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Abstract

We show how to apply the dynamic program-
ming algorithm of Koivisto and Sood [KS04,
Koi06], which computes the exact posterior
marginal edge probabilitiesp(Gij = 1|D) of a
DAG G given dataD, to the case where the data
is obtained by interventions (experiments). In
particular, we consider the case where the targets
of the interventions are a priori unknown. We
show that it is possible to learn the targets of in-
tervention at the same time as learning the causal
structure. We apply our exact technique to a bio-
logical data set that had previously been analyzed
using MCMC [SPP+05, EW06, WGH06].

1 Introduction

The use of Bayesian networks to represent causal models
has become increasingly popular [Pea00, SGS00]. In par-
ticular, there is much interest in learning the structure of
these models from data. Given observational data, it is only
possible to identify the structure up to Markov equivalence.
For example, the three modelsX→Y→Z, X←Y←Z, and
X←Y→Z all encode the same conditional independency
statement,X ⊥ Z|Y . To distinguish between such models,
we need interventional (experimental) data [EGS05].

Most previous work has focused on the case of “perfect”
interventions, in which it is assumed that an intervention
sets a single variable to a specific state (as in a random-
ized experiment). This is the basis of Pearl’s “do-calculus”
(as in the verb “to do”) [Pea00]. A perfect intervention
essentially “cuts off” the influence of the parents to the in-
tervened node, and can be modeled as a structural change
by performing “graph surgery” (removing incoming edges
from the intervened node). Although some real-world
interventions can be modeled in this way (such as gene
knockouts), most interventions are not so precise in their
effects.

One possible relaxation of this model is to assume that

interventions are “stochastic”, meaning that they induce
a distribution over states rather than a specific state
[KHNA04]. A further relaxation is to assume that the ef-
fect of an intervention does not render the node indepen-
dent of its parents, but simply changes the parameters of
the local distribution; this has been called a “mechanism
change” [TP01b, TP01a] or “parametric change” [EGS06].
For many situations, this is a more realistic model than per-
fect interventions, since it is often impossible to force vari-
ables into specific states.

In this paper, we propose a further relaxation of the notion
of intervention, and consider the case where the targets of
intervention are uncertain. This extension is motivated by
problems in molecular biology, where the effects of various
chemicals that are added are not precisely known. In par-
ticular, each chemical may affect a hidden variable, which
can in turn affect multiple observed variables, often in un-
known ways. We model this by adding the intervention
nodes to the graph, and then performing structure learning
in this extended, two-layered graph.

Our contributions are three-fold. First, we show how to
combine models of intervention — perfect, imperfect and
uncertain — with a recently proposed algorithm for effi-
ciently determining the exact posterior probabilities of the
edges in a graph [KS04, Koi06]. Second, we show em-
pirically that it is possible to infer the true causal graph
structure, even when the targets of interventions are uncer-
tain, provided the interventions are able to affect enough
nodes. Third, we apply our exact methodology to a biologi-
cal dataset that had previously been analyzed using MCMC
[SPP+05, EW06].

2 Models of intervention

We will first describe our probability model under the as-
sumption that there are no interventions. Then we will de-
scribe ways to model the many kinds of interventions that
have been proposed in the literature, culminating in our
model of uncertain interventions. This will serve to situ-
ate our model in the context of previous work.



2.1 No interventions

For the intervention-free case, we will assume that the
conditional probability distribution (CPD) of each node in
the graph is given byp(Xi|XGi

, θ, G) = fi(Xi|XGi
, θi),

whereGi are the parents ofi in G, θi arei’s parameters,
andfi() is some probability density function (e.g., multi-
nomial or linear Gaussian). For the parameter priorp(θ|G),
we will make the usual assumptions of global and local in-
dependence, and parameter modularity (see [HGC95] for
details). We will further assume that eachp(θi) is conju-
gate tofi, which allows for closed form computation of the
marginal likelihoodp(X1:N |G) =

∫

p(X1:N |G, θ)p(θ)dθ,
whereN is the number of data cases. For example, for
multinomial-Dirichlet, the marginal likelihood for a family
(a node and its parents) is given by [HGC95]
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i |x1:N
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Gi

= j) are the counts,
and Nij =

∑

k Nijk. (I(e) is the indicator function in
which I(e) = 1 if evente is true andI(e) = 0 otherwise.)
Also, αijk are the pseudo counts (Dirichlet hyper param-
eters),αij =

∑

k αijk, ri is the number of discrete states
for Xi, andqi is the number of states forXGi

. We will
usually use the BDeu priorαijk = 1/qiri [HGC95]. (An
analogous formula can be derived for the normal-Gamma
case [GH02].) The marginal likelihood of all the nodes is
then given byp(X1:N |G) =

∏d
i=1

p(X1:N
i |X1:N

Gi
), where

d is the number of nodes.

