,
`(f, x) ∈ H is a Banach space valued signal. The goal of the player is to keep the average of
the signals 1

T

∑T
t=1 `(ft, xt) close to the set S. By defining B as in Example 3, RT becomes

distance of the average payoff to the set (see Eq. (4)). The comparator term is zero by our
assumption that ΦT contains sequences (φ1, . . . , φT ) of constant mappings which transform
our actions to a point inside S: `φt(f, x) = ct ∈ S for all f ∈ F , x ∈ X , and 1 ≤ t ≤ T .

The Blackwell’s approachability game is said to be one shot approachable if for every
mixed strategy p of the adversary, there exists a mixed strategy q for a player such that
`(q, p) ∈ S. This condition says that the player should be able to choose a “good” mixed
strategy q in response to a given adversarial strategy p. Recall that `(q, p) is simply a short-
hand for the expected payoff Ef∼q,x∼p`(f, x) (we make no assumptions about linearity of
`). Blackwell’s one-shot approachability condition is akin the second term in the Triplex
Inequality, where the order of who plays first is switched. If the one-shot condition is
satisfied, it remains to check martingale convergence. We now show that, under the one-
shot approachability condition, a variation of the worst-case martingale in the subset of the
Banach space provides an upper bound on the distance to the set.

Theorem 16 For any game that is one shot approachable, we have that

VT (`,ΦT ) ≤ 4 sup
M

E

[∥∥∥∥∥ 1

T

T∑
t=1

dt

∥∥∥∥∥
]

where sup is over distributions M of conv(H
⋃
−H)-valued martingale difference sequences

{dt}t∈N.

The notion of approachability considered in this paper corresponds to weak approach-
ability. Extending the techniques of this work to a slightly different notion of a value
(see Rakhlin et al. (2010b)), we can guarantee almost sure convergence and, hence, strong
approachability.

It is straightforward that for any Blackwell’s approachability game to have vanishing
regret, one shot approachability for the game is a necessary condition. We now show that
martingale convergence in the space of payoffs is necessary for Blackwell’s approachability.
To the best of our knowledge, this result has not appeared in the literature.

Theorem 17 For every symmetric convex set H there exists a one shot approachable game
with payoff’s mapping to H such that

VT (`,ΦT ) ≥ 1

2
sup
M

E

[∥∥∥∥∥ 1

T

T∑
t=1

dt

∥∥∥∥∥
]
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where sup is over distributions M of H-valued martingale difference sequences {dt}t∈N.

4.3. Calibration

Calibration is an important notion for forecasting binary sequences (Dawid, 1982). Ex-
ample 4 corresponds to the notion of λ-calibration for {1, . . . , k}-valued sequences (Cesa-
Bianchi and Lugosi, 2006) and defines the measure of performance R. We are interested
in sharp rates on the value of the calibration game and compare our results with the
recent work of Mannor and Stoltz (2010). Note that the definition of value allows the
worst scale λ to be chosen at the end of the game, making it a stronger requirement than
what is required for building a well calibrated forecaster. Using our techniques, for the
`1-calibration game with k outcomes, for T ≥ 3 and some absolute constant c, we show that
VT (`,ΦT ) ≤ ck2 ((log T )/T )

1/2
. That is, the rate of calibration is Õ(T−1/2). For k > 2, the

best rates known to us (due to Mannor and Stoltz (2010)) deteriorate with k because the
authors in fact calibrate with respect to all Borel sets.

4.4. External Regret with Global Costs

Let us first state a more general setting where the (vector) loss is `(f, x) rather than the
specific choice f � x in Example 5. To state the result we need the following Assumption.

Assumption 1 For any p1, p2, inff ‖`(f, p1) + `(f, p2)‖ ≥ inff ‖`(f, p1)‖+ inff ‖`(f, p2)‖.

Theorem 18 For the setting of Example 5 with vector valued loss `(f, x), under Assump-
tion 1 :

VT ≤ 4 sup
M

E

[∥∥∥∥∥ 1

T

T∑
t=1

dt

∥∥∥∥∥
]

+ 2 sup
x

Eε1:T sup
f∈F

∥∥∥∥∥ 1

T

T∑
t=1

εt`(f,xt(ε))

∥∥∥∥∥ , (13)

where sup is over distributions M of conv(H
⋃
−H)-valued martingale difference sequences

{dt}t∈N.

Let us see what this implies in a specific case of Example 5, the setting studied in Even-
Dar et al. (2009), i.e. `(f, x) = f � x. Let us first verify if Assumption 1 holds here. By
linearity of the vector loss, we just have to verify whether, for arbitrary p1, p2, we have

inf
q∈∆(k)

∥∥q � p1 + q � p2

∥∥ ≥ inf
q∈∆(k)

∥∥q � p1

∥∥+ inf
q∈∆(k)

∥∥q � p2

∥∥ .

where the notation pi stands for the mean of the distribution pi. This is equivalent to asking
whether the function x 7→ inff∈F ‖f � x‖ is concave. Lemma 22 in the appendix proves
that it is. Note that in Even-Dar et al. (2009), it is shown that the above function is concave
for the `p norms (including p = ∞). It turns out that it remains concave no matter what
norm is chosen. Thus, the general upper bound (13) holds. In the case we are considering,
we can further massage the second term in that upper bound. Note that for any f and y,
‖f � y‖ ≤ ‖f‖∞‖y‖ ≤ ‖y‖. Using this in (13) we see that

VT ≤ 4 sup
M

E

[∥∥∥∥∥ 1

T

T∑
t=1

dt

∥∥∥∥∥
]

+ 2 sup
x

Eε1:T

∥∥∥∥∥ 1

T

T∑
t=1

εtxt(ε)

∥∥∥∥∥ ≤ 6 sup
M

E

[∥∥∥∥∥ 1

T

T∑
t=1

dt

∥∥∥∥∥
]
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where the last inequality is because (εtxt(ε))
T
t=1 is a martingale difference sequence. In the

last inequality the supremum is over distributions M of [−1, 1]k-valued martingale difference
sequences {dt}t∈N. For `p norms we recover the rates in Even-Dar et al. (2009), specifically
for `∞ norm the bound is 6

√
log(k)/T
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Appendix

Appendix A. Proofs for General Upper Bounds (Section 3)

Proof [of Theorem 2] The value of the game, defined in (2), is

VT (`,ΦT ) = inf
q1

sup
p1

E
f1∼q1
x1∼p1

. . . inf
qT

sup
pT

E
fT∼qT
xT∼pT

sup
φ∈ΦT

{B(`(f1, x1), . . . , `(fT , xT ))−B(`φ1(f1, x1), . . . , `φT (fT , xT ))}

= sup
p1

inf
q1

E
f1∼q1
x1∼p1

. . . sup
pT

inf
qT

E
fT∼qT
xT∼pT

sup
φ∈ΦT

{B(`(f1, x1), . . . , `(fT , xT ))−B(`φ1(f1, x1), . . . , `φT (fT , xT ))}

via an application of the minimax theorem. Adding and subtracting terms to the expression
above leads to

