
On Tight Approximate Inference of the Logistic-Normal Topic
Admixture Model

Amr Ahmed
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
amahmed@cs.cmu.edu

Eric P. Xing
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
epxing@cs.cmu.edu

Abstract

The Logistic-Normal Topic Admixture Model
(LoNTAM), also known as correlated topic
model (Blei and Lafferty, 2005), is a promis-
ing and expressive admixture-based text
model. It can capture topic correlations
via the use of a logistic-normal distribu-
tion to model non-trivial variabilities in the
topic mixing vectors underlying documents.
However, the non-conjugacy caused by the
logistic-normal makes posterior inference and
model learning significantly more challeng-
ing. In this paper, we present a new, tight ap-
proximate inference algorithm for LoNTAM
based on a multivariate quadratic Taylor ap-
proximation scheme that facilitates elegant
closed-form message passing. We present ex-
perimental results on simulated data as well
as on the NIPS17 and PNAS document col-
lections, and show that our approach is not
only simple and easy to implement, but also
it converges faster, and leads to more accu-
rate recovery of the semantic truth underly-
ing documents and estimates of the parame-
ters comparing to previous methods.

1 Introduction
Statistical admixture models have recently gained
much popularity in managing large collection of dis-
crete objects. Via an admixture model, one can
project such objects into a low dimensional space
where their latent semantic (such as topical aspects)
can be captured. This low dimensional representation
can then be used for tasks like classifications and clus-
tering or merely as a tool to structurally browse the
otherwise unstructured collection.
An admixture model posits that each object is sam-
pled from a mixture model according to the object’s
specific mixing vector over the mixture components.
Special instances of this formalism have been used
for population genetics (Pritchard et al., 2000), vi-

sion (Sivic et al., 2005), text modeling (Blei et al.,
2003) and machine translation (Zhao and Xing, 2006).
When applied to text, the objects correspond to doc-
uments, and the mixture components are known as
topics which are often represented as a multinomial
distribution over a given vocabulary. Under this for-
malism, each document is succinctly represented as a
mixing vector over the set of topics, and the topic mix-
ing vector reflects the semantics of the document.
Much of the expressiveness of admixture-based text
models lies in how they model the variabilities in the
topic mixing vectors underlying documents. For in-
stance, when the variability is modeled via a Dirichlet
distribution, the model is known as latent Dirichlet al-
location (Blei et al., 2003). The Dirichlet indeed is an
appealing choice because its conjugacy to the multino-
mial allows for computational advantages in inference
and learning. However, the Dirichlet can only capture
variations in each topic’s intensity (almost) indepen-
dently, and fails to model the fact that some topics are
highly correlated and can arise synergistically. Failure
to model such correlation limits the model’s ability to
discover subtle topical structures underlying the data.
Apart from the Dirichlet, another popular distribu-
tion over the simplex (the space of normalized weight
vectors) is the logistic-normal (LN) distribution which
has the sought-after property of being able to model
correlations between the components of the vectors
drawn from it (Aitchison and Shen, 1980). When
the logistic-normal is used instead of the Dirichlet, we
call the resulting model a Logistic-Normal Topic Ad-
mixture Model (LoNTAM) which is also known as the
correlated topic model (Blei and Lafferty, 2005). Un-
fortunately, this added expressivity comes with a price,
because the non-conjugacy of LN to the multinomial
distribution makes posterior inference and parameter
estimation significantly more difficult.
In the sequel, we present a new, approximate inference
algorithm for LoNTAM which offers a simple and effi-
cient way of capturing correlated topic posteriors. (A



longer version, which contains derivational details and
additional extensions/generalizations can be found in
a earlier Technical Report (Xing, 2005).) We begin
by outlining LoNTAM; then we proceed to describe
our approximate inference method that overcomes the
non-conjugacy of LN via the use of a multivariate
quadratic Taylor approximation to LN, which enables
an elegant closed-form variational message passing al-
gorithm. For completeness, we also describe an earlier
inference algorithm for LoNTAM given by Blei and
Lafferty (2005) and highlight key differences between
the two approaches. Finally we present experimental
results on simulated text datasets as well as real text
collections from NIPS and PNAS. Our results show
that the proposed algorithm is not only simpler and
easier to implement, but also leads tighter approxima-
tion to the topic posterior, more accurate estimations
of the parameters, and faster convergence, comparing
to the previous method based on linear approximation
and numerical procedure.

