
A Boosting Algorithm for Label Covering in Multilabel Problems

Yonatan Amit
mitmit@cs.huji.ac.il

School of Comp. Sci. and Eng.
Hebrew University
Jerusalem, Israel

Ofer Dekel
oferd@cs.huji.ac.il

School of Comp. Sci. and Eng.
Hebrew University
Jerusalem, Israel

Yoram Singer
singer@google.com

Google Inc.
1600 Amphitheatre Pkwy.
94043, Mountain View, CA

Abstract

We describe, analyze and experiment with
a boosting algorithm for multilabel catego-
rization problems. Our algorithm includes as
special cases previously studied boosting al-
gorithms such as Adaboost.MH. We cast the
multilabel problem as multiple binary deci-
sion problems, based on a user-defined cov-
ering of the set of labels. We prove a lower
bound on the progress made by our algorithm
on each boosting iteration and demonstrate
the merits of our algorithm in experiments
with text categorization problems.

1 Introduction

This paper is concerned with the problem of learn-
ing a multilabel categorization function from a labeled
set of examples. Each example consists of an instance
and an associated set of relevant labels. Our goal is to
learn a categorization function which accurately pre-
dicts the relevant set of labels for a given instance.
This task naturally emerges in problems such as text
classification and collaborative filtering.

Multilabel problems are often recast as ranking prob-
lems, where the goal is to order the entire set of labels
according to their relevance to the instance at hand
(see [5, 2, 4, 3, 7]). The ranking approach may be use-
ful in applications where the goal is to prioritize the
relevance of the topics. Such approach, however, is in-
appropriate in settings where the set of relevant labels
must be uniquely identified. For example, consider the
task of automatic email routing. A large company re-
ceives an email which is not addressed to a specific
department and an automated system should decide
to which subset of departments to route the email. A
ranking function would order the list of all the depart-
ments according to their relevance to the topic of the
email. However, some emails should be routed to a

single department whereas others should be routed to
multiple departments, and the ranking function does
not provide such information. In this example, we are
clearly interested in the precise subset of relevant de-
partments.

Another approach to the multilabel categorization
problem is to decompose it into independent bi-
nary classification problems, one problem for each la-
bel. Such an approach was tacitly applied, for in-
stance, by a multilabel version of AdaBoost called Ad-
aBoost.MH [8]. Breaking a multilabel problem into
multiple independent problems greatly simplifies the
learning task and enables the usage of off-the-shelf
binary classification learning algorithms. However,
any such decomposition is unlikely to capture appar-
ent correlations between the labels. In this paper we
enhance this approach and attempt to overcome its
shortcomings by devising a general boosting algorithm
for the multilabel categorization problem. Our algo-
rithm requires the user to specify how prediction errors
should be evaluated, and then attempts to minimize
this user-defined criterion. For instance, the user can
specify that predictions should be penalized according
to the size of the symmetric difference between the cor-
rect set of labels and the predicted set of labels. In this
case, our algorithm simply reduces to AdaBoost.MH.
Other criteria for evaluating the quality of a predic-
tion lead to the new algorithmic framework described
in the sequel.

The user-defined evaluation criterion is relayed
through a covering of the set of labels. Namely, the
user predefines subsets of labels, which are not neces-
sarily disjoint, but whose union equals the entire set
of labels. Hence, we refer to our approach as label
covering and abbreviate the resulting algorithm by
AdaBoost.LC. Each set in the cover corresponds to
a decision task. Failing to predict one or more of the
labels in a set counts as one error. Thus, the maximal
number of errors that can be associated with a sin-
gle prediction equals the number of sets in the cover.

One extreme is to place each label in its own unique
set, which amounts to counting the number of incor-
rectly classified labels. The other extreme is to de-
fine a single set which includes the entire set of labels.
This definition implies that a single incorrectly clas-
sified label receives the same penalty as multiple in-
correctly classified labels. The more interesting label-
covering schemes lie between the two extremes and
capture some prior knowledge about the problem.

The label covering mechanism becomes especially
handy when the set of labels can be naturally parti-
tioned into subsets. For instance, consider a text cat-
egorization task, where the instances of the problem
are textual documents and the label set includes the
labels football, basketball, financial markets
and currencies. This label set splits very naturally
into two broad-topic categories: sports and econ-
omy. In this example, we are not especially interested
in the exact number of incorrectly predicted labels. In-
stead, we are interested in the number of incorrectly
predicted broad-topic categories. An algorithm which
minimizes the number of incorrectly predicted labels
does not necessarily minimize the number of incor-
rectly predicted high-level-categories.

The covering mechanism is in fact even more flexible.
A covering may differ between instances, and may de-
pend on the labeling of the instance on hand. For
example, in the textual categorization task described
above, a basketball related article may be evaluated
by summing the prediction mistakes in the sports
category, while any mistake in the economy cate-
gory should simply be considered as a unit loss. Our
AdaBoost.LC algorithm lets the user choose the label
covering that suits best her needs, and then devises
a specific boosting procedure that is tailored to the
covering that was chosen.

The core of our algorithm is based on recent advances
in boosting algorithms. As mentioned above our ap-
proach generalizes the AdaBoost.MH algorithm and a
few other variants described in [8, 1, 3]. Other large
margin algorithms can also be adapted to solve the
label covering problem. For instance, both the kernel-
based approaches for label ranking discussed in [2, 4]
and the large margin methods for structured predic-
tion [10, 11] can be exported and used for the label
covering task. One of our future research goals is to
explore ways to combine the label covering approach
presented in this paper with kernel methods.

The paper is organized as follows. We formally de-
scribe of our settings in Sec. 2. In Sec. 3 we describe
and analyze the learning algorithm for label catego-
rization. We conclude with an empirical evaluation of
our algorithm in Sec. 4.

2 Problem Setting

In this section we introduce the notation used through-
out this paper and describe our problem setting. We
denote scalars by lower case letters (e.g. x) and vec-
tors by bold face letters (e.g. x). We denote by vl

the l’th coordinate of a vector v. Sets are denoted by
upper case Latin letters (e.g. A). Elements of a set
are indexed by subscripting (e.g. as for scalars and as

for vectors). For any natural number k, we denote the
set {1, 2, . . . , k} by [k]. We identify a set A ⊂ [k] with
a binary vector a where al = 1 ⇐⇒ l ∈ A. Last, we
denote by JxK the predicate which takes a value of 1
when x is true, and is 0 otherwise.

The problem we are exploring is concerned with mul-
ticlass multilabel classification. Let X denote the in-
stance space and Y = {−1, 1}k denote the set of pos-
sible labelings. A labeling for x ∈ X is a vector y ∈ Y
where we consider the label l ∈ [k] to be relevant to x
iff yl = 1.

We next introduce the notion of a non-disjoint covering
of a set of labels. A cover-element is a set A ⊂ [k]. We
consider the labels l ∈ A as tied together in the sense
that failing to predict a single label in A amounts to
the same error as failing to predict all of them. As
described above, we identify a cover-element A with
the binary vector a. Thus, for a function f : X →
Y and a pair (x,y) ∈ X × Y, the prediction error
associated with a cover-element a is defined as

q
∃l s.t. al = 1 ∧ f l(x) 6= yl

y
.

A covering A is a mapping from a labeling vector to
a multiset of cover-elements. We denote the size of
A(y) by n(y) = |A(y)| and the elements of A(y) as
{as}n(y)

s=1 . We analogously define the prediction error
associated with the covering A as the sum of errors
with respect to cover-elements of A(y),

err(f , (x,y),A) =∑
a∈A(y)

q
∃l : s.t. al = 1 ∧ f l(x) 6= yl

y
.

For abbreviation, we call this the covering error. As
we now illustrate, this notion of generalized error is
flexible and includes several previously studied error
models for multilabel problems

Fig. 1 illustrates a few possible choices for A. The
covering described in (a) puts each label in a sepa-
rate set al

s = δls and translates to an error function
which is equivalent to the Hamming distance between
the true labels and the predicted labels (similar to Ad-
aboost.MH of [8]). The covering described in (b) ties
all labels into a single set. The covering error in this

(a) (b) (c)

Figure 1: Examples of different coverings.

case generalizes the 0−1 error and assigns a 0 error
if a perfect prediction is made, and a unit loss oth-
erwise. The covering described in (c) amounts to ty-
ing together all relevant labels and, separately, tying
all irrelevant ones, associating a unit loss when failing
to predict any of the relevant labels as relevant, and
equivalently a unit loss when failing to predict cor-
rectly any of the irrelevant. We would like to empha-
size that the above covering depends on the correct la-
beling of the instances. The last example underscores
the fact that the covering may depend on the input
instance and its label and therefore may change as a
function of the example being handled.