2.2 Perfect interventions

If we perform a perfect intervention on nodei in data case
n, then we setXn

i = x∗
i , wherex∗

i is the desired “tar-
get state” for nodei (assumed to be fixed and known).
We modify the CPD for this case to bep(Xi|XGi

, θ) =
I(Xi = x∗

i ). We see thatXi is effectively “cut off” from
its parentsXGi

.

2.3 Imperfect interventions

A simple way to model interventions is to introduce inter-
vention nodes, that act like “switching parents”: ifIn

i =
1, then we have performed an intervention on nodei in
casen and we use a different set of parameters than if
In
i = 0, when we use the “normal” parameters. Specifi-

cally, we setp(Xi|XGi
, Ii = 0, θ, G) = fi(Xi|XGi

, θ0
i )

and p(Xi|XGi
, Ii = 1, θ, G) = fi(Xi|XGi

, θ1
i ). (Note

that the assumption that the functional formfi does not
change is made without loss of generality, sinceθi can en-
code within it the specific type of function.) Tian and Pearl

Figure 1: Model of mechanism change.Xn
i is nodei in case

n, Xn
Gi

are its parents.In
i acts like a switching variable: If

In
i = 1 (representing an intervention), thenXi uses the param-

etersθ1
i ; If In

i = 0, thenXi uses the parametersθ0
i . α

0/1
i are

the hyper-parameters. We can optionally add another switchnode
Rn

i , which can be used to model the degree of effectiveness of the
intervention (see text for details).

[TP01b, TP01a] refer to this as a “mechanism change”: see
Figure 1. A special case of this is a perfect intervention,
in which p(Xi|XGi

, Ii = 1, θ, g) = I(Xi = x∗
i ). To sim-

plify notation, we assume every node has its own interven-
tion node; if a nodei is not intervenable, we simply clamp
In
i = 0 for all n.

When we have interventional data, we modify the local
marginal likelihood formula by partitioning the data into
those cases in whichXi was passively observed, and those
in whichXi was set by intervention:

p(x1:N
i |x1:N

Gi
, I1:N
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In the case of perfect interventions, this second factor eval-
uates to 1, so we can simply drop cases in which nodei was
set by intervention from the computation of the marginal
likelihood of that node [CY99].

We can also model the case where the interventions are
unreliable, by introducing a latent indicatorRn

i , where
Rn

i = 1 means the intervention succeeded, andRn
i = 0

means it failed. In this case,p(Xi|XGi
, θ, Ii = 1) becomes

a mixture model. The prior mixture weightp(Ri = 1) is
the “effectiveness” of the intervention [KHNA04].

Another way to model imperfect interventions is as “soft”
interventions, in which an intervention just increases the
likelihood that a node enters its target statex∗

i . Markowetz
et al. [MGR05] suggest using the same model of
p(Xi|XGi

, Ii, θ, G) as before, but now the parametersθ0
i

andθ1
i havedependenthyper-parameters. In particular, for

the multinomial-Dirichlet case,θ0/1

ij· ∼ Dir(α
0/1

ij· ), they
assume the deterministic relationα1

ij· = α0
ij·+wi~et, where

j indexes states (conditioning cases) ofxGi
, t = x∗

i is the
target value for nodei, ~et = (0, . . . , 0, 1, 0, . . . , 0) with a 1
in the t’th position, andwi is the strength of the interven-



Figure 2: An example of “fat hand” interventions. Intervention 1
affects nodes 2 and 3, intervention 2 affects node 3. The parame-
ters for node 3 areθij

3|2(k, `), whereI1 = i, I2 = j, X2 = k and
X3 = `.

tion. Aswi→∞, this becomes a perfect intervention.

2.4 Uncertain interventions

Finally we come to our proposed model for representing
interventions with uncertain targets, as well as uncertain
effects. We no longer assume a one to one correspondence
between intervention nