
http://pub.hal3.name#daume07astar-dp

Fast search for Dirichlet process mixture models

Hal Daumé III

School of Computing
University of Utah

Salt Lake City, UT 84112

Abstract

Dirichlet process (DP) mixture models pro-
vide a flexible Bayesian framework for den-
sity estimation. Unfortunately, their flexibil-
ity comes at a cost: inference in DP mixture
models is computationally expensive, even
when conjugate distributions are used. In the
common case when one seeks only a maxi-
mum a posteriori assignment of data points
to clusters, we show that search algorithms
provide a practical alternative to expensive
MCMC and variational techniques. When a
true posterior sample is desired, the solution
found by search can serve as a good initializer
for MCMC. Experimental results show that
using these techniques is it possible to apply
DP mixture models to very large data sets.

1 INTRODUCTION

Dirichlet process (DP) mixture models provide a flexi-
ble Bayesian solution to nonparametric density estima-
tion. Their flexibility derives from the fact that one
need not specify a number of mixture components a
priori. In practice, DP mixture models have been used
for problems in genomics (Xing, Sharan, and Jordan,
2004), relational learning (Xu et al., 2005), data min-
ing (Daumé III and Marcu, 2005) and vision (Sudderth
et al., 2005). Despite these successes, the flexibility of
DP mixture models comes at a high computational
cost. Standard algorithms based on MCMC, such as
those described by Neal (1998), are computationally
expensive and can take a long time to converge to the
stationary distribution. Variational techniques (Blei
and Jordan, 2005) are an attractive alternative, but
are difficult to implement and can remain slow.

In this paper, we show that standard search algo-
rithms, such as A*, and beam search, provide an at-
tractive alternative to these expensive techniques. Our

algorithms allows one to apply DP mixture models to
very large data sets. Like variational approaches to
DP mixture models, we focus on conjugate distribu-
tions from the exponential family. Unlike MCMC tech-
niques, which can produce samples of cluster assign-
ments from the corresponding posterior, our search-
based techniques will only find an approximate MAP
cluster assignment. We do not believe this to be a
strong limitation: in practice, the applications cited
above all use MCMC techniques to draw a sample and
then simply choose from this sample the single assign-
ment with the highest posterior probability. If one
needs samples from the posterior, then the solution
found by our methods could initialize MCMC.

2 DIRICHLET PROCESSES

The Dirichlet process, introduced by Ferguson (1973),
is a distribution over distributions. The DP is pa-
rameterized by a base measure G0 and a concentra-
tion parameter α. We write G | G0, α ∼ DP(G0, α)
for a draw of a distribution G from the Dirichlet pro-
cess. We may then draw parameters θ1:N | G ∼ G.
By marginalizing over G, we find that the draws of
the parameters θ obey a Pòlya urn scheme (Black-
well and MacQueen, 1973): previously drawn values of
θ have strictly positive probability of being redrawn,
thus making the underlying probability measure dis-
crete (with probability one).

By using a Dirichlet process at the top of a hierarchical
model, one obtains a Dirichlet process mixture model
(Antoniak, 1974). Here, one treats the nth parameter
θn as being associated with the nth observation, using
some likelihood function F . This yields the mixture
model shown in Eq (1).

G | α,G0 ∼ DP(α,G0)
θn | G ∼ G
xn | θn ∼ F (θn)

(1)

The clustering property of the DP prefers that fewer
than N distinct values of θ will be used. If K ≤ N
values are used, the xns can be seen to be clustered
into one of K clusters, determined by the θ values.

2.1 PROPERTIES

DP mixture models posses several properties that are
useful for further analysis. The most basic is their well-
known property of exchangeability: samples from the
process are order independent. This leads to efficient
MCMC techniques (see Section 2.2). An additional
property of the DP that will be useful for our analy-
sis is given as Proposition 3 by Antoniak (1974). He
gives an explicit form for the probability of individ-
ual clusterings. In particular, suppose that a sample
x1, . . . , xN is drawn from a DP mixture model as in
Eq (1). At most N distinct values of θ will be used
(and typically far fewer). Define a vector m1, . . . ,mI

by: mi is the number of θs that appear exactly i times.
Thus, N =

∑

i imi and
∑

i mi is the total number of
clusters. Antoniak (1974) gives an explicit formulation
for the distribution of counts m:

P (m | α,N) =
N !

α(N)

α
P

I

i=1
mi

∏I

i=1 imi(mi!)
(2)

where α(N) denotes the rising factorial function:
α(0) = 1 and α(n) = α(α + 1) · · · (α + n− 1).

2.2 MCMC TECHNIQUES

When the mean distribution G0 of the DP is conju-
gate to the likelihood function F , one can analytically
integrate out G and the θs from Eq (1) and only main-
tain a vector of cluster assignments, c1:N . The vector
c serves to specify which xns were generated from the
same mixture component θ, so that xn is drawn ac-
cording to F (θcn

). Using the exchangeability of the
DP, a single Gibbs iteration proceeds as follows (Neal,
1998, Algorithm 3). For each n, we draw cn to be a
new cluster with probability proportional to αH(xn)
and draw it equal to an existing cluster d with prob-
ability N−n,dH(xn | {xi | ci = d, i 6= n}). Here, α is
the concentration parameter for the DP, N−n,d is the
number of elements of c (other than n itself) that are
equal to d. Finally, H(x | S) is the posterior probabil-
ity of x given that S has been observed, Eq (3).

H(x | S) ,

∫

dG0(θ | S)F (x | θ) (3)

=

∫

dG0(θ)F (x | θ)
∏

y∈S F (y | θ)
∫

dG0(θ)
∏

y∈S F (y | θ)

By analogy, we will also write H(x1:N | S) to denote
the marginal posterior probability of N data points.
In general, when working in the exponential family,
H will be available in closed form and thus the Gibbs
sampling is efficient.

Jain and Neal (2004) propose a Metropolis-Hastings
sampler based on splitting and merging existing clus-
ters. This algorithm is shown to mix faster than the
vanilla Gibbs sampler outlined above. It works by first
randomly choosing two data points. If the data points
are currently in different clusters, a proposal is created
that merges the two clusters. If the data points are
currently in the same cluster, a proposal is generated
the splits the cluster. Jain and Neal (2004) present
three variants on this idea. In the first variant, splits
are determined completely randomly. In the second
variant, a small Gibbs sampler is run to determine the
splits. In the third variant, a Gibbs sampler is run
to determine the splits and the Metropolis-Hastings
iterations are interleaved with the standard Gibbs it-
erations described above.

3 SEARCH

MCMC is an attractive technique for inference in DP
mixture models. However, in many real-world cases,
one does not actually need a sample of cluster assign-
ments from the posterior, but actually seeks only a
single cluster assignment. In these cases, a sample
is extracted from an MCMC run and a single cluster
assignment—the MAP assignment—is extracted from
the sample. This raises the question: is Gibbs sam-
pling a good search algorithm? We show experimen-
tally (see Section 4.1) that it is often not.

In general, it will be intractable to find the exact MAP
solution, as doing so is NP-hard (by reduction to graph
partitioning). Here, we describe a set of possible search
algorithms one can apply to DP mixture models for
finding the true MAP solution for small problems or
an approximate MAP solution for large problems. The
generic search algorithm we use is shown in Figure 3.
It takes an ordered set of data points x1:N , a scor-
ing function and a maximum beam size. It maintains
a max-queue of clusterings of prefixes. In each itera-
tion, it removes the most promising element c from the
queue and expands it by a single data point. The two
elements of variability in the algorithm are the scoring
function and the maximum beam size.