The covering error is a combinatorial measure of the
accuracy of a predictor. Thus, finding a hypothesis
f which minimizes the covering error is difficult. We
thus expand the image of f to the range Rk allow-
ing the magnitude |f l| to denote the confidence of a
prediction. We further employ a smooth, convex up-
per bound on the covering error, and construct an hy-
pothesis f that minimizes the upper bound, and thus
bounds the covering error. Formally, Given a covering
A and an hypothesis f : X → Rk, the covering loss,
denoted by L, on an example (x,y) ∈ X × Y is

L(f , (x,y),A) =
n(y)∑
s=1

log

(
1 +

k∑
l=1

al
s exp

(
−ylf l(x)

))
.

Given a training set

S = {(x1,y1) , . . . , (xm,ym)} ⊂ X × Y ,

we define the empirical loss L as the average loss over
the training set, namely,

L(f , S,A) =
1
m

m∑
i=1

L(f , (xi,yi),A)

=
1
m

m∑
i=1

n(yi)∑
s=1

log

(
1 +

k∑
l=1

al
s exp

(
−yl

if
l(xi)

))
.

We refer to the product yl
if

l(xi) as the (signed) margin
of example i on label l. Denoting zl = −yl

if
l(xi) and

z∗ = maxl z
l, we can upper bound z∗ by

log
(∑

ezl
)

= log
(
ez∗
∑

ezl−z∗
)

= z∗ log e + log

∑ ezl−z∗︸ ︷︷ ︸
≥1

 ≥ z∗ .

Note that a prediction f l(x) is incorrect iff z∗ is
positive, thus minimizing the multilabel covering-loss
translates to a bound on the number of prediction mis-
takes. We can therefore view the multilabel covering-
loss as a proxy for minimizing the 0−1 loss on each set
of labels defined by the covering A.

We generalize techniques presented in [1] and propose
an iterative algorithm that utilizes a family of base hy-
potheses (also referred to as weak hypotheses) and gen-
erates a linear combination of these hypotheses. Let
H = {h1 . . . hH} denote the set of base hypotheses,
where h ∈ H is a function h : X → [−1, 1]. On each it-
eration, the algorithm chooses hypotheses fromH, and
updates the weights of these hypotheses in the combi-
nation. The update is governed by a set of templates
B ∈ RH

+ , where each b ∈ B defines a subset of hypothe-
ses from H along with appropriate scaling. On every
iteration, the algorithm selects a b ∈ B and updates
the weights of all hypotheses for which bi 6= 0. For
instance, we may set B to {e1, . . . , eH}, where ej

i is 1
if i = j and 0 otherwise. In this manner, on each itera-
tion we select a single base hypothesis and thus obtain
a sequential update algorithm which is analogous to
Adaboost.MH from [8]. We emphasize that while the
base hypotheses we employ are class independent bi-
nary classifiers our algorithm ties the hypotheses and
combines them into a single multi label predictor.

3 AdaBoost.LC

Our algorithm, presented in Fig. 2, is a boosting algo-
rithm for label-covering which uses the covering-loss.
The algorithm updates its prediction function on every
iteration in order to improve on the loss function. On
each iteration t, the algorithm assigns weights to train-
ing examples in accordance with their relative contri-
bution to the cumulative loss: for each example (xi,yi)
and each vector in the covering as ∈ A(yi), the algo-
rithm defines k weight variables {qt(i, s, l)}k

l=1. Each

Input:

S = {xi,yi}m
i=1, A , B ⊂ RH

+ s.t. ∀b ∈ B : ‖b‖1 ≤ 1
Output:

f l
T (x) =

HX
j=1

αT (j, l) hj(x) (l ∈ [k])