2 Logistic-Normal Topic Admixture
We begin with a brief recap of the general admixture
formalism, and the LoNTAM model for text docu-
ments represented as bags of words.

2.1 Admixture Model
Statistically, an object x is said to be derived from
an admixture if it consists of a bag of elements, say
{x1, . . . , xN}, each sampled independently or coupled
in some way, from a mixture model, according to
an admixing coefficient vector ~θ, which represents the
(normalized) fraction of contribution from each of
the mixture components to the object being mod-
eled. In a typical text modeling setting, each docu-
ment corresponds to an object, the words thereof cor-
respond to the elements constituting the object, and
the document-specific admixing coefficient vector is of-
ten known as a topic mixing vector (or simply, topic
vector). Generatively, to sample a document accord-
ing to an admixture model, we first sample a topic
vector from some admixing prior, then a latent topic
is sampled for each word based on the topic vector
to induce topic-specific word instantiations. Since the
admixture formalism enables an object to be synthe-
sized from elements drawn from a mixture of multiple
sources, it is also known as mixed membership model
in the statistical community (Erosheva et al., 2004).

2.2 Logistic-Normal Topic Admixture Model
Much of the expressiveness of admixture-based text
models lies in the choice of the prior for the docu-
ments topic vectors. To capture non-trivial correla-
tions among the weights of all possible topics underly-
ing a document (i.e., the elements of the topic vector
~θ), instead of using a Dirichlet as in LDA, a LoNTAM
model employs a logistic-normal distribution for the

topic vectors of a study corpus. As discussed in Blei
and Lafferty (2005), this prior captures a much richer
abundance of correlation patterns in a topic simplex;
but as a cost, the non-conjugacy between the logistic-
normal prior (for topic vectors) and the multinomial
likelihood (for topic instantiations) makes posterior in-
ference and parameter estimation extremely hard. For
example, variational inferences algorithms commonly
used for generalized linear models (GLIMs) won’t have
close-form fixed point iterative formula in this case. In-
deed, the approximate inference scheme adopted so far
fail to capture the much-desired correlation structure
in the posterior distribution of the topic vectors.
Before presenting our tight approximate inference al-
gorithm, which offers a simple and efficient way for
obtaining truly correlated topic posteriors under LoN-
TAM, in the following we outline the details of this
model for later reference. As illustrated in Figure 1,
in a LoNTAM, each topic, say topic k, is repre-
sented by an M-dimensional word frequency vector
~βk, which parameterizes a topic-specific multinomial
distribution. A document is generated by sampling
its topic vector from a logistic normal distribution
with K-dimensional mean µ and covariance Σ, that is
LN(µ, Σ), and then words are sampled based on this
topic vector. More formally, to generate a document
wd = {wd,1, wd,2, . . . , wd,N}, we proceed as bellow:

1. Draw ~θd ∼ LN(µ, Σ)
2. For each word wd,n in wd

• Draw latent topic zd,n ∼ Multinomial(~θd)
• Draw wd,n|zd,n = k ∼ Multinomial(~βk)

The first step can be broken down into two sub-steps:
first draw ~γd ∼ Normal(µ, Σ); then map it to the
simplex via the following logistic transformation:

θd,k = exp{γd,k − C(~γd)}, ∀k = 1, . . . , K (1)

where C(~γd) = log
“ KX

k=1

exp{γd,k}
”
. (2)

Here C(~γd) is a normalization constant (i.e., the log
partition function). Furthermore, due to the normal-
izability constrain on the multinomial parameters,
~θd only has K − 1 degree of freedom. Thus we only
need to draw the first K − 1 components of ~γd from a
(K − 1)-dimensional multivariate Gaussian, and leave
γd,K = 0. For simplicity, we omit this technicality
in the forth coming general operation of our model.
Putting everything together, the marginal probability
of a document w can be written as follows (for
simplicity, in the sequel we omit document index ”d”
when our statements and/or expressions apply to all
documents):

p(w) =

Z

~γ

„ NY
n=1

KX
zn=1

p(wn|zn; ~β1:K)× (3)

p(zn|logistic(~γ))