VT (`,ΦT ) = sup
p1

inf
q1

E
f1∼q1
x1∼p1

. . . sup
pT

inf
qT

E
fT∼qT
xT∼pT

B(`(f1, x1), . . . , `(fT , xT ))− E
f ′
1:T
∼q1:T

x′
1:T
∼p1:T

B(`(f ′1, x
′
1), . . . , `(f ′T , x

′
T ))

+ sup
φ∈ΦT

 E
f ′
1:T
∼q1:T

x′
1:T
∼p1:T

B(`(f ′1, x
′
1), . . . , `(f ′T , x

′
T ))−B(`φ1(f1, x1), . . . , `φT (fT , xT ))




≤ sup
p1

inf
q1

E
f1∼q1
x1∼p1

. . . sup
pT

inf
qT

E
fT∼qT
xT∼pT

B(`(f1, x1), . . . , `(fT , xT ))− E
f ′
1:T
∼q1:T

x′
1:T
∼p1:T

B(`(f ′1, x
′
1), . . . , `(f ′T , x

′
T ))

+ sup
φ∈ΦT

E
f ′
1:T
∼q1:T

x′
1:T
∼p1:T

{
B(`(f ′1, x

′
1), . . . , `(f ′T , x

′
T ))−B(`φ1(f ′1, x

′
1), . . . , `φT (f ′T , x

′
T ))
}

+ sup
φ∈ΦT

 E
f ′
1:T
∼q1:T

x′
1:T
∼p1:T

B(`φ1(f ′1, x
′
1), . . . , `φT (f ′T , x

′
T ))−B(`φ1(f1, x1), . . . , `φT (fT , xT ))




At this point, we would like to break up the expression into three terms. To do so, notice
that expectation is linear and sup is a convex function, while for the infimum,

inf
a

[C1(a) + C2(a) + C3(a)] ≤
[
sup
a
C1(a)

]
+
[
inf
a
C2(a)

]
+

[
sup
a
C3(a)

]
for functions C1, C2, C3. We use these properties of inf, sup, and expectation, starting from
the inside of the nested expression and splitting the expression in three parts. We arrive at

VT (`,ΦT )

≤ sup
p1

sup
q1

E
f1∼q1
x1∼p1

. . . sup
pT

sup
qT

E
fT∼qT
xT∼pT

[
B(`(f1, x1), . . . , `(fT , xT ))− E

f ′
1:T
∼q1:T

x′
1:T
∼p1:T

B(`(f ′1, x
′
1), . . . , `(f ′T , x

′
T ))
]

+ sup
p1

inf
q1

E
f1∼q1
x1∼p1

. . . sup
pT

inf
qT

E
fT∼qT
xT∼pT

 sup
φ∈ΦT

E
f ′
1:T
∼q1:T

x′
1:T
∼p1:T

{
B(`(f ′1, x

′
1), . . . , `(f ′T , x

′
T ))−B(`φ1(f ′1, x

′
1), . . . , `φT (f ′T , x

′
T ))
}

+ sup
p1

sup
q1

E
f1∼q1
x1∼p1

. . . sup
pT

sup
qT

E
fT∼qT
xT∼pT

 sup
φ∈ΦT

 E
f ′
1:T
∼q1:T

x′
1:T
∼p1:T

B(`φ1(f ′1, x
′
1), . . . , `φT (f ′T , x

′
T ))−B(`φ1(f1, x1), . . . , `φT (fT , xT ))
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The replacement of infima by suprema in the first and third terms appears to be a loose
step and, indeed, one can pick a particular response strategy {q∗t } instead of passing to
the supremum. For instance, this can be the best-response strategy for the second term.
However, in the examples we have considered so far, passing to the supremum still yields
the results we need. This is due to the fact that the online learning setting is worst-case.

Consider the second term in the above decomposition. We claim that

sup
p1

inf
q1

E
f1∼q1
x1∼p1

. . . sup
pT

inf
qT

E
fT∼qT
xT∼pT

 sup
φ∈ΦT

E
f ′
1:T
∼q1:T

x′
1:T
∼p1:T

[
B(`(f ′1, x

′
1), . . . , `(f ′T , x

′
T ))−B(`φ1(f ′1, x

′
1), . . . , `φT (f ′T , x

′
T ))
]

= sup
p1

inf
q1
. . . sup

pT

inf
qT

sup
φ∈ΦT

E
f1:T∼q1:T
x1:T∼p1:T

[B(`(f1, x1), . . . , `(fT , xT ))−B(`φ1(f1, x1), . . . , `φT (fT , xT ))]

because the objective

E
f ′1:T∼q1:T

x′
1:T
∼p1:T

[
B(`(f ′1, x

′
1), . . . , `(f ′T , x

′
T ))−B(`φ1(f ′1, x

′
1), . . . , `φT (f ′T , x

′
T ))
]

does not depend on the random draws f1, x1, . . . , fT , xT . We then rename f ′t , x
′
t into ft, xt.

This concludes the proof of the Triplex Inequality.

Proof [of Theorem 3] We turn to the third term in the Triplex Inequality. If B is
subadditive,

E
f ′1:T∼q1:T

x′
1:T
∼p1:T

B(`φ1(f ′1, x
′
1), . . . , `φT (f ′T , x

′
T ))−B(`φ1(f1, x1), . . . , `φT (fT , xT ))

≤ E
f ′1:T∼q1:T

x′
1:T
∼p1:T

B(`φ1(f ′1, x
′
1)− `φ1(f1, x1), . . . , `φT (f ′T , x

′
T )− `φT (fT , xT )).

If, on the other hand, −B is subadditive,

E
f ′1:T∼q1:T

x′
1:T
∼p1:T

B(`φ1(f ′1, x
′
1), . . . , `φT (f ′T , x

′
T ))−B(`φ1(f1, x1), . . . , `φT (fT , xT ))

≤ − E
f ′1:T∼q1:T

x′
1:T
∼p1:T

B(`φ1(f1, x1)− `φ1(f ′1, x
′
1), . . . , `φT (fT , xT )− `φT (f ′T , x

′
T )). (14)

Below assume that B is subadditive, and the proof of the other case is identical.
To prove the bound on the third term in terms of twice sequential complexity, we proceed

as in Rakhlin et al. (2010a), applying the symmetrization technique from inside out. To
this end, first note that,

sup
p1,q1

E
f1∼q1
x1∼p1

. . . sup
pT ,qT

E
fT∼qT
xT∼pT

sup
φ∈ΦT

E
f ′1∼q1,...,f ′T∼qT
x′1∼p1,...x′

T
∼pT

B
(
`φ1

(f ′1, x
′
1)− `φ1

(f1, x1), . . . , `φT
(f ′T , x

′
T )− `φT

(fT , xT )
)

≤ sup
p1,q1

E
f1,f ′1∼q1
x1,x′1∼p1

. . . sup
pT ,qT

E
fT ,f ′T∼qT
xT ,x′

T
∼pT

sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , `φT

(f ′T , x
′
T )− `φT

(fT , xT )
)
.
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The above is true because the expectations are pulled outside the suprema, thus resulting
in an upper bound. Now notice that conditioned on history fT , f