The search algorithm is guaranteed to find the maxi-
mum a posteriori clustering if the beam size is ∞ and
the scoring function is admissible. In words, g should
over-estimate the probability of the best possible clus-
tering c that agrees with c

0 on the first N0 =
∣

∣

c
0
∣

∣

elements. In equations, we write c � N 0 to denote the

function DPSearch
input: a scoring function g, beam size b, data x1:N

output: a clustering c

1: initialize max-queue: Q← [〈〉]
2: while Q is not empty do

3: remove state c1:N0 from the front of Q
4: if N0 = N then return c

5: for all clusters d in c and a new cluster do

6: let c
0 = c⊕ 〈d〉

7: compute the score s = g(c0,x)
8: update queue: Q← Enqueue(Q, c

0, s)
9: end for

10: if b <∞ and |Q| > b then

11: Shrink queue: Q← Q1:b

12: (drop lowest-scoring elements)
13: end if

14: end while

Figure 1: The generic DP search algorithm.

restriction of c to the first N 0 elements. Thus:

g(c0,x) ≥ max
c:c�N0=c

0

p(c,x) (4)

We further require that when |c| = |x|, equality holds.

However, for efficiency, it is useful to use scoring func-
tions g that occasionally underestimate the true poste-
rior probability. While these functions no longer guar-
antee that the exact MAP solution will be found, they
are often more efficient because g can be tighter, even
if it is not a strict upper bound (see Section 4.1 for
supporting evidence).

The posterior probability p(c,x) can be factored as
p(c)p(x | c). Here, the probability of a cluster vector
p(c) is given in Eq (2) (the mapping from the c vector
to the m vector is straightforward). The probability
of the data given the clusters is given in Eq (5).

p(x | c) =
∏

d∈c

H(xc=d) (5)

Here, we write xc=d as shorthand for {xn : cn = d}.
Our goal is a function g(c0,x) that upper bounds the
probability of the best clustering c that completes c

0,
as in Eq (5). For brevity, we write N 0 to be the length
of c

0 and K0 to be the number of clusters in c
0.

An upper bound can be obtained by independently
upper-bounding the two terms, p(c) and p(x | c). In
fact, we do not upper bound p(c) but rather explicitly
maximize it. The algorithm for this computation is
given in Section 3.1. The maximization of p(x | c)
is more complex and cannot be performed explicitly.

We give three techniques for this maximization. The
first, trivial computation, is admissible but very loose
(Section 3.2). The second is tighter but still admissible
(Section 3.3). The third is tighter yet, but is no longer
admissible (Section 3.4).

Matlab code for solving these problems is available on-
line at http://hal3.name/DPsearch/.

3.1 MAXIMIZING THE CLUSTERS

It is possible to explicitly compute the clustering c,
beginning with c

0, that maximizes the posterior clus-
ter probability given in Eq (2). Consider the case of
adding a single data point to m. (Recall that mi de-
notes the number of clusters that contain exactly i
data points.) If this new data point corresponds to a
new cluster, then m1 will increase by one. If this data
point corresponds to an existing cluster that already
contains ` data points, then m` will decrease by one
and m`+1 will increase by one. This gives a change in
probability for adding a new data point in Eq (6).

→ new :
α

m1 + 1
→ ` :

`

` + 1

m`

m`+1 + 1
(6)

By the exchangeability of the underlying process, we
obtain exchangeability on the m vector. Thus we can
greedily search for completions of an initial m

0 by ex-
ecuting one of the two actions in Eq (6) for the re-
maining N − N0 − 1 data points. In particular, for
N−N0−1 steps, we find the value of ` (or “new”) that
maximizes Eq (6) and modify the corresponding loca-
tions in the vector. After all steps, we simply compute
the probability of the m vector according to Eq (2).

When N is very large, the loop for computing the opti-
mal m can be time-consuming. One can greatly accel-
erate the computation by noticing that once the largest
cluster gets sufficiently large, it will simply continue
to grow for the remainder of the iterations. Specif-
ically, if in any step the largest cluster is increased
from size `−1 to `, and [`m`]/[(`+1)(m`+1 +1)] dom-
inates α/[m1+1], then one can stop the search process
and simply further increase ` with all remaining ele-
ments. Additionally, it is helpful to cache previously
computed values for repeated use.

3.2 A TRIVIAL FUNCTION

Given a clustering c
0 of the first N0 elements, we can

trivially upper bound p(x | c) from Eq (5) by consid-
ering only the first N0 data points. For this admissible
scoring function, we use Eq (7).

gTrivial(x | c
0) ,

∏

k∈c
0

H(x
c
0=k) (7)

Using the trivial scoring function is essentially equiv-
alent to just using a path cost with a zero heuristic
function in standard A* search. As such, we expect
this scoring function will lead to an inefficient search.