«
N (~γ|µ, Σ)d~γ,



Figure 1: The Graphical Model.

where p(wn|zn; ~β1:K) and p(zn|logistic(~γ)) are both
multinomial distributions parameterized by ~βzn

and
~θ = logistic(~γ), respectively.

3 Tight Approximate Inference and
Learning on LoNTAM
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Figure 2: Approximating the log partition function using
a truncated quadratic Taylor expansion. Top for K=2 and
bottom for K=3.

3.1 Variational Inference Under
Taylor-Approximated Conjugacy

Given a document w, the inference task is to find the
posterior distribution over the latent variables. Un-
fortunately, conditioned on w1:N , the posterior over
{~γ, z1:N} under LoNTAM is intractable. Therefore
following a variational principle, such as in Xing et al.
(2003), we approximate p(~γ, z1:N |w) with a product of
simpler marginals, each on a cluster of latent variable
subset, i.e., {~γ} and {z1:N}.
Based on the generalized mean field (GMF) theorem
given in Xing et al. (2003), the optimal solution of each
marginal, q(XC |Θ), over cluster of variables, XC , is
isomorphic to the true conditional distribution of XC

given its Markov blanket (MB)– that is p(XC |XMB).
This optimal variational marginal can be symbolically
written down from the original joint model (such as our
LoNTAM for {~γ, z1:N , w1:N}), except that in q(·|·) we
replace the XMB by a set of ”GMF messages” related
to XMB. That is, q∗(XC |Θ) = p

(
XC |GMF(XMB)

)
.

These GMF messages can be thought of as surro-
gates of the dependencies of XC on XMB. Xing et al.
(2003) showed that in case the joint model is a GLIM,
the GMF messages correspond to an expectation of
the sufficient statistics of the relevant Markov blan-

ket variables under their own associated GMF cluster
marginals. In the sequel, we use 〈Sx〉qx

to denote the
GMF message due to latent variable x; thus the opti-
mal GMF approximation to p(XC) is:

q∗(XC) = p
(
XC |〈Sy〉qy

: ∀y ∈ XMB

)
. (4)

Inspecting our LoNTAM depicted in in Figure 1, we
would approximate the posterior over {~γ, z1:N} using
q(~γ, z1:N ) = qγ̃(~γ)qz(z1:N ). (The same approximating
scheme was also adopted in Blei and Lafferty (2005),
but as we explain soon, different techniques for seeking
optimal qγ̃(·) and qz(·) have led to remarkably different
results.) Using Eq. (4), we can write down the the
GMF approximation to the marginal posterior of the
(inverse-logistic-transformed) topic vector ~γ as:

qγ̃(~γ) = p(~γ|µ, Σ, z → 〈Sz〉qz
)

∝ p(~γ, z → 〈Sz〉qz
|µ, Σ)

∝ N (~γ; µ, Σ)× p(z → 〈Sz〉qz
|~γ), (5)

where ”→” donates a symbolic replacement of the ar-
gument on the left with the one on the right. Note that
Figure 1 makes explicit that the MB for ~γ is {z1:N},
thus we replace {z1:N} with its GMF message, which
corresponds to its expected sufficient statistics. It can
be easily shown that the second term in Eq. 5 is given
by:

p(z → 〈Sz〉qz
|~γ) = exp{〈m〉qz

~γ −N × C(~γ)}, (6)

where N is the number of words in w, and 〈m〉qz
is a K-

dimensional (row) vector that represents the expected
histogram of topic occurrences in w. More formally:

mk =
N∑

i=1

I(zi = k) and 〈mk〉qz
=

N∑

i=1

qz(zi = k). (7)