′
T are distributed identi-

cally and independently drawn from qT . Similarly xT , x
′
T are also identically distributed

conditioned on history. Hence renaming them we see that

E
fT ,f ′T∼qT
xT ,x′

T
∼pT

sup
φ∈ΦT

B
(
`φ1

(f ′1, x
′
1)− `φ1

(f1, x1), . . . , `φT
(f ′T , x

′
T )− `φT

(fT , xT )
)

= E
f ′T ,fT∼qT
x′
T

,xT∼pT

sup
φ∈ΦT

B
(
`φ1

(f ′1, x
′
1)− `φ1

(f1, x1), . . . , `φT
(fT , xT )− `φT

(f ′T , x
′
T )
)

= E
fT ,f ′T∼qT
xT ,x′

T
∼pT

sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . ,−(`φT

(f ′T , x
′
T )− `φT

(fT , xT ))
)

where only the last argument of B is changing sign. Thus,

E
fT ,f ′T∼qT
xT ,x′

T
∼pT

sup
φ∈ΦT

B
(
`φ1

(f ′1, x
′
1)− `φ1

(f1, x1), . . . , `φT
(f ′T , x

′
T )− `φT

(fT , xT )
)

= EεT E
fT ,f ′T∼qT
xT ,x′

T
∼pT

sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , εT (`φT

(f ′T , x
′
T )− `φT

(fT , xT ))
)

where εT is a Rademacher random variable. Furthermore,

sup
pT ,qT

E
fT ,f ′T∼qT
xT ,x′

T
∼pT

sup
φ∈ΦT

B
(
`φ1

(f ′1, x
′
1)− `φ1

(f1, x1), . . . , `φT
(f ′T , x

′
T )− `φT

(fT , xT )
)

= sup
pT ,qT

E
f ′T ,fT∼qT
x′
T

,xT∼pT

EεT sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , εT (`φT

(f ′T , x
′
T )− `φT

(fT , xT ))
)

≤ sup
xT ,x′T∈X
fT ,f′

T
∈F

EεT sup
φ∈ΦT

B
(
`φ1

(f ′1, x
′
1)− `φ1

(f1, x1), . . . , εT (`φT
(f ′T , x

′
T )− `φT

(fT , xT ))
)

Proceeding similarly notice that since given history xT−1, x
′
T−1 and fT−1, f

′
T−1 are dis-

tributed independently and identically we have,

sup
pT−1,qT−1

E
fT−1,f

′
T−1
∼qT−1

xT−1,x′
T−1

∼pT−1

sup
xT ,x

′
T
∈X

fT ,f′
T
∈F

EεT sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , `φT−1(f ′T−1, x

′
T−1)− `φT−1(fT−1, xT−1), εT (`φT (f ′T , x

′
T )− `φT (fT , xT ))

)
= sup
pT−1,qT−1

E
fT−1,f

′
T−1
∼qT−1

xT−1,x′
T−1

∼pT−1

EεT−1 sup
xT ,x

′
T
∈X

fT ,f′
T
∈F

EεT sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , εT−1(`φT (f ′T−1, x

′
T−1)− `φT−1(fT−1, xT−1)), εT (`φT (f ′T , x

′
T )− `φT (fT , xT ))

)
≤ sup
xT−1,x

′
T−1
∈X

fT−1,f′
T−1

∈F

EεT−1 sup
xT ,x

′
T
∈X

fT ,f′
T
∈F

EεT sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , εT−1(`φT−1(f ′T−1, x

′
T−1)− `φT−1(fT−1, xT−1)), εT (`φT (f ′T , x

′
T )− `φT (fT , xT ))

)
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Proceeding in similar fashion introducing Rademacher random variables all the way to ε1
we arrive at

sup
p1,q1

E
f1,f ′1∼q1
x1,x′1∼p1

. . . sup
pT ,qT

E
fT ,f ′T∼qT
xT ,x′

T
∼pT

sup
φ∈ΦT

B
(
`φ1(f ′1, x

′
1)− `φ1(f1, x1), . . . , `φT

(f ′T , x
′
T )− `φT

(fT , xT )
)

≤ sup
x1,x′1∈X
f1,f′1∈F

Eε1 . . . sup
xT ,x′T∈X
fT ,f′

T
∈F

EεT sup
φ∈ΦT

B
(
ε1(`φ1(f ′1, x

′
1)− `φ1(f1, x1)), . . . , εT (`φT

(f ′T , x
′
T )− `φT

(fT , xT ))
)

Subadditivity of B implies B(a− b) ≤ B(a) + B(−b), and thus

B
(
ε1(`φ1(f ′1, x

′
1)− `φ1(f1, x1)), . . . , εT (`φT (f ′T , x

′
T )− `φT (fT , xT ))

)
≤ B

(
ε1`φ1(f ′1, x

′
1), . . . , εT `φT (f ′T , x

′
T )
)

+ B
(
− ε1`φ1(f1, x1), . . . ,−εT `φT (fT , xT )

)
We, therefore, arrive at

sup
x1,x′1∈X
f1,f′1∈F

Eε1 . . . sup
xT ,x′T∈X
fT ,f′

T
∈F

EεT sup
φ∈ΦT

B
(
ε1(`φ1

(f ′1, x
′
1)− `φ1

(f1, x1)), . . . , εT (`φT
(f ′T , x

′
T )− `φT

(fT , xT ))
)

≤ 2 sup
f1∈F,x1∈X

Eε1 . . . sup
fT∈F,xT∈X

EεT sup
φ∈ΦT

B
(
ε1`φ1(f1, x1), . . . , εT `φT

(fT , xT )
)

= 2 sup
(f ,x)

Eε1:T sup
φ∈ΦT

B
(
ε1`φ1(f1(ε),x1(ε)), . . . , εT `φT

(fT (ε),xT (ε))
)

where in the last step we passed to the supremum over (F×X )-valued trees. This concludes
the proof for the case of B being subadditive. Starting from Eq. (14), the proof for the case
of −B being subadditive and convex in each of its coordinates leads to the bound of

2 sup
(f ,x)

Eε1:T sup
φ∈ΦT

−B
(
ε1`φ1(f1(ε),x1(ε)), . . . , εT `φT (fT (ε),xT (ε))

)
.

The complete proof can be repeated for the first term in the Triplex Inequality in order to
bound it by 2RT (`, I,B) (or respectively 2RT (`, I,−B)).

Proof [of Lemma 4] The lemma follows directly from a result on concentration of 2-
smooth functions of martingales, due to Pinelis Pinelis (1994). A detailed proof appears in
Rakhlin et al. (2010b).