3.3 A TIGHTER FUNCTION

The inefficiency of the trivial scoring function given in
Section 3.2 is due to the fact that it does not take into
account any of the unclustered data points. We can
obtain a tighter scoring function by accounting for the
probability of the as yet unclustered data points. We
do this by simplifying the maximization as follows.

max
c:

c�N0=c
0

p(x | c)

= max
c:

c�N0=c
0

∏

k∈c

H(xc=k) (8)

= max
c:

c�N0=c
0

N
∏

n=1

H(xn | xc1:n−1=cm
) (9)

=

N0

∏

n=1

H(xn | xc
0

1:n−1
=cm

) (10)

max
c:

c�N0=c
0

N
∏

n=N0+1

H(xn | xc1:n−1=cm
)

≤gTrivial(x | c
0) (11)

N
∏

n=N0+1

max
1≤k≤K0+1

max
c:

c�N0=c
0

cn=k

H(xn | xc1:n−1=cm
)

The key idea for this scoring function is to treat each
as-yet unclustered data point independently. In partic-
ular, for some n > N0, we know that it will either fall
into one of the K clusters that exist in c

0, or it will fall
into a new cluster. So, for each unclustered point xn,
we choose a value k for which cluster it falls in to. We
then must cluster all remaining points xN0+1 . . . xn−1

as to only whether they fall into cluster k.

Despite the fact that this latter maximization is
simpler, it is still not tractable (effectively because
H(x | S) is not monotonic in S, even for the expo-
nential family). The solution we propose is to replace
each remaining xm (N0 < m < n) with a replica of
xn.1 In this way, we do obtain monotonicity of H and
may simply keep adding replicas of xn to S so long as
this increases the cluster probability.2

1We do not use an actual replica: we use a scaled replica
with norm equal to the maximum norm of all x.

2In certain cases, it is possible to determine the num-
ber of copies that should be added, analytically. For the

3.4 AN INADMISSIBLE FUNCTION

The foregoing scoring functions are attractive because
they provably lead to optimal clusterings. However,
this optimality comes are a price: the NP-hardness
of the search problem implies that they will often be
inefficient. This inefficiency comes from their lack of
tightness. Here, we give a very simple scoring func-
tion that is significantly tighter, and therefore leads to
much faster clusterings. Unfortunately, this heuristic
is no longer admissible and therefore the search is no
longer guaranteed to find the globally optimal solution.
The function we use is given in Eq (12).

gInad(x | c0) , gTrivial(x | c
0)

N
∏

n=N0+1

H(xn) (12)

This scoring function uses the true probability of the
existing clusters and then assigns each new data point
to a new cluster. This is inadmissible because, for
example, if the last two data points are identical, it
would be preferable to cluster them together.

When using this scoring function, the order in which
the data points is presented becomes important. We
have found that a useful heuristic is to order the data
points by increasing marginal likelihood. This is likely
because examples with high marginal likelihood are
more likely to be in their own clusters anyway, and
hence the heuristic is better. (See Section 4.3 for some
experiments comparing ordering strategies.)

4 EXPERIMENTAL RESULTS

We present results on three problems, one based on
artificial data, one based on the MNIST images data
set and one based on the NIPS papers data set. All
experiments were run on a 3.8GHz Intel Pentium 4
machine with 4Gb of RAM.

4.1 ARTIFICIAL DATA

Our first set of experiments are on artificial data
to demonstrate the scaling properties of the search
methods and to compare them directly to Gibbs
sampling. For these problems, we generate a data
set according to a Gaussian/Gaussian DP mixture
model with prior mean zero and prior variance 10.
We generate data sets of increasing size (N ∈

Dirichlet/Multinomial pair, all should be added. For the
Gaussian/Gaussian pair, one should add sufficiently many
copies of βxn (where β ≥ 1 is the scaling factor) so as to
fully move the posterior mean to lie at xn and then add
copies of xn without the scaling factor.