Now we can have a glimpse of why LoNTAM is diffi-
cult to handle. First, the two factors in Eq. (5) are not
conjugate, thus their product does not emerge as an
easy close-form distribution such as a Gaussian; sec-
ond, the second factor contains a nasty C(~γ), which
is a complex function of the argument of our approxi-
mating distribution qγ̃(·). Thus qγ̃(~γ) as defined above
is not integrable during inference (e.g. to calculate ex-
pectations of ~γ as output of our low-dimensional rep-
resentation of the document, and as the GMF message
sent to the {z1:N} cluster as needed bellow).
To circumvent the non-conjugacy and non-
integrability of our variational cluster marginal
caused by C(~γ), we introduce a truncated Taylor-
appximotation to C(~γ) to make it algebraically
manageable. The rational is that, in a multivariate
Gaussian, we have only linear and quadratic terms of
the argument. Inspecting the forms of the argument



(i.e, ~γ) in the distribution defined by Eq. (5), all
except C(~γ) are either linear or quadratic. If we can
approximate C(~γ) up to a quadratic form, then the
two factors in Eq. (5) will become ”conjugate” and
we can rearrange the resulting approximation to qγ̃(~γ)
into a reparameterized multivariate Gaussian! Fortu-
nately, this turns out to be feasible, and indeed it leads
to a very general second-order approximate scheme
superior to the tangent approximations underlying
many extant variational inference algorithms.
Specifically, using a quadratic Taylor expansion of
C(~γ) with respect to some γ̂ 1,we have:

C(~γ) ≈ C(γ̂) + g′~γ(~γ − γ̂) +
1
2
(~γ − γ̂)′H~γ(~γ − γ̂), (8)

where g = (g1, · · · , gK) is the gradient and H = {hij}
is the Hessian matrix of C w.r.t. ~γ. Figure 2 demon-
strates this expansion for K=2 and 3. As clear from
the figure, this expansion provides a tight local ap-
proximation to C(~γ) for ”practical” values of ~γ. 2

Combining Eqs. (5,6,8), it is easy to show that (see
(Xing, 2005)) q~γ(~γ) can now be expressed as a Gaus-
sian N (µγ̂ , Σγ̂) where:

Σγ̂ = inv
(
Σ−1 + NH(γ̂)

)
, (9)

µγ̂ = Σγ̂(Σ−1µ + NH(γ̂)γ̂ + 〈m〉qz
−Ng(γ̂)). (10)

Now we turn to qz(z1:N ). Again from Figure 1, we see
that the MB of {z1:N} is ~γ ∪{w1:N}, of which ~γ needs
to be replaced by its GMF message. Thus we have:

qz(z1:N ) =
N∏

n=1

qz(zn) =
N∏

i=1

p(zn|~γ → 〈S~γ〉q~γ
, wn, ~β1:K).

(11)
For notational simplicity we drop the word-index ”n”
and give a generic formula for the variational approx-
imation to a singleton marginal:

p(zk|〈S~γ〉q~γ
, wj , ~βk) ∝ p(zk|〈S~γ〉q~γ

)× p(wj |zk, ~βk)

∝ exp{〈γk〉q~γ
}βkj = exp{µγ̂,k}βkj , (12)

where zk and wj are notational shorthands for z = k
(i.e., z picks the kth topic) and w = j (i.e., w repre-
sents the jth word), respectively, βkj is the probability
of word j under topic k, and µγ̂,k is kth component of
the expectation of ~γ given in Eq. (10).
The above two GMF marginals given in Eqs. (9,10)
and Eq. (12) are coupled and thus constitute a set of

1The γ̂ is replaced with the mean of the variational dis-
tribution over ~γ from the pervious iteration.

2Empirically, values of ~γ outside of the ”practical” range

would result in a skewed ~θ on the topic simplex. Our ex-
perimental results on real data sets confirm that the shown
range is the operational one.

fixed-point equations. Thus, we can iteratively update
each marginal until convergence. This approximation
can be shown to minimize the KL divergence between
the variational posterior and the true posterior of la-
tent variables at convergence (Xing et al., 2003). To
diagnose convergence, one can either monitor the rel-
ative change in µγ̂ or the relative change of the log-
likelihood of w (log of the integral in Eq. 3). Under
our factorized approximation to the true distribution,
the integral in Eq. (3) is computable (Xing, 2005).

3.2 Parameter Estimation via variational EM
Given a corpus of documents {w1:D}, the learning task
is to find model parameters {µ, Σ, ~β1:K} that maximize
the log likelihood of the data. We use a Variational
Expectation-Maximization (VEM) algorithm to fit the
model parameters. VEM alternates between two steps:
in the E-Steps, the variational approximation in §3.1
is used to compute expectations over hidden variables
{~γd, zd,1:N}1:D; then in the M-Step, model parameters
are updated using their expected sufficient statistics
from the E-step.
As it is always the case, details are important with
VEM. As pointed out by Welling et al. (2004), strong
conditional dependencies between hidden variables in
directed models can seriously affect the model perfor-
mance in VEM-based learning, because such depen-
dendies lead to poor approximation to the posterior
on the hidden variables, and can cause difficulties to
escape local optima. To remedy this we used deter-
ministic annealing (DA) (Ueda and Nakano, 1998).
DA-VEM seeks to maximize an exponentiated version
of the likelihood, Eq(Y |X)[p(X, Y )T ], where X and Y
are observed and hidden variables respectively, and
T is the temperature parameter. DA-VEM starts by
maximizing a concave function (small values of T) and
maintains local maxima while gradually morphing the
function to the desired non-concave likelihood function
when T=1. It is a continuation method in which the
estimate at the end of each annealing step is used to
initialize the search over the next step. In our experi-
ments we used four annealing steps with temperatures
(0.1, 0.25, 0.5, 1). We also found that a fast annealing
on ~β1:K results in a faster convergence with no per-
formance loss, thus we used the following temperature
schedule for ~β1:K : (0.25, 0.75, 1, 1).

3.3 Relation to Previous Work
Blei and Lafferty (2005) gave an alternative mean-field
variational approximation to the same model. The
factorized distribution in their work is:

qBL(~γ, z1:N |λ1:K , ν1:K , φ1:N ) =
K∏

k=1

qBL(γk|λk, νk)
N∏

n=1

qBL(zn|φn), (13)
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where λ1:K , ν1:K and φ1:N are the variational param-
eters. It is noteworthy that, compare to our approxi-
mate posterior of ~γ defined by Eq. (5), in this approx-
imation the posterior of ~γ is a fully factored distribu-
tion over each element of ~γ. Each qBL(γk|λk, νk) is a
univariate Gaussian. So in fact this approximate pos-
terior does not capture correlations between elements
in ~γ, which might not result in a tight approximation
during inference and learning.
With qBL(zn|φn) set to be a multinomial, the vari-
ational parameters {λ1:K , ν1:K , φ1:N} are fit by maxi-
mizing the following lower bound on the log-likelihood:

log p(w) ≥ H(qBL) + EqBL [log p(~γ|µ, Σ)] +
N∑

n=1

(
EqBL [log p(zn|~γ)] + EqBL [log p(wn|zn, ~β1:K)]

)
, (14)

where H is the entropy function. As discussed before,
the expectation of the term log p(zn|~γ) = z′n~γ − C(~γ)
can not be computed due to the non-conjugacy of the
logistic normal distribution. To deal with that, a first-
order conjugate dual approximation (Jordan et al.,
1999) was used to upper bound C(~γ) as follows:

log
( K∑

k=1

exp{γk}
)
≤ ζ−1

( K∑

k=1

exp{γk}
)
− 1 + log(ζ), (15)

where ζ is a new variational parameter. Note that the
bound in Eq. (15) views C(~γ) as a logarithm func-
tion of a unary parameter equals to

∑K
k=1 exp{γk}.

As shown in Figure (3), each value of ζ corresponds
to an upper bound. The variational parameters are fit
by maximizing the bound in Eq. (14), the maximizer
φ∗1:N and ζ∗ has a closed form solution, whereas the
maximizer λ∗1:K , ν∗1:K are found numerically using con-
jugate gradient and Newton’s methods respectively.
There are two important differences between the afore-
mentioned approach and our tight approximate infer-
ence presented here. First, qBL posited that the pos-
terior over ~γ has a diagonal covariance3, which con-

3We believe that this assumption was made to make

tradicts the original motivation of a ”correlated topic
model” as is LoNTAM, which is to capture correla-
tions between topic weights. In particular, since model
learning (e.g., for µ, Σ and ~β1:K) would iteratively uses
the posterior estimation of ~γ, a fully de-correlated es-
timator of ~γ as resulted from qBL might possibly mis-
lead the parameter estimation and eventually fail to
accurately estimate the correlation over topics as intro-
duced by the LoNTAM model. In our newly proposed
method, we have no restriction on the covariance in
our approximate posterior of ~γ (see Eq. 9). Second,
the two approaches differ in the way they deal with
C(~γ). In their work,C(~γ) was viewed as a unary func-
tion and was upper bounded using a tangent approx-
imation. In contrast, we view C(~γ) as a multivariate
function of ~γ and approximate it using a multivariate
quadratic Taylor expansion. To make this difference
clear, note that C(~γ) is used in two places: first to
approximate the log-likelihood of w and second to fit
the posterior distribution over ~γ. For log-likelihood
computation, viewing C(~γ) as a unary function is suf-
ficient to get a close bound; however, for updating the
posterior over γ during the variational fixed point iter-
ations, it is important to keep the coupling between the
components of ~γ as represented in C(γ). In the early
method, there is no clear way of how to deal with C(γ)
differently based on its (different) roles. However, in
our work, we can deal with C(~γ) differently based on
its role. As will be shown in the next section, model-
ing the interaction between the components of ~γ via
the multivariate quadratic Taylor expansion leads to
much tighter approximation and faster convergence.

4 Experimental Results

We validate our inference algorithms on both simu-
lated text corpus (sampled according to hand-specified
topics and admixing priors); and the NIPS dataset.

4.1 Experiments on Simulated Data

We first tested our approach (referred to as AX) over
controlled settings (where the ground truth is known)
and compared it to that of Blei and Lafferty (2005)
(refereed to as BL). To test the accuracy of both in-
ference algorithms, different settings were simulated
by varying one of the three model aspects — 1) K:
number of topics; 2) M : size of the vocabulary; and
3) N : number of words per document) — while fixing
the other two. The model parameters {µ,Σ, ~β1:K)}
were drawn randomly in each case from some prespec-
ified distributions. For each setting, 200 documents
were sampled and we run both algorithms under each
model setting until the relative change in the bound
of the log-likelihood is less than 10−6.

possible that ν1:K can be fit numerically.



Accuracy of posterior inference: As shown in the
first row of Figure 4, our approach achieves higher ac-
curacy in recovering the true ~θ (the logistic transfor-
mation of ~γ) simulated for each document across all
settings, using the posterior mean of ~γ inferred from
w. As we noted in Section 3.2, this is due to the tight-
ness of the multivariate quadratic approximation we
use. As N increases (i.e. the longer the document),
the task becomes easy and the difference in perfor-
mance between the two approaches decreases. This is
because in longer document 〈m〉qz

(the expected topic
histogram) becomes the dominant factor in recovering
~γ. The second row in Figure 4 shows the absolute dif-
ference in the error in recovering ~θ between the two
approaches, that is Error(BL) − Error(AX) on a per
document level. Our approach always results in an
improvement in the order of 10% absolute difference.
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Figure 4: Inference On Simulated Data. Dotted and solid
lines correspond to the BL and AX approaches respectively.
Each column represents an experiment in which one dimen-

sion is varied.Top row:Average L2 error in recovering ~θ.
Middle row:Error difference (L2(BL)-L2(AX)) in recov-

ering ~θ on a per document level.Bottom row: Number of
iterations needed by each approach to converge.