For t = 1, 2, . . . , T :

qt(i, s, l) =
al

s exp
`
−yl

i f l
t−1(xi)

´
1 +

Pk
r=1 ar

s exp
`
−yr

i fr
t−1(xi)

´ `
i ∈ [m], s ∈ [n(yi)], l ∈ [k]

´
W+

j,l =

mX
i=1

n(yi)X
s=1

h
qt(i, s, l) yl

i hj(xi)
i
+

`
j ∈ [H], l ∈ [k]

´
W−

j,l =

mX
i=1

n(yi)X
s=1

h
−qt(i, s, l) yl

i hj(xi)
i
+

`
j ∈ [H], l ∈ [k]

´
dj,l =

1

2
ln

W+

j,l

W−
j,l

! `
j ∈ [H], l ∈ [k]

´
bl = argmax

b∈B

HX
j=1

bj

„q
W+

j,l −
q

W−
j,l

«2 `
l ∈ [k]

´
αt(j, l) = αt−1(j, l) + bj

l dj,l

`
j ∈ [H], l ∈ [k]

´
Figure 2: Adaboost.LC

variable assesses the relative contribution of the l’th la-
bel to the loss. This defines an un-normalized distribu-
tion over the training examples (similar to AdaBoost’s
importance weights typically denoted as Dt(i)). The
algorithm then assesses the potential decrease of the
loss by calculating the success and failure scores (de-
noted W+

j,l and W−
j,l respectively) associated with each

base hypothesis. The scores are the sum on all training
examples and all vectors in the coveringA weighted ac-
cording to qt(i, s, l). The ratio of W+

j,l and W−
j,l assesses

the predictability potential of the j’th hypothesis with
respect to the l’th label. The algorithm then selects
the template b ∈ B which maximizes the predictability
potential and updates the multilabel predictor.

The following theorem provides a lower bound on the
decrease in the loss on every iteration of the algorithm.

Theorem 3.1. Let A denote a covering of the set of
labels. Let B ⊂ RH

+ denote a set of hypotheses tem-
plates. Let S = {(xi,yi)}m

i=1 be a training set of m
examples. Denote by ft the multi-class predictor con-
structed after t iterations by the algorithm described
in Fig. 2. Then the decrease in the training loss L on
every iteration is bounded below as follows

L(ft, S,A)− L(ft+1, S,A)

≥ 1
|S|

k∑
l=1

max
b∈B

H∑
j=1

bj
(√

W+
j,l −

√
W−

j,l

)2

.

Proof. Throughout the proof we use the following no-

tation,

πt
i,s,l

def= al
s exp

(
−yl

i f l
t(xi)

)
, φt

i,s
def=

k∑
l=1

πt
i,s,l

and

∆t
i,s

def= log(1 + φt
i,s)− log(1 + φt+1

i,s) .

We abbreviate qt+1(i, s, l) by qi,s,l and

mi,j,l = bj
l yl

i hj(xi) .

For brevity and clarity, we omit the ranges of sum-
mations. Summations over i are from 1 through m,
summations over s range from 1 through n (yi), sum-
mations over j are from 1 through H, and over l are
from 1 through k.

We start the proof by expanding ∆t
i,s to get that

∆t
i,s = log(1 + φt

i,s)− log(1 + φt+1
i,s)

= − log(
1 + φt+1

i,s

1 + φt
i,s

) = − log(1−
φt

i,s − φt+1
i,s

1 + φt
i,s

)

≥
φt

i,s − φt+1
i,s

1 + φt
i,s

. (1)

where we used the fact that − log(1−x) ≥ x to obtain
the last inequality. We now rewrite the difference in
the loss attained by ft and ft+1 as follows,

|S| (L(ft, S,A)− L(ft+1, S,A)) =
∑

i

∑
s

∆t
i,s . (2)

Using the bound on ∆t
i,s from Eq. (1) in Eq. (2), we

further bound Eq. (2) by the following expression,

∑
i

∑
s

∑
l π

t
i,s,l −

∑
l π

t+1
i,s,l

1 +
∑k

r=1 πt
i,s,r

. (3)

The update αt+1(j, l) = αt(j, l) + bj
l dj,l at the end of

iteration t+1 implies that f l
t+1 = f l

t +
∑

j bj
l dj,lhj and

thus

yl
if

l
t+1(xi) = yl

if
l
t(xi) + yl

i

∑
j

bj
l dj,l h

j(xi)

= yl
if

l
t(xi) +

∑
j

dj,l mi,j,l .

We therefore obtain that the following equality which
holds for all i whenever al

s = 1,

πt+1
i,s,l = exp

(
−yl

if
l
t+1(xi)

)
= πt

i,s,l exp

−∑
j

dj,lmi,j,l

 . (4)

We note that if al
s = 0 then πt

i,s,l = 0 = πt+1
i,s,l. There-

fore, Eq. (4) holds whether al
s is either zero or one.

Eq. (3) can thus be rewritten as

∑
i,s,l

 πt
i,s,l

1 +
∑k

r=1 πt
i,s,r

1− exp
(
−
∑

j

dj,lmi,j,l

)
Plugging the definition of qi,s,l, we can rewrite the
above equation as follows,

∑
i,s,l

qi,s,l

1− exp
(
−
∑

j

dj,lmi,j,l

) . (5)

Note that dj,lmi,j,l can be written as

dj,l |mi,j,l|σ(mi,j,l)

where σ(x) = sign(x). Furthermore, note that bl ∈ B
implies that,∑

j

|mi,j,l| ≤
∑

j

|bj
l | = ‖bl‖1 ≤ 1 . (6)

We now apply Jensen’s Inequality to the concave func-
tion 1−ex and further bound Eq. (5) by the following
term,

∑
i,s,l

[
qi,s,l

∑
j

|mi,j,l|
(
1− e−dj,lσ(mi,j,l)

)]
.

We now rearrange terms in the above equation, de-
compose |mi,j,l| into |bj

l | · |yl
i hj(xi)| and obtain the

following lower bound on the decrease in the loss,∑
i,s

∆t
i,s ≥ (7)

∑
l,j

|bj
l |

∑
i,s

[
qi,s,l|yl

i hj(xi)|
(
1− e−dj,lσ(mi,j,l)

)] .

Since bj
l ≥ 0, we may omit the absolute value. We

now use the definition of W+
j,l and W−

j,l and rewrite
the above lower bound as follows,∑

l

∑
j

bj
l

[
W+

j,l

(
1− e−dj,l

)
+ W−

j,l

(
1− e+dj,l

)]
.

(8)

Now, using the definition of dj,l we obtain

e−dj,l = exp

− log

√
W+

j,l√
W−

j,l

 =

√

W−
j,l√

W+
j,l

 ,

and equivalently

edj,l =

√

W+
j,l√

W−
j,l

 .

Thus, we can rewrite Eq. (8) as follows,

∑
l

∑
j

bj
l

(√
W+

j,l −
√

W−
j,l

)2

=
∑

l

max
b∈B

∑
j

bj
(√

W+
j,l −

√
W−

j,l

)2

, (9)

where the last equality is the criterion applied by the
algorithm to select bl.

We have thus shown the algorithm is guaranteed to de-
crease the loss on each iteration. A non-zero improve-
ment is guaranteed whenever there exists a template
in B whose predictability scores, which constitutes the
criterion for choosing a template, is non-zero. It is
easy to verify that the template choosing criterion,(√

W+
j,l −

√
W−

j,l

)2

is zero for all templates iff none of the templates can
contribute to the decrease in the loss. This situation
seldom happens in practice when the number tem-
plates is very large.

10 20 30 40
0.52

0.54

0.56

0.58

0.6

0.62

0.64

Round number

A
ve

rg
ae

 E
rr

or
ZO

10 20 30 40
1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

Round number

HM

10 20 30 40
0.65

0.7

0.75

0.8

0.85

Round number

TS

10 20 30 40
2.6

2.8

3

3.2

3.4

3.6

Round number

WP

10 20 30 40
2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

Round number

WN

ZO
HM
TS
WP
WN

Figure 3: The covering-error on the training data as a function of the number of boosting iterations. Each graph
depicts the performance of the classifiers trained with different covering while being evaluated using the same
covering-error. The covering-errors used for evaluation are, from left to right, ZO, HM, TS, WP, and WN.

4 Experiments

In this section we describe experiments that we con-
ducted in order to asses the performance of the Ad-
aBoost.LC algorithm with various coverings. The task
that we chose for our experiments is text categoriza-
tion for which there exist publically available datasets
which match our algorithmic setting. One of the main
goal of the experiments is to demonstrate how proper
adaptation of the covering to the task at hand affects
the performance of the learning algorithm. We be-
gin with a description of the datasets that are used
in the experiments and our preprocessing of the data.
We then describe the evaluation measures and the dif-
ferent coverings that we tested and conclude with a
discussion of the results we obtained.

Datasets and data representation: We tested
the AdaBoost.LC algorithm on the Reuters Corpus
Volume 1 (RCV1). This corpus is available from

http://about.reuters.com/researchandstandards .
The corpus consists of approximately 800, 000 news
articles. The articles were collected over a period of
12 months. The articles in the corpus were hand la-
beled from a set of 103 labels with most articles being
associated with 2-4 relevant labels. About three quar-
ters of the articles, from August 1996 through early
May 1997, were used to train the classifiers (about
590, 000 documents). The rest of the articles were
used to evaluate the generalization performance. Each
document was represented by a vector of terms. The
weight of terms not appearing in a document was set
to zero. The weight of each term appearing in the
corpus was determined using the pivoted length nor-
malization method from [9]. We now briefly describe
the pivoted length normalization.

Let dl
i denote the number of times a term, whose index

is l, appears in document i. We denote the number of
unique terms appearing in document i by mi, that is,
mi = |{l : dl

i > 0}|. Let ul denote the number of times

the term l appears throughout the corpus. Finally, we
denote the total number of documents in the corpus
by m. The idf (inverse document frequency) weight
of a term l is log (m/ul). The average frequency of the

terms in document i is denoted by avg
(
dl

i

)
=

P
l dl

i

mi
,

and the average frequency of the number of unique
terms in a document by avg (mi) = 1

m

∑m
i=1 mi . The

tf (term frequency) is now defined as(
1 + log(dl

i)
1 + log

(
avg(dl

i)
))/(1.0−slope+slope · mi

avg(mi)

)
,

where slope was set to 0.3 as in [9]. Feature selection
was used to select a subset of the terms appearing
with highest Rocchio score (as adapted in [6]) for each
topic. We selected the 100 highest ranked terms for
each topic, and ended up with 6, 270 unique terms.
Each document is therefore represented as a 6270 di-
mension vector where the j’th entry of the vector cor-
responds to the tf-idf value of the j’th selected term.
Note that if a term does not appear in a document,
its tf-idf value is zero. The average number of non-
zero terms per document is 22.76. Recall that Ad-
aBoost.LC is given a set of templates which we de-
note by B. Since we performed feature selection prior
to running the boosting algorithm we chose the set B
to consist of a single template which contains all fea-
tures/hypotheses. In the case of binary classification,
this choice of a single template vector is also known as
the parallel update [1].

Evaluation measures: Since many of the multilabel
text categorization algorithms output an ordering of
the labels, we used two sets of performance measures.
First, we evaluated the AdaBoost.LC algorithm with
respect to different coverings. We also used a set of
performance measures commonly employed in docu-
ment retrieval systems. Before we formally describe
these measures, we need the following definitions. Fo-
cusing on a single instance (document) x, its label y,
and a set of classifiers, the rank of topic r, denoted

rank(x, r), is defined as the rank, or position, of the
topic r in the list of topics sorted according to the val-
ues attained by applying the classifiers to x. Thus, the
rank order of the top ranked topic is 1 while the rank
of the lowest ranked topic is k. The precision at r is
defined as the number of topics from the set of rele-
vant topics, as indicated by y, whose rank is at most
r divided by the position r. The evaluation measures
that we used for a given document x with label y are
defined as follows.

OneErr The one-error (abbreviate OneErr) general-
izes the zero-one error for the top ranked label. It
designates whether the top ranked label, l, is relevant.
Thus it takes the values of 0 when the yl = 1, and is
1 otherwise.

Coverage The coverage loss measures how far down
the list of labels we need to go in order to
include all relevant labels, namely, Coverage =
maxr:yr=1 rank(x, r)− 1 .

AvgP The average precision (abbreviated AvgP) eval-
uates, as the name implies, the average precision taken
at positions according to relevant topics.

AvgP =

∑
r:yr=1

∣∣∣nr′:yr′=1∧rank(x,r′)≤rank(x,r)
o∣∣∣

rank(x,r)

| {r : yr = 1} |
.

Coverings: We next move our focus of attention to
the different coverings employed by AdaBoost.LC. We
used 5 different coverings in the training phase, each
of the coverings defines an error model and translates
into a different classifier. The first three coverings are
illustrated in Fig. 1.

Zero-One (ZO) The zero-one covering ties all labels
into a single set. This covering can be viewed as an
extension of the binary zero-one error to the multilabel
case.

Hamming-Distance (HM) The Hamming distance cov-
ering places each label in a separate set. This covering
translates to an error function which is equivalent to
the Hamming distance between the predicted and cor-
rect set of labels.

Two-Sets (TS) The two sets covering puts together all
positive labels in a single set, and all negative labels
in a second set. This covering assigns a unit loss when
failing to predict any of the positive labels as positive,
and, equivalently, when failing to predict any of the
negative labels as negative.

Weighted-Positive (WP) The weighted positive cover-
ing ties together all positive labels in a single set. This
set is then replicated several times (in our experiments
we used weight of 6). Each of the remaining negative

labels are placed in a separate set. Thus, failing to
predict any positive label correctly results in a preset
penalty, while the number of failed negative predic-
tions are added to the penalty linearly.

Weighted-Negative (WN) The weighted negative cov-
ering is similar to the weighted positive covering, with
the roles of positive and negative reversed. In our ex-
periments we used a replication factor of 4.

We finally focus our attention on the empirical results
achieved by the different label covering approaches. In
order to fully grasp the effect of the covering on the
algorithm, we evaluated each of the classifiers trained
with the coverings above with respect to all coverings.
While performing both the training and testing phases
using the same covering is expected to yield the opti-
mal result, the quantitative difference emphasizes the
importance of a proper selection. We especially note
that the Hamming-Distance covering can be viewed as
an adaptation of AdaBoost.MH to the log-loss func-
tion. Since AdaBoost.MH is a rather popular and
thoroughly used multilabel extension of AdaBoost [8],
it is particularly interesting to compare the perfor-
mance of the different label covering to the Hamming-
Distance covering.

Let us first examine the behavior of the algorithm
with respect to different coverings during the train-
ing phase. We ran AdaBoost.LC using the five cov-
erings described above on the training data. After
each boosting iteration, we calculated the error rate
of all five instantiations with respect to the different
covering errors. The goal here is to verify that the log-
loss relaxation serves as the correct proxy for the label
covering error. In Fig. 3 we show five graphs each
of which corresponds to evaluation using one of the
five coverings. It is clear from the graphs that there
is a one-to-one correspondence between the instantia-
tions which results in the best training error and the
covering used for evaluation. For instance, when eval-
uating the performance during training using the WN
covering error (right-most figure), the best instantia-
tion of AdaBoost.LC is indeed the one trained using
the WN covering and its performance exceeds all other
four instantiations by at least 0.2 units, which is over-
whelmingly statistically significant. Therefore, we can
conclude that employing a specific covering for train-
ing indeed plays an important role in the performance
of the algorithm. A very similar phenomenon is ex-
hibited on test data. Last, we would like to note that
the convergence rate is rather fast and after about 20
iterations the performance reaches an asymptote.