Proof [of Theorem 6] Define β0 = η and βj = 2−j . For a fixed tree (f ,x) of depth T , let
Vj be an `∞-cover at scale βj . For any path ε ∈ {±1}T and any φ ∈ ΦT , let v[φ, ε]j ∈ Vj a
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βj-close element of the cover in the `∞ sense. Now, for any φ ∈ ΦT ,

G

(
1

T

T∑
t=1

εt`φt(ft(ε),xt(ε))

)

≤ G

(
1

T

T∑
t=1

εt(`φt(ft(ε),xt(ε))− v[φ, ε]Nt )

)
+

N∑
j=1

G

(
1

T

T∑
t=1

εt

(
v[φ, ε]jt − v[φ, ε]j−1

t

))

≤

∥∥∥∥∥ 1

T

T∑
t=1

εt(`φt(ft(ε),xt(ε))− v[φ, ε]Nt )

∥∥∥∥∥+
N∑
j=1

G

(
1

T

T∑
t=1

εt

(
v[φ, ε]jt − v[φ, ε]j−1

t

))

≤ T
max
t=1

∥∥`φt(ft(ε),xt(ε))− v[φ, ε]Nt
∥∥+

N∑
j=1

G

(
1

T

T∑
t=1

εt(v[φ, ε]jt − v[φ, ε]j−1
t )

)

Thus,

sup
φ∈ΦT

G

(
1

T

T∑
t=1

εt`φt(ft(ε),xt(ε))

)
≤ βN + sup

φ∈ΦT


N∑
j=1

G

(
1

T

T∑
t=1

εt(v[φ, ε]jt − v[φ, ε]j−1
t )

)
We now proceed to upper bound the second term. Consider all possible pairs of vs ∈ Vj and
vr ∈ Vj−1, for 1 ≤ s ≤ |Vj |, 1 ≤ r ≤ |Vj−1|, where we assumed an arbitrary enumeration of
elements. For each pair (vs,vr), define a real-valued tree w(s,r) by

w
(s,r)
t (ε) =

{
vst (ε)− vrt (ε) if there exists φ ∈ ΦT s.t. vs = v[φ, ε]j ,vr = v[φ, ε]j−1

0 otherwise.

for all t ∈ [T ] and ε ∈ {±1}T . It is crucial that w(s,r) can be non-zero only on those paths ε
for which vs and vr are indeed the members of the covers (at successive resolutions) close
in the `2 sense to some φ ∈ ΦT . It is easy to see that w(s,r) is well-defined. Let the set of
trees Wj be defined as

Wj =
{

w(s,r) : 1 ≤ s ≤ |Vj |, 1 ≤ r ≤ |Vj−1|
}

Using the above notations we see that

Eε

[
sup
φ∈ΦT

G

(
1

T

T∑
t=1

εt`φt(ft(ε),xt(ε))

)]

≤ βN + Eε

 sup
φ∈ΦT


N∑
j=1

G

(
1

T

T∑
t=1

εt(v[φ, ε]jt − v[φ, ε]j−1
t )

)


≤ βN + Eε

 N∑
j=1

sup
wj∈Wj

G

(
1

T

T∑
t=1

εtw
j
t (ε)

) (15)
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Similarly to the corresponding proof in Rakhlin et al. (2010a), we can show that maxTt=1 ‖w
j
t (ε)‖ ≤

3βj for any wj ∈ Wj and any path ε. Using concentration inequalities for 2-smooth func-
tions in Banach spaces (see Pinelis (1994) or the full version Rakhlin et al. (2010b) of this
extended abstract), we get

Eε

[
sup
φ∈ΦT

G

(
1

T

T∑
t=1

εt`φt(ft(ε),xt(ε))

)]
≤ βN +

N∑
j=1

βj

√
γ log(2|Wj |

T

≤ βN +
N∑
j=1

βj

√
γ log(2|Vj | · |Vj−1|

T

≤ βN +
6
√
γ

√
T

N∑
j=1

βj

√
log(|Vj |)

≤ βN +
12
√
γ

√
T

N∑
j=1

(βj − βj+1)
√

logN∞(βj ,ΦT , T ) .

Using standard arguments, this gives the bound,

inf
α

4α+
12
√
γ

√
T

∫ η

α

√
logN∞(β,ΦT , T )dβ .

Proof [of Corollary 7] The first statement is trivially verified. In fact, for this to hold
we only require that B is subadditive, affine in its arguments, and B(0, . . . , 0) = 0. Indeed,
the expectations can be sequentially moved inside of B, making the coordinates of B zero,
and making the suprema over the distributions irrelevant.

For the second claim, consider the second term in (8), specialized to the case of departure
mappings:

sup
p1

inf
q1
. . . sup

pT

inf
qT

sup
φ∈ΦT

E
f1:T∼q1:T
x1:T∼p1:T

{
1

T

T∑
t=1

`(ft, xt)− `(φt(ft), xt)

}
(16)

Pick a particular (sub)optimal response qt which puts all mass on f∗t = arg minf∈F Ex∼pt`(f, x).
It follows that `(ft, xt)−`(φt(ft), xt) ≤ 0, ensuring that the quantity in (16) is non-positive.

The third claim is a straightforward consequence of Theorem 6. Indeed, H ⊂ [−η, η]
and G is the identity mapping, hence G2 is (2, 2)-smooth.

Proof [of Lemma 12] Fix an (F ×X )-valued tree (f ,x) of depth T . Let (i0, . . . , ik) be the
sequence which defines intervals of time-invariant mappings for the sequence (φ1, . . . , φT ).
Fix ε ∈ {±1}T . Let vi0 , . . . ,vik ∈ V be the elements of the L∞ cover closest to φi0 , . . . , φik ,
respectively, on the path ε. That is, for any a ∈ {i0, . . . , ik},

max
t
‖`φa(ft(ε),xt(ε))− vat (ε)‖ ≤ α.
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By our assumption, on any interval I, defined by the endpoints a = ij and b = ij+1,

max
t∈{a,...,b−1}

‖`φa(ft(ε),xt(ε))− `φt(ft(ε),xt(ε))‖ ≤ α,

Hence,
max

t∈{a,...,b−1}
‖`φt(ft(ε),xt(ε))− vat (ε)‖ ≤ 2α

Denoting by a(t) ∈ {i0, . . . , ik} the left endpoint of an interval to which t belongs,

max
t∈{1,...,T}

‖`φt(ft(ε),xt(ε))− v
a(t)
t (ε)‖ ≤ 2α

It is then clear that to construct a 2α-cover for Φk,α
T in L∞ norm, it is enough to concatenate

trees in V . More precisely, this is done as follows. Construct a set V k of H-valued trees as

V k = {v′ = v′
(
v0, . . . ,vk, i0, . . . , ik

)
: 1 = i0 ≤ i1 ≤ . . . ≤ ik ≤ T, v0, . . . ,vk ∈ V }

and v′ = v′
(
v0, . . . ,vk, i0, . . . , ik

)
is defined as a sequence of T mappings

v′t(ε) = v
a(t)
t (ε) t ∈ Ia(t)

for any ε ∈ {±1}T . Here Ia = {ij , . . . , ij+1 − 1} and a(t) is the index of the interval to
which t belongs. In plain words, we consider all ways of partitioning {1, . . . , T} into k + 1
intervals and defining a new set of trees out of V in such a way that within the interval,
the values are given by a fixed tree from V . As before, it is clear that

N∞(2α,Φk,α
T , T ) = |V k| ≤

(
T

k

)
· N∞(α,Φ, T )k+1,

providing a control on the complexity of Φk,α
T .