Convergence rate: The third row in Figure 4 shows
the number of iterations consumed by each algorithm
until the bound converges. Again, our approach con-
verges significantly faster in almost all model settings.
It is interesting to note how convergence is affected
when K is fixed and the other model aspects are var-
ied. One might expect that as ~θ scales only with K,
the other aspects should have little effect on the con-
vergence of the algorithm. Indeed this was roughly
the case with our approach, yet for the BL approach,
the number of iterations until convergence is highly af-
fected by other aspects, especially N . To understand
why this happens, we need to examine the messages
communicated during the fixed point update equa-
tions. Changes in the posterior mean over ~γ are propa-
gated exponentially to the posterior over z (Eq. (12)),
then summed up over all z1:N and propagated back

to ~γ via 〈m〉qz
. Thus as N increases, this effect be-

comes more pronounced and prolongs the time needed
until convergence. The reason why our approach does
not suffer from this effect is because the use of the
quadratic approximation damps the update in the pos-
terior over ~γ quickly, and future iterations only fine
tune it. Hence even when N increases, the compound
effect described above does not result in a large differ-
ence between the 〈m〉qz

messages sent from the z1:N

to γ across iterations.
One important point to be noted here is the cost of
each iteration in the two approaches. Our approach
scales as O(K3) per iteration due to matrix inversion
in Eq. 9, while the BL approach scales as O(LK2) per
iteration, where L is the number of derivative evalua-
tions for the numerical optimization routines4.

Parameter estimation: Does more accurate infer-
ence result in better parameter estimation? To answer
this question, we started by a toy problem. Model di-
mensions were fixed as: K = 3, N = 200 and M =
32, other model parameters were generated randomly.
The ground truth (topic distribution and the shape of
the LN-density over the 3-topic simplex) is depicted in
the top of Figure 5. We sampled 400 documents from
this model and run both approaches on it until the
relative change of the bound on the log-likelihood is
less than 10−3.5 The estimated topics and LN-density
shapes over the simplex are given in the Figure 5.
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Figure 5: Parameter Estimation. Left panels represent
topic distributions where each row is a topic, each column
is a word, and colors correspond to probabilities. Right
panels represent shapes of LN distribution over the sim-
plex. Top row gives the ground truth model parameters,
while middle and bottom rows give those estimated using
the AX and BL approach respectively.

As shown in Figure 5, our approach results in a much
more accurate density estimation over the simplex,
and the topic-specific word frequencies ~β1:3. In fact,
the BL approach puts no mass at areas where the
ground truth puts high probability mass. The esti-

4We avoided comparing the two approaches using wall
time because our code is written in matlab while the BL
code we compare against is written in C++.

5Unless otherwise stated, this is the convergence criteria
used for parameter estimation in the rest of this section.



mated topics by both models are acceptable, yet our
approach was able to get more accurate results (note
the difference in the bottom topic). To better under-
stand this result, in Figure 6 we depict the ground
truth ~θ (represented by a vertical line which is parti-
tioned into colored segments in proportion to the topic
weights recorded by ~θ) and that recovered by each ap-
proach when the VEM algorithm converged over the
400 documents. Recall that the expected sufficient
statistics for β1:K depend on the variational distribu-
tion over z1:N . In turn the distribution over z1:N de-
pends on ~θ. Thus the quality of the estimated topics
depends on how well ~θ is approximated. In fact the er-
ror in recovering θ was 13% for our approach and 19%
for the BL one, which explains why both approaches
got comparable topic estimates (the KL divergence be-
tween the estimated and true topic distribution is 0.02
for our approach and 0.09 for BL).
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Figure 6: The Recovered Document Topic Mixing Vectors.
Each vertical line represent a document mixing vector and
each color corresponds to a topic.

In contrast, estimation of the LN parameters, and
hence its density over the simplex, depends more di-
rectly on how well the components in the ~θ vector are
recovered, not just the overall error in recovering ~θ. As
clear from Figure 6, our approach results in recovering
finer details of the components in the ~θ vector than
the BL does — the difference can be easily seen by
inspecting the red component (the top one).

4.2 Experiments on the NIPS Dataset
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Figure 7: Test-set perplexities on the NIPS dataset.

In addition to simulation study, we conducted experi-
ments on the NIPS17 dataset which contains the pro-
ceedings of the NIPS conference from 1988 to 2003.
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Figure 8: Number of Iterations to converge when perform-
ing inference on the held out documents in the NIPS17
collection.

This corpus has 2484 documents, vocabulary size (M)
of 14036 words (after removing stop words), and and
average of 1320 words per document. The dataset were
divided into 2220 documents for training and 256 ones
for testing. We fitted 4 models to this corpus with
K = 10, 20, 30, 40 topics. We compared the two ap-
proached based on perplexity on the held out testset,
where the perplexity of a test document wtest is de-
fined as:

Perplexity(Dtest) = exp
(−∑|Dtest|

n=1 log p(wn)
∑|Dtest|

n=1 |wn|
)

(16)

To avoid comparing bounds, the true marginal log-
likelihood was estimated using importance sampling
where each approach’s posterior distribution over ~γ
was used as the proposal. Figure 7 summarizes the
results which show that we achieve better testset per-
plexities across all topics. The reason for this slight im-
provement over this dataset is due to the large number
of words in each documents which reduces the effect
of accurate prior estimation — similar results were ex-
plained in Section 4.1 with reference to Figure 4. In
Figure 8 we depict the average number of iterations
needed by each approach to converge when perform-
ing inference over the testset, which shows that our
approach converges faster in terms of the number of
iterations.

4.3 Experiments on the PNAS Dataset

We also compared the two approaches on a 4-way clas-
sification task over the abstracts of the Proceeding of
the National Academy of Science (PNAS). These ab-
stracts are labeled according to their scientific cate-
gory. We selected 2500 abstracts from the period of
1997 to 2002 and we fitted 40 topics to the resulting
corpus. We then used the resulting low dimensional
topic mixing vectors induced by each approach as fea-
tures for classification. Out of those 2500 abstracts,
we only selected those having the required categories
which results in 962 abstracts. We Then trained an
SVM classifier over 85% of those selected abstracts and
tested the accuracy over the remaining 15% ones. We
present the classification accuracy of both approaches



in Table 1. As clear from this table, our approach re-
sults in a more accurate classifier. It should be noted
that the improvement over the BL approach in this
dataset is significant, as opposed to the slight improve-
ment in perplexities over the NIPS dataset. This is due
to the relatively small number of words per abstract in
the PNAS datset — which was an average of 170 words
per abstract. These results conform with those from
the simulation study we conducted, and fully analyzed,
in Section 4.1. Furthermore, inspecting the confusion
matrix of both classifiers, we found that most of the
errors in the BL approach were due to confusing the
Biochemistry and Biophysics abstracts. In figure 9 we
depict the low dimensional representation of the ab-
stracts in both of these classes, as recovered by the
two approaches. As it is clear from the figure, our
approach results in a better separation of these two
seemingly similar classes.

Table 1: Document classification accuracies

Category Doc BL AX
Genetics 21 61.9 61.9

Biochemistry 86 65.1 77.9
Immunology 24 70.8 66.6
Biophysics 15 53.3 66.6

Total 146 64.3 72.6
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Figure 9: The reduced representation of abstracts in Bio-
chemistry and Biophysics. Each line represents a docu-
ment, and each color segment represents a topic contri-

bution as recorded by ~θ. Top row: the AX approach;
Bottom row: the BL approach.

5 Conclusions

In this paper we presented a novel approximate in-
ference algorithm for the Logistic-Normal Topic Ad-
mixture Model. Our approach overcomes techni-
cal difficulties for inference/learning due to the non-
conjugacy within the model via the use of a multi-

variate quadratic Taylor approximation to LN. Our
method not only makes the variational fixed point
equations for inference amenable to analytic closed-
form solution, but also keeps the coupling between the
components in the per document topic mixing vector.
This results in a simple yet efficient tight approximate
inference algorithm that enjoys nice representational
and convergence properties.
We presented experimental results on simulated
datasets as well as on the NIPS17 collection and the
PNAS collection, and contrasted our approach with
that given by Blei and Lafferty (2005). The results
demonstrated that our approach results in tighter ap-
proximation in inference and learning especially when
the number of words per document is relatively small.
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