We next focus on the performance of the different in-
stantiations of AdaBoost.LC on test data. In Fig. 4
we show the results of the five AdaBoost.LC instanti-

train
∖

test ZO HM TS WP WN OneErr Coverage AvgP

ZO 0.567 1.587 0.759 3.300 2.407 0.100 4.493 0.865
HM 0.579 1.492 0.757 3.297 2.365 0.091 4.378 0.870
TS 0.574 1.599 0.747 3.209 2.356 0.094 4.376 0.870
WP 0.652 1.792 0.857 3.022 2.403 0.094 4.177 0.872
WN 0.610 1.614 0.817 3.051 2.314 0.094 4.227 0.872

Figure 4: Average test losses: each row represents the test loss using a different covering for training while being
evaluated with respect to all the losses defined by the various label coverings.

ations with respect to eight evaluation measures. The
first five measures correspond to the coverings used
during training while the last three are commonly used
evaluation measures in IR and do not correspond to
any of the coverings used for training. Each row in
the table corresponds to a specific covering instantia-
tion used for training while being evaluated on all the
eight performance measures. Thus, a column corre-
sponds to the evaluation of a single performance mea-
sure on all of the instantiations of AdaBoost.LC. It is
clear from the table that for each of the first five perfor-
mance measures, which are defined by a label covering,
the best performing AdaBoost.LC instantiation is the
one that was trained using the same label covering.
The differences between the results appearing on the
diagonal and all the off-diagonal results were found
to be statistically significant when using the paired
Wald test with a p-value of at most 0.01. However,
there is no clear winner when evaluating the differ-
ent label coverings using IR evaluation measure. The
instantiation trained with the HM covering achieves
the best performance with respect to One-Error while
the instantiation trained with the WP covering is the
best performer with respect to Coverage and Average-
Precision. Moreover, both instantiations trained with
the WP and WN coverings perform substantially bet-
ter than the three other coverings for the latter two
measures. Since Coverage and AvgP are highly non-
linear performance measures without any close resem-
blance to any of the coverings, it is difficult to draw
any general conclusion on the usage of any covering
as a proxy for obtaining good performance with re-
spect to IR-related losses. Devising approximate IR
measures by a label covering is left to future research.

One conclusion that we can draw is that popular mul-
tilabel constructions such as AdaBoost.MH are not
likely to be suitable for decision settings which corre-
spond to complex label coverings. It is therefore essen-
tial to tailor the specific covering to the requirements
of the application on hand. To recap, the generality
of our construction enables us to cope with a rather
broad spectrum of requirements while retaining the
simplicity and power of AdaBoost.

References

[1] M. Collins, R.E. Schapire, and Y. Singer. Logis-
tic regression, AdaBoost and Bregman distances.
Machine Learning, 47(2/3):253–285, 2002.

[2] K. Crammer and Y. Singer. A new family of on-
line algorithms for category ranking. Jornal of
Machine Learning Research 1025–1058, 2003

[3] O. Dekel, C. Manning, and Y. Singer. Log-linear
models for label ranking. In Advances in Neural
Information Processing Systems 16, 2003.

[4] A. Elisseeff and J. Weston. A kernel method for
multi-labeled classification. In Advances in Neural
Information Processing Systems 14, 2001.

[5] Yoav Freund and Robert E. Schapire. A decision-
theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and
System Sciences, 55(1):119–139, August 1997.

[6] D. J. Ittner, D. D. Lewis, and D. D. Ahn. Text
categorization of low quality images. In Sympo-
sium on Document Analysis and Information Re-
trieval, pages 301–315, 1995.

[7] G. Lebanon and J. Lafferty. Conditional mod-
els on the ranking poset. In Advances in Neural
Information Processing Systems 15, 2002.

[8] R. E. Schapire and Y. Singer. Improved boost-
ing algorithms using confidence-rated predictions.
Machine Learning, 37(3):1–40, 1999.

[9] A. Singhal, C. Buckley, and M. Mitra. Pivoted
document length normalization. In Res. and Dev.
in Information Retrieval, pages 21–29, 1996.

[10] B. Taskar, C. Guestrin, and D. Koller. Max-
margin markov networks. In Advances in Neural
Information Processing Systems 17, 2003.

[11] I. Tsochantaridis, T. Hofmann, T. Joachims, and
Y. Altun. Support vector machine learning for in-
terdependent and structured output spaces. Proc.
of 21st Intl. Conf. on Machine Learning, 2004.

	Introduction
	Problem Setting
	AdaBoost.LC
	Experiments