Proof [of Lemma 13] We claim that by choosing k large enough, the set of covering trees
V k defined in the proof of Lemma 12 provides a cover for ΦT at a given scale α > 0. Consider
any (φ1, . . . , φT ) ∈ ΦT . We construct the nondecreasing sequence i1, . . . , ij , . . . ∈ {1, . . . , T}
of “change-points” as follows: increase t until the next payoff transformation is farther than
α from the payoff transformation at ij :

ij+1 = inf
t>ij

{
sup
f,x

∥∥∥`φij (f, x)− `φt(f, x)
∥∥∥ ≥ α}

Let k be the length of the largest such sequence for all elements of ΦT . We have simply
reduced the problem to the one studied in Lemma 12: within each block, all the payoff
transformations are close. Clearly, k = k(α) ≤ L/α, but can potentially be smaller under
additional assumptions on ΦT . We then have a bound on the size of a 2α-cover of ΦT :

N∞(2α,ΦT , T ) ≤
(

T

k(α)

)
· N∞(α,Φ, T )k(α)+1 ≤

(
T

L/α

)
· N∞(α,Φ, T )L/α+1 .
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Appendix B. Techniques for Lower Bounds

It is well-known that an equalizing strategy (i.e. a strategy that makes the move of the other
player “irrelevant”) can often be shown to be minimax optimal. In this section, we define
a notion of an equalizer for our repeated game and show that it can be used to prove lower
bounds on the value of the game. While existence of an equalizer has to be established
for particular problems at hand, the lower bounds below hold whenever such an equalizer
exists.

Definition 19 A strategy {p∗t } for the adversary is said to be an equalizer strategy if

E
x1∼p∗1
f1∼q∗1

. . . E
xT∼p∗T
fT∼q

∗
T

RT ((f1, x1), . . . , (fT , xT )) = E
x1∼p∗1
f1∼q∗1

. . . E
xT∼p∗T
fT∼q

∗
T

RT ((f1, x1), . . . , (fT , xT ))

for all strategies {q∗t } and
{
q∗t
}

of the player. Here RT is defined as in (1).

Using the above definition of an equalizer we have the following proposition as an im-
mediate consequence.

Proposition 20 For any Equalizer strategy {p∗t } we have that for any f ∈ F ,

VT (`,ΦT ) ≥ E
x1∼p1

. . . E
xT∼pT

[
B (`(f, x1), . . . , `(f, xT ))− inf

φ∈ΦT
B (`φ1(f, x1), . . . , `φT (f, xT ))

]
where pt = p∗t

(
{fs = f, xs}t−1

s=1

)
Remark 21 For many interesting games we consider it is often the case that for any
x1, . . . , xT and any f1, . . . , fT , f

′
1, . . . , f

′
T ,

inf
φ∈ΦT

B (`φ1(f1, x1), . . . , `φT (fT , xT )) = inf
φ∈ΦT

B
(
`φ1(f ′1, x1), . . . , `φT (f ′T , xT )

)
In these cases since the player’s actions do not even affect the second term of the regret, to
check if a strategy {p∗t } is an equalizer or not we only need to check if

E
x1∼p∗1
f1∼q∗1

. . . E
xT∼p∗T
fT∼q

∗
T

B (`(f1, x1), . . . , `(fT , xT )) = E
x1∼p∗1
f1∼q∗1

. . . E
xT∼p∗T
fT∼q

∗
T

B (`(f1, x1), . . . , `(fT , xT ))

for all strategies {q∗t } and {q∗t } of the player.

Interestingly enough, many of the existing lower bounds in online learning literature
are, in fact, equalizers (see e.g. (Cesa-Bianchi and Lugosi, 2006, p. 252)). In particular,
in Abernethy et al. (2009), a lower bound on the value of the game was derived by looking
at a certain face of a convex hull of loss vectors. The face, supported by a probability
distribution p, corresponds to the set of functions with the same expected loss under the
distribution p. Hence, p is an equalizing strategy for those functions. Since these functions
are the “best” with respect to this distribution, a lower bound in terms of complexity of this
set was derived in Abernethy et al. (2009). Furthermore, (Lee, Bartlett and Williamson,
1998) shows that a lower bound on the rate of convergence in the i.i.d. setting is achieved
when there are two distinct minimizers of expected error for a given distribution. Again,
this distribution can be viewed as an equalizer for the non-singleton set of minimizers of
expected error.
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Appendix C. Proofs for Blackwell Approachability (Section 4.2)

Proof [of Theorem 16] Now we apply Theorem 2 to the Blackwell Approachability game.
Note that for any sequence (φ1, . . . , φT ), φt maps the payoff to some element of S. Hence,

B(`φ1(f1, x1), . . . , `φT (fT , xT )) = 0

for any f1, . . . , fT ∈ F , x1, . . . , xT ∈ X . We then conclude that

VT (`,ΦT ) ≤ sup
p1,q1

E
f1∼q1
x1∼p1

. . . sup
pT ,qT

E
fT∼qT
xT∼pT

{
B(`(f1, x1), . . . , `(fT , xT ))− E

f ′
1:T
∼q1:T

x′
1:T
∼p1:T

B(`(f ′1, x
′
1), . . . , `(f ′T , x

′
T ))
}

(17)

+ sup
p1

inf
q1
. . . sup

pT

inf
qT

E
f1:T∼q1:T
x1:T∼p1:T

B(`(f1, x1), . . . , `(fT , xT )) .

We remark for the upper bound to hold it is enough to assume that ΦT contains some
sequence that maps the payoffs to some element of S.

Consider the two terms in the above bound separately. The first term can be written as

sup
p1,q1

E
f1∼q1
x1∼p1

. . . sup
pT ,qT

E
fT∼qT
xT∼pT

E
f ′1:T∼q1:T

x′
1:T
∼p1:T

{
inf
c∈S

∥∥∥∥∥c− 1

T

T∑
t=1

`(ft, xt)

∥∥∥∥∥− inf
c′∈S

∥∥∥∥∥c′ − 1

T

T∑
t=1

`(f ′t , x
′
t)

∥∥∥∥∥
}

≤ sup
p1,q1

E
f1∼q1
x1∼p1

. . . sup
pT ,qT

E
fT∼qT
xT∼pT

E
f ′1:T∼q1:T

x′
1:T
∼p1:T

{∥∥∥∥∥ 1

T

T∑
t=1

`(ft, xt)−
1

T

T∑
t=1

`(f ′t , x
′
t)

∥∥∥∥∥
}

≤ sup
p1,q1

E
f1,f ′1∼q1
x1,x

′
1∼p1

. . . sup
pT ,qT

E
fT ,f

′
T∼qT

xT ,x
′
T
∼pT

{∥∥∥∥∥ 1

T

T∑
t=1

`(ft, xt)−
1

T

T∑
t=1

`(f ′t , x
′
t)

∥∥∥∥∥
}

where in the first inequality we used infa[C1(a)]− infa[C2(a)] ≤ supa[C1(a)− C2(a)] along
with a triangle inequality. This is now bounded by

2 sup
M

E

[∥∥∥∥∥ 1

T

T∑
t=1

dt

∥∥∥∥∥
]

where the supremum is over distributions M of martingale difference sequences {dt}t∈N such
that each dt ∈ conv(H

⋃
−H).
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The second term in Eq. (17) is

sup
p1

inf
q1
. . . sup

pT

inf
qT

E
f1:T∼q1:T
x1:T∼p1:T

B(`(f1, x1), . . . , `(fT , xT ))

= sup
p1

inf
q1
. . . sup

pT

inf
qT

E
f1:T∼q1:T
x1:T∼p1:T

inf
c∈S

∥∥∥∥∥c− 1

T

T∑
t=1

`(ft, xt)

∥∥∥∥∥
≤ sup

p1

inf
q1
. . . sup

pT

inf
qT

E
f1:T∼q1:T
x1:T∼p1:T

inf
c∈S

{∥∥∥∥∥c− 1

T

T∑
t=1

`(qt, pt)

∥∥∥∥∥+

∥∥∥∥∥ 1

T

T∑
t=1

`(qt, pt)−
1

T

T∑
t=1

`(ft, xt)

∥∥∥∥∥
}

≤ sup
p1

inf
q1
. . . sup

pT

inf
qT

inf
c∈S

∥∥∥∥∥c− 1

T

T∑
t=1

`(qt, pt)

∥∥∥∥∥+ E
f1:T∼q1:T
x1:T∼p1:T

∥∥∥∥∥ 1

T

T∑
t=1

`(qt, pt)−
1

T

T∑
t=1

`(ft, xt)

∥∥∥∥∥


≤ sup
p1

inf
q1
. . . sup

pT

inf
qT

{
inf
c∈S

∥∥∥∥∥c− 1

T

T∑
t=1

`(qt, pt)

∥∥∥∥∥
}

(18)

+ sup
p1,q1

. . . sup
pT ,qT

E
f1:T∼q1:T
x1:T∼p1:T

∥∥∥∥∥ 1

T

T∑
t=1

`(qt, pt)−
1

T

T∑
t=1

`(ft, xt)

∥∥∥∥∥
where the last inequality uses the fact that supremum is convex and infimum satisfies
the following property: infa [C1(a) + C2(a)] ≤ [infaC1(a)] + [supaC2(a)]. By one shot
approachability assumption, we can choose a particular response qt (in the first term of
Eq. (18)) for a given pt to be the mixed strategy that satisfies `(qt, pt) ∈ S. Since S is a
convex set, we conclude that

1

T

T∑
t=1

`(qt, pt) ∈ S

and the first term in Eq. (18) is zero. The second term is trivially upper bounded as

sup
p1,q1

. . . sup
pT ,qT

E
f1:T∼q1:T
x1:T∼p1:T

∥∥∥∥∥ 1

T

T∑
t=1

`(qt, pt)−
1

T

T∑
t=1

`(ft, xt)

∥∥∥∥∥
≤ sup

p1,q1
E

f1∼q1
x1∼p1

. . . sup
pT ,qT

E
fT∼qT
xT∼pT

∥∥∥∥∥ 1

T

T∑
t=1

`(qt, pt)−
1

T

T∑
t=1

`(ft, xt)

∥∥∥∥∥
≤ 2 sup

M
E

[∥∥∥∥∥ 1

T

T∑
t=1

dt

∥∥∥∥∥
]
.

Combining the two upper bounds yields the desired result.

Proof [of Theorem 17] Consider the game where adversary plays from set X = H, the
player plays from set F = {±1}, and S = {0}. Suppose the payoff is given by `(f, x) = f ·x.
This game is clearly one-shor approachable since the player can always play ±1 with equal
probability to ensure that `(p, q) = 0 irrespective of q.
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Now consider the adversary strategy where adversary fixes a H valued tree x and at
each time t picks a random εt ∈ {±1} and plays xt = εtxt(f1 · ε1, . . . , ft−1 · εt−1) that
is a random sign multiplied with the instance given by the path on the tree specified by
f1·ε1, . . . , ft−1·εt−1. Further note that since εt ∈ {±1} are Rademacher random variables, we
see that irrespective of choice of distribution from which ft is drawn, ft · εt is a Rademacher
random variable conditioned on history. This shows that for the above prescribed adversary
strategy, we have that for any X valued tree x and any two player strategies {q∗t } and {q∗t }
we have

E
f1∼q∗1

ε1∼Unif{±1}

. . . E
fT∼q∗T

εT∼Unif{±1}

∥∥∥∥∥ 1

T

T∑
t=1

(ft · εt)x(f1 · ε1, . . . , ft−1 · εt−1)

∥∥∥∥∥
= E

f1∼q∗1
ε1∼Unif{±1}

. . . E
fT∼q∗T

εT∼Unif{±1}

∥∥∥∥∥ 1

T

T∑
t=1

(ft · εt)x(f1 · ε1, . . . , ft−1 · εt−1)

∥∥∥∥∥
= E

f1∼q∗1
ε1∼Unif{±1}

. . . E
fT−1∼q∗T−1

εT−1∼Unif{±1}

E
fT∼q∗T

εT∼Unif{±1}

∥∥∥∥∥ 1

T

T∑
t=1

(ft · εt)x(f1 · ε1, . . . , ft−1 · εt−1)

∥∥∥∥∥
. . . = E

f1∼q∗1
ε1∼Unif{±1}

. . . E
fT∼q∗T

εT∼Unif{±1}

∥∥∥∥∥ 1

T

T∑
t=1

(ft · εt)x(f1 · ε1, . . . , ft−1 · εt−1)

∥∥∥∥∥
The first equality above is due to the fact that fT · εT is a Rademacher random variable
conditioned on f1, . . . , fT−1 and ε1, . . . , εT−1 which means we can replace q∗T with q∗T . The
subsequent equalities are got similarly by replacing each q∗t by q∗t one by one inside out by
conditioning on f1, . . . , ft−1 and ε1, . . . , εt−1; and replacing each q∗t by q∗t . Hence we see that
the adversary strategy is an equalizer strategy. Hence using Proposition 20 and picking the
fixed f = 1 we see that

VT ≥ sup
x

Eε∼Unif{±1}T

[∥∥∥∥∥ 1

T

T∑
t=1

εtx(ε)

∥∥∥∥∥
]
≥ 1

2
sup
M

E

[∥∥∥∥∥ 1

T

T∑
t=1

dt

∥∥∥∥∥
]

where the last inequality is because the worst-case martingale difference sequence generated
by random signs (Walsh Paley martingales) are lower bounded by the worst case martingale
difference sequences within a factor of at most two Pisier (1975).

Appendix D. Proofs for Calibration (Section 4.3)

Let δ > 0 to be determined later. Let ‖ · ‖ denote the `1 norm. Let Cδ be the maximal
2δ-packing of ∆(X ) in this norm. Consider the calibration game defined in Example 4,
augmented with the restriction that the player’s choice belongs to Cδ instead of ∆(k). The
corresponding minimax expression with this restriction is clearly an upper bound on the
value of the game defined in Example 4.
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Observe that the first term in the Triplex Inequality of Theorem 2 is zero. The second
term is upper bounded by a particular (sub)optimal response qt being the point mass on
pδt , the element of Cδ closest to pt. Note that any 2δ packing is also a 2δ cover. Thus, the
second term becomes

sup
p1

inf
q1
. . . sup

pT

inf
qT

sup
φ∈ΦT

− E
x1:T∼p1:T
f1:T∼q1:T

B(`φ1(f1, x1), . . . , `φT (fT , xT ))


= sup

p1

inf
q1
. . . sup

pT

inf
qT

sup
λ>0

sup
p∈∆(k)

E
x1:T∼p1:T
f1:T∼q1:T

∥∥∥∥∥ 1

T

T∑
t=1

`φp,λ(ft, xt)

∥∥∥∥∥
≤ sup

p1

. . . sup
pT

sup
λ>0

sup
p∈∆(k)

E
x1:T∼p1:T

∥∥∥∥∥ 1

T

T∑
t=1

1
{
‖pδt − p‖ ≤ λ

}
· (pδt − xt)

∥∥∥∥∥
which, in turn, is upper bounded via triangle inequality by

sup
p1

. . . sup
pT

sup
λ>0

sup
p∈∆(k)

E
x1:T∼p1:T

∥∥∥∥∥ 1

T

T∑
t=1

1
{
‖pδt − p‖ ≤ λ

}
· (pδt − pt)

∥∥∥∥∥
+ sup

p1

. . . sup
pT

sup
λ>0

sup
p∈∆(k)

E
x1:T∼p1:T

∥∥∥∥∥ 1

T

T∑
t=1

1
{
‖pδt − p‖ ≤ λ

}
· (pt − xt)

∥∥∥∥∥
≤ 2δ + sup

p1

. . . sup
pT

sup
λ>0

sup
p∈∆(k)

E
x1:T∼p1:T

∥∥∥∥∥ 1

T

T∑
t=1

1
{
‖pδt − p‖ ≤ λ

}
· (pt − xt)

∥∥∥∥∥
Now note that for a given λ > 0, p1, . . . , pT and p ∈ ∆(k), we have that {1

{
‖pδt − p‖ ≤ λ

}
·

(pt − xt)}t∈N is a martingale difference sequence and so the second term in the triplex
inequality is bounded as :

sup
p1

inf
q1
. . . sup

pT

inf
qT

sup
φ∈ΦT

− E
x1:T∼p1:T
f1:T∼q1:T

B(`φ1(f1, x1), . . . , `φT (fT , xT ))

 ≤ 2δ + 2

√
k

T
. (19)

We now proceed to upper bounded the third term in the Triplex Inequality. Since −B is
a subadditive, by Theorem 3, we have that the third term is bounded by twice the sequential
complexity

2RT (`,ΦT ,−B) = 2 sup
f ,x

Eε1:T sup
φ∈ΦT

−B
(
ε1`φ1(f1(ε),x1(ε)), . . . , εT `φT (fT (ε),xT (ε))

)
= 2 sup

f ,x
Eε1:T sup

λ>0
sup

p∈∆(k)

∥∥∥∥∥ 1

T

T∑
t=1

εt1 {‖ft(ε)− p‖ ≤ λ} · (ft(ε)− xt(ε))

∥∥∥∥∥
where f is a Cδ-valued tree. Using the fact that f is a discrete-valued tree, not a ∆(k)-valued
tree, we would like to pass from the supremum over λ > 0 and p ∈ ∆(k) to a supremum
over finite discrete set in order to appeal to Lemma 4.
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To this end, fix f ,x and ε1:T and let us see how many genuinely different functions can
we get by varying λ > 0 and p ∈ ∆(k). This question boils down to looking at the size of
the class

G := {gp,λ(f) = 1 {‖f − p‖ ≤ λ} : p ∈ ∆(k), λ > 0}

over the possible values of f ∈ Cδ. Indeed, if gp,λ(f) = gp′,λ′(f) for all f ∈ Cδ, then

1

T

T∑
t=1

1 {‖ft(ε)− p‖ ≤ λ} · (ft(ε)− xt(ε)) =
1

T

T∑
t=1

1
{
‖ft(ε)− p′‖ ≤ λ′

}
· (ft(ε)− xt(ε)).

We appeal to VC theory for bounding the size of G over Cδ. First, we claim that the
VC dimension of G is O(k2). Note that G is the class of indicators over `1 balls of radius
λ centered at p for various values of p, λ. A result of Goldberg and Jerrum Goldberg and
Jerrum (1995) states that for a class G of functions parametrized by a vector of length d, if
for g ∈ G and f ∈ F , 1 {g(f) = 1} can be computed using m arithmetic operations, the VC
dimension of G is O(md). In our case, the functions in G are parametrized by k values and
membership ‖f − p‖1 ≤ λ can be established in O(k) operations. This yields O(k2) bound
on the VC dimension of G. By Sauer-Shelah Lemma, the number of different labelings of
the set Cδ by G is bounded by |Cδ|c·k

2
for some absolute constant c. We conclude that the

effective number of different (p, λ) is finite. Let us remark that the VC upper bound is not
used in place of the sequential Littlestone’s dimension. It is only used to show that the set
ΦT is finite, and such technique can be useful when the set of player’s actions is finite.

Hence, there exists a finite set S of pairs (λ, p) with cardinality |S| ≤ |Cδ|c·k
2

such that

2RT (`,ΦT ,−B) ≤ 2 sup
f ,x

Eε1:T sup
λ>0

sup
p∈∆(k)

∥∥∥∥∥ 1

T

T∑
t=1

εt1 {‖ft(ε)− p‖1 ≤ λ} · (ft(ε)− xt(ε))

∥∥∥∥∥
1

= 2 sup
f ,x

Eε1:T max
(p,λ)∈S

∥∥∥∥∥ 1

T

T∑
t=1

εt1 {‖ft(ε)− p‖1 ≤ λ} · (ft(ε)− xt(ε))

∥∥∥∥∥
1

≤ 2 k1/2 sup
f ,x

Eε max
(p,λ)∈S

∥∥∥∥∥ 1

T

T∑
t=1

εt1 {‖ft(ε)− p‖1 ≤ λ} · (ft(ε)− xt(ε))

∥∥∥∥∥
2

Now note that ‖ ·‖22 is (2, 2)-smooth and so applying Lemma 4 with G = ‖ ·‖2, γ = 2, η = 2,
we see that

2RT (`,ΦT ,−B) ≤ 2k1/2

(
8 log(2|S|)

T

)1/2

≤ 2k1/2

(
16ck2 log(|Cδ|)

T

)1/2

= c′k3/2

(
log(|Cδ|)

T

)1/2

for some small absolute constant c′.
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Now note that the size of set Cδ the 2δ packing of ∆(k) is upper bounded by the size of

the minimal δ cover of ∆(k) which can be bounded as |Cδ| ≤
(

1
δ

)k−1
and so we see that

2RT (`,ΦT ,−B) ≤ c′k2

(
log(1/δ)

T

)1/2

.

Combining the above upper bound on the third term of triplex inequality and Equation
19 that bounds the second term of the triplex inequality (and since first term is anyway 0)
we see that,

VT ≤ 2δ + 2

√
k

T
+ c′k2

(
log(1/δ)

T

)1/2

.