5 10 15 20 25 30 35 40 45 50
0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Size of Data Set

Lo
g

Li
ke

lih
oo

d
R

at
io

5 10 15 20 25 30 35 40 45 50

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

Size of Data Set

T
im

e
(lo

g
sc

al
e)

5 10 15 20 25 30 35 40 45 50

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Size of Data Set

F
−

S
co

re

5 10 15 20 25 30 35 40 45 50
10

0

10
1

10
2

10
3

10
4

Size of Data Set

N
um

be
r

of
 D

eq
ue

ue
d

E
le

m
en

ts
 (

lo
g

sc
al

e)

Gibbs

Split−Merge

Trivial−Full

Adm−Full

Inad−Full

Trivial−Beam

Adm−Beam

Inad−Beam

Figure 2: Results on artificial data set; x-axis is always the size of the data set. (UL) y-axis is the ration of the
data negative log likelihood to the data negative log likelihood found by exhaustive search (lower is better); (BL)
y-axis is f-score (higher is better); (UR) y-axis is computation time in seconds (lower is better); (BR) y-axis is
number of elements enqueued during search (lower is better).

{4, 6, 8, 10, 11, 12, 13, 14, 15, 20, 25, 30, 50}). We first
run Gibbs sampling and split-merge on each data set.
We then run six search algorithms. The first three
search algorithms run full search using the three scor-
ing functions described above. The last three search
algorithms use the three scoring functions described
above, but with a maximum queue size of 10. For
each data set size, we generate 10 data sets and aver-
age results across these.

Comparison between a sampling approach and a non-
sampling approach is difficult. We perform our com-
parison to be as unfair to our proposed approach as
possible: i.e., we try to make sampling look as good as
possible. We run both samplers as follows. We do fif-
teen runs of the sampler for 1000 iterations each. The
first five are initialized with a single cluster; the second
five are initialized with N clusters; the last five are ini-
tialized randomly with log N clusters. For each run,

there will be a sample that achieves the highest log
likelihood. We choose this iteration as the stopping
point. The best of the best log likelihoods over the
15 runs is then reported as the final score. The time
reported is the time it took to get to that log likeli-
hood in the single run. That is, the numbers reported
are overly optimistic in terms of time, and in line
with practice in terms of performance. For the split-
merge algorithm (Jain and Neal, 2004), we only use the
third variant that performs intermediate Gibbs sam-
pling. The other split-merge algorithms fared surpris-
ingly poorly—often losing significantly even to stan-
dard Gibbs in terms of log likelihood.

The results of these experiments are shown in Figure 2.
The upper-left graph shows a plot of the data nega-
tive log likelihood as a function of data set size (lower
is better). The negative log likelihoods are presented
as a ratio to the log likelihood of the true MAP as-

signment. Interestingly, both inadmissible search algo-
rithms achieve optimal performance. The beam-based
admissible heuristics do worse, and the Gibbs sam-
pler never reaches optimal performance (except on the
smallest data set). The split-merge performance is
quite variable: sometimes better than Gibbs, some-
times worse.

In the upper-right graph, we plot computation time
as a function of data set size. Split-merge is almost
always slightly slower than Gibbs. As can be eas-
ily seen, the time taken for both admissible heuristics
grows quite fast and, at least for the trivial heuristic,
becomes intractable after only 10-15 data points. The
Trivial-Beam remains reasonably efficient (on par with
Gibbs), but also had the worst negative log likelihood
performance. The Admissible-Beam is actually rea-
sonably slow because the computation of the heuris-
tic is time-consuming. As expected, the inadmissible
heuristic (with or without beam) is always the fastest.

The bottom-left graph shows the f-score (geometric
mean of precision and recall) of pair-wise “same clus-
ter or not” decisions for the clustering found by the
different algorithms against the ground truth (higher
is better). As we can see, the inadmissible heuristic al-
ways performs best, while the others vary significantly
in performance (Gibbs, for some reason, does quite
poorly initially but then improves as the size of the
data set increases).

Finally, the bottom-right graph shows (for only the
search-based algorithms) the number of states en-
queued during search. This corresponds roughly with
the upper-right graph (time) but excludes considera-
tions such as the time to compute the heuristic. As ex-
pected, the inadmissible heuristic enqueues by far the
fewest entries (in fact, for most of these algorithms,
the number of elements dequeued by the inadmissible
heuristic was between N and N +5 for all algorithms,
meaning that pure greedy search may be reasonable).

4.2 HANDWRITTEN DATA

For this experiment, we use the handwritten data
set from MNIST (specifically, the version assembled
by Sam Roweis) consisting of images of numbers (in
28 × 28 = 784 dimensions). Following Kurihara,
Welling, and Vlassis (2006), we preprocess the data
by centering and spherizing it, then running PCA to
obtain a 50-dimensional representation. This data set
consists of 60, 000 images, and thus only the inadmis-
sible heuristic is sufficiently efficient to run (we use a
beam of 100, though this turns out to be unnecessar-
ily large). We run on three versions of the data: a 5%
subset, a 20% subset and the full set. In all cases, we
use α = 1 and a prior variance of 0.1.

Figure 3: Mean images for clusters found on the full
(60k examples) MNIST data set.

At the 5% level, search completes in just over 11 sec-
onds, roughly 270 data points per second. The algo-
rithm finds a solution using 11 clusters and achieves
a negative log likelihood of 2.04e5. Running Gibbs
on this data set takes roughly 40 seconds per itera-
tion, and after 100 iterations achieves a best perfor-
mance of 2.09e5. Split-merge obtains a log-likelihood
of 2.05e5, but takes almost two hours to do so. At
the 20% level, search completes in just over 105 sec-
onds (115 elements per second) with a final negative
log likelihood of 8.02e5 (and 21 clusters). Gibbs sam-
pling takes roughly 18 minutes per iteration and find
a best solution of 8.34e5 (after 100 iterations). Split-
merge obtains a solution with negative log likelihood
of 8.15e5 after eight hours. Finally, for the full data
set, search completes in just under 15 minutes (roughly
66 data points per second) with a score of 3.96e6 (and
27 clusters). Gibbs takes an egregious 7 hours per it-
eration on this data, so we were only able to run 15
iterations, leading to a best score of 4.2e6. Split-merge
was also to slow to run for more than 15 iterations,
achieving a score of 4.1e6 after about 7 days.

In Figure 3, we show the mean image from each clus-
ter found by the search algorithm on the full data
set (sorted by cluster size). Qualitatively, these clus-
ters appear quite reasonable. (Kurihara, Welling,
and Vlassis (2006) present a similar figure for vari-
ational techniques; however, their model uses a full
Gaussian/inverse-Wishart prior while ours only uses a
Gaussian and we use a fixed prior variance. One could
easily adapt our algorithms to use the full prior, but
we do not do so in the experiments reported here.)

4.3 NIPS DOCUMENTS

Finally, to demonstrate the applicability of our algo-
rithm to discrete data, we apply the same model to
the set of papers from NIPS 1–12 (assembled by Sam
Roweis). This data set consists of 1740 documents over

training hidden units error learning weight generalization net-
work weights regression layer algorithm recurrent gradient
nodes prediction theorem convergence node student

spike neuron neurons cells synaptic firing cell cortical cortex
activity synapses stimulus excitatory orientation inhibitory
membrane spikes ocular dominance fig

mixture speech em likelihood image tangent hmm cluster-
ing word images pca recognition posterior bayesian speaker
gaussian experts kernel cluster classification

chip circuit analog motion image voltage vlsi visual auditory
images velocity sound retina intensity optical pulse disparity
template pixel silicon

policy reinforcement state controller action control actions
robot reward agent mdp learning states sutton policies tra-
jectory planning singh barto rl

object objects units views face image hidden unit visual im-
ages recognition attractor activation faces features layer at-
tention feature representations module

bounds threshold polynomial bound theorem depth boolean
proof gates lemma dimension tree node concept clause class
functions winnow boosting maass

motion head motor visual eeg eye direction subjects stimu-
lus ica movements cells movement cortex velocity cue field
parietal vor spatial

word classifiers classifier hmm rbf character recognition train-
ing speech mlp characters hybrid user context net hidden
layer trained words error

belief evidence similarity posterior bayesian retrieval user
propagation hypotheses query concept approximation exam-
ples exact images iii image mackay database nodes

Table 1: Most indicative words for each of the ten
largest clusters (out of fourteen) of documents from
NIPS papers. Sorted by cluster size.

a vocabulary of roughly 13k words. In our model, we
drop the top ten words from the vocabulary and retain
only the top 1000 from the remainder. For this data,
we use the Dirichlet/Multinomial DP mixture model
with α = 1 and a symmetric Dirichlet prior with pa-
rameter equal to 10.

Running DP search (with the inadmissible heuristic)
on this data set takes roughly 21 seconds (83 docu-
ments per second) and results in fourteen clusters. For
each cluster, we extract the top twenty words from the
documents assigned to that cluster (“top” as deter-
mined by tf-idf score). These are depicted in Table 1
(sorted by cluster size).

We also experiment with alternative orderings of the
data set for this problem. When the data is presented
in ascending order of marginal likelihood, the result-
ing log likelihood is 2.4407e6. When this order is re-
versed, the resulting log likelihood is 2.4740e6. Finally,
we consider presentations in random order. Over ten
such orders, the mean log likelihood is 2.4489e6 and
the variance is 0.0067e6. (Of all the random passes,
only one achieves a higher log likelihood than the de-
fault ascending order, and does so with a small gain:
2.4403e6.) This suggests that the ascending order is a

reasonable heuristic.

In comparison the vanilla Gibbs sampling and the
split-merge proposals, the search algorithm again per-
forms significantly better. The log likelihood for the
best Gibbs clustering on this data was 3.2e6 and for
the split-merge proposals it as 3.0e6, both taking a
little over an hour.

5 PRIOR WORK

Although in this paper we have only compared our
search-based technique to straightforward Gibbs sam-
pling, there are other inference techniques for DP mix-
ture models. Still within the context of MCMC, Xing,
Sharan, and Jordan (2004) propose a Metropolis-
Hastings sampler that is shown to mix faster than
the Gibbs sampler and is only moderately more chal-
lenging to implement. An alternative, recent proposal
for inference in DP mixture models is to make use of
particle filters (sequential MCMC) (Fearnhead, 2004).
Particle filters look somewhat like a stochastic beam
search algorithm and, as such, are similar in spirit to
the approach proposed here.

We are additionally aware of two deterministic ap-
proaches to inference in DP mixture models based on
variational techniques. The first, due to Blei and Jor-
dan (2005), employs the stick-breaking construction
for the Dirichlet process (Sethuraman, 1994) to con-
struct a finite variational distribution for the infinite
mixture model. On artificial data, they report on the
order of a 100−300 decrease in time (over Gibbs sam-
pling) with essentially identical held-out data log like-
lihoods. Very recently, Kurihara, Welling, and Vlas-
sis (2006) present even more efficient variational al-
gorithm for DP mixture models. In contrast to the
method of Blei and Jordan (2005), the new algo-
rithm employs an infinite variational distribution and
a collapsed distribution (Kurihara, Welling, and Teh,
2007). It can be further accelerated (at least in the
Gaussian case) by using kd-trees for caching sufficient
statistics of the data set.

6 CONCLUSIONS

We have presented an algorithm for finding the MAP
clustering for data under a Dirichlet Process mixture
model, a task that appears regularly in many practical
applications. It has been shown to be extremely effi-
cient (clustering a data set of 60k elements in under
15 minutes in Matlab) and general (we have shown ap-
plications both to continuous and discrete data sets).
Moreover, for small data sets, we have shown relatively
efficient schemes for finding provably optimal solutions
to the MAP problem. Our results, especially with the

inadmissible scoring function, show that one can ob-
tain a very good approximate MAP solution incredibly
quickly. Profiling shows that our main bottleneck is ac-
tually optimizing p(c) from Section 3.1, not p(x | c).
In the worst case, this optimization is quadratic in the
size of the data set, not linear. We are currently in-
vestigating ways of making this more efficient.

In comparison to variational approaches to DP mix-
ture models (Blei and Jordan, 2005; Kurihara,
Welling, and Vlassis, 2006), our algorithm is applica-
ble to exactly the same data (exponential family with
conjugate priors) and suffers from the same drawback:
one cannot easily re-estimate the concentration param-
eter. However, given the speed of our algorithm, one
could easily use multiple runs with Bayesian model se-
lection to find a suitable value. It should be noted that
the results presented in papers discussing variational
approaches compare to Gibbs sampling in terms of log
likelihood and speed. The general result is that the
variational approaches obtain similar log likelihoods
about 100 − 300 times faster. Our results with the
inadmissible function show that we can often achieve
better results to Gibbs. It is difficult to imagine an
algorithm that is more computationally efficient than
search with our inadmissible function.

The primary advantage of MCMC techniques over our
method is that they produce a true representation
of the posterior, provided that they are run for long
enough3 However, if a true sample of the posterior is
desired, it would be natural to run our algorithm as
an initializer for any MCMC algorithm. This would
yield the benefits of a sample from the posterior with-
out requiring that the sampler first find a region of
high posterior probability. Additionally, MCMC tech-
niques can be applied to non-conjugate distributions
(at least in theory) by using an embedded sampling
procedure to estimate the intractable integrals. One
could, in principle, use the same methodology within
our search framework, though this would obviate many
of the speed benefits. An alternative would be to use
an efficient deterministic approximation.

Acknowledgments. Thanks to Andy Carlson and
the three anonymous reviewers whose constructive
criticism and pointers helped improve this paper.

References

Antoniak, Charles E. 1974. Mixtures of Dirichlet pro-
cesses with applications to Bayesian nonparametric
problems. The Annals of Statistics, 2(6):1152–1174,
November.

3As we observed in Section 4.1, the Gibbs sampler often
fails to ever reach the MAP solution.

Blackwell, David and James B. MacQueen. 1973. Fer-
guson distributions via Pòlya urn schemes. The An-
nals of Statistics, 1(2):353–355, March.

Blei, David and Michael I. Jordan. 2005. Variational
inference for Dirichlet process mixtures. Bayesian
Analysis, 1(1):121–144, August.

Daumé III, Hal and Daniel Marcu. 2005. A Bayesian
model for supervised clustering with the Dirichlet pro-
cess prior. Journal of Machine Learning Research,
6:1551–1577, September.

Fearnhead, Paul. 2004. Particle filters for mix-
ture models with an unknown number of components.
Journal of Statistics and Computing, 14:11–21.

Ferguson, Thomas S. 1973. A Bayesian analysis of
some nonparametric problems. The Annals of Statis-
tics, 1(2):209–230, March.

Jain, Sonia and Radford M. Neal. 2004. A split-merge
Markov Chain Monte Carlo procedure for the Dirichlet
process mixture model. Journal of Computational and
Graphical Statistics, 13:158–182.

Kurihara, Kenichi, Max Welling, and Yee Whye Teh.
2007. Collapsed variational dirichlet process mixture
models. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI).

Kurihara, Kenichi, Max Welling, and Nikos Vlassis.
2006. Accelerated variational DP mixture models. In
Advances in Neural Information Processing Systems
(NIPS).

Neal, Radford M. 1998. Markov chain sampling meth-
ods for Dirichlet process mixture models. Techni-
cal Report 9815, University of Toronto, Department
of Statistics and Department of Computer Science,
September.

Sethuraman, Jayaram. 1994. A constructive definition
of Dirichlet priors. Statistica Sinica, 4:639–650.

Sudderth, Erik, Antonio Torralba, William Freeman,
and Alan Willsky. 2005. Describing visual scenes us-
ing transformed Dirichlet processes. In Advances in
Neural Information Processing Systems (NIPS).

Xing, Eric P., Roded Sharan, and Michael I. Jordan.
2004. Bayesian haplotype inference via the Dirichlet
process. In Proceedings of the International Confer-
ence on Machine Learning (ICML).

Xu, Zhao, Volker Tresp, Kai Yu, Shipeng Yu, and
Hans-Peter Kriegel. 2005. Dirichlet enhanced rela-
tional learning. In Proceedings of the International
Conference on Machine Learning (ICML).