Choosing δ = 1/T concludes the proof.

Appendix E. Proofs for Global Cost (Section 4.4)

Proof [of Theorem 18] The Triplex Inequality and Theorem 3 give

VT ≤ sup
p1,q1

E
f1∼q1
x1∼p1

. . . sup
pT ,qT

E
fT∼qT
xT∼pT

E
f ′1:T∼q1:T

x′
1:T
∼p1:T

∥∥∥∥∥ 1

T

T∑
t=1

(`(ft, xt)− `(f ′t , x′t))

∥∥∥∥∥
+ sup

p1

inf
q1
. . . sup

pT

inf
qT

sup
f∈F

E
f1:T∼q1:T
x1:T∼p1:T

{∥∥∥∥∥ 1

T

T∑
t=1

`(ft, xt)

∥∥∥∥∥−
∥∥∥∥∥ 1

T

T∑
t=1

`(f, xt)

∥∥∥∥∥
}

+ 2 sup
x

Eε1:T sup
f∈F

∥∥∥∥∥ 1

T

T∑
t=1

εt`(f,xt(ε))

∥∥∥∥∥ .

Consider the first term in the Triplex Inequality. Observe that (`(ft, xt) − `(f ′t , x′t))Tt=1

is a (vector valued) martingale difference sequence and so

sup
p1,q1

E
f1,f ′1∼q1
x1,x

′
1∼p1

. . . sup
pT ,qT

E
fT ,f

′
T∼qT

xT ,x
′
T
∼pT

∥∥∥∥∥ 1

T

T∑
t=1

(`(ft, xt)− `(f ′t , x′t))

∥∥∥∥∥ ≤ 2 sup
M

E

[∥∥∥∥∥ 1

T

T∑
t=1

dt

∥∥∥∥∥
]
.

where the supremum is over distributions M of martingale difference sequences {dt}t∈N such
that each dt ∈ conv(H

⋃
−H).

Now, consider the second summand above:

sup
p1

inf
q1
. . . sup

pT

inf
qT

sup
f∈F

E
f1:T∼q1:T
x1:T∼p1:T

{∥∥∥∥∥ 1

T

T∑
t=1

`(ft, xt)

∥∥∥∥∥−
∥∥∥∥∥ 1

T

T∑
t=1

`(f, xt)

∥∥∥∥∥
}

= sup
p1

inf
q1
. . . sup

pT

inf
qT

 E
f1:T∼q1:T
x1:T∼p1:T

∥∥∥∥∥ 1

T

T∑
t=1

`(ft, xt)

∥∥∥∥∥− inf
f∈F

E
x1:T∼p1:T

∥∥∥∥∥ 1

T

T∑
t=1

`(f, xt)

∥∥∥∥∥


≤ sup
p1

. . . sup
pT

{
E

x1:T∼p1:T

∥∥∥∥∥ 1

T

T∑
t=1

`(ft, xt)

∥∥∥∥∥− inf
f∈F

E
x1:T∼p1:T

∥∥∥∥∥ 1

T

T∑
t=1

`(f, xt)

∥∥∥∥∥
}
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where in the last step a (sub)optimal choice was made for qt: the distribution qt = δft puts
all the mass on ft such that

‖`(ft, pt)‖ = inf
f∈F
‖`(f, pt)‖.

Observe that by several applications of triangle and Jensen’s inequalities,

E
x1:T∼p1:T

∥∥∥∥∥ 1

T

T∑
t=1

`(ft, xt)

∥∥∥∥∥− inf
f∈F

E
x1:T∼p1:T

∥∥∥∥∥ 1

T

T∑
t=1

`(f, xt)

∥∥∥∥∥
≤

{∥∥∥∥∥ 1

T

T∑
t=1

`(ft, pt)

∥∥∥∥∥− inf
f∈F

∥∥∥∥∥ 1

T

T∑
t=1

`(f, pt)

∥∥∥∥∥
}

+ E
x1:T∼p1:T

∥∥∥∥∥ 1

T

T∑
t=1

(`(ft, xt)− `(ft, pt))

∥∥∥∥∥
(20)

Under Assumption 1, along with the way we chose ft, the first term in (20) becomes∥∥∥∥∥ 1

T

T∑
t=1

`(ft, pt)

∥∥∥∥∥− inf
f∈F

∥∥∥∥∥ 1

T

T∑
t=1

`(f, pt)

∥∥∥∥∥ ≤ 1

T

T∑
t=1

‖`(ft, pt)‖ −
1

T

T∑
t=1

inf
f∈F
‖`(f, pt)‖ = 0 .

We conclude that the second term in the Triplex Inequality can be upper bounded by

sup
p1

. . . sup
pT

E
x1:T∼p1:T

∥∥∥∥∥ 1

T

T∑
t=1

(`(ft, xt)− `(ft, pt))

∥∥∥∥∥ ,
which, in turn, is no worse than the supremum over distributions M of martingale difference
sequences used to bound the first term.

This gives us the general upper bound on the value of the game:

VT ≤ 4 sup
M

E

[∥∥∥∥∥ 1

T

T∑
t=1

dt

∥∥∥∥∥
]

+ 2 sup
x

Eε1:T sup
f∈F

∥∥∥∥∥ 1

T

T∑
t=1

εt`(f,xt(ε))

∥∥∥∥∥ . (21)

Lemma 22 Let F be the probability simplex in any dimension. Let ‖ · ‖ be any norm. The
function

x 7→ inf
f∈F
‖f � x‖ ,

defined on the positive orthant, is concave.

Proof Since the function above is absolutely homogeneous and continuous, all we need to
prove is

inf
f∈F
‖f � (x+ y)‖ ≥ inf

f∈F
‖f � x‖+ inf

f∈F
‖f � y‖ .

for arbitrary x, y. That is, for arbitrary f ′, x, y,

‖f ′ � (x+ y)‖ ≥ inf
f∈F
‖f � x‖+ inf

f∈F
‖f � y‖ .
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Define h, g ∈ F as follows:

gi =
f ′i(1 + yi/xi)

Zg
hi =

f ′i(1 + xi/yi)

Zh
,

where

Zg =
∑
i

f ′i(1 + yi/xi) Zh =
∑
i

f ′i(1 + xi/yi) .

Now, as we show below, 1/Zg + 1/Zh ≤ 1. Thus,

‖f ′ � (x+ y)‖ ≥ 1

Zg
‖f ′ � (x+ y)‖+

1

Zh
‖f ′ � (x+ y)‖

= ‖g � x‖+ ‖h� y‖
≥ inf

f∈F
‖f � x‖+ inf

f∈F
‖f � y‖ .

To finish the proof, note that, by Cauchy-Schwarz,(∑
i

f ′i(1 + yi/xi)

)
·

(∑
i

f ′i
xi

xi + yi

)
≥

(∑
i

f ′i

)2

= 1 .

This shows,
1

Zg
≤
∑
i

f ′i
xi

xi + yi
.

Similarly, we get
1

Zh
≤
∑
i

f ′i
yi

xi + yi
.

Adding them, we get
1

Zg
+

1

Zh
≤
∑
i

f ′i = 1

as claimed. This completes the proof.
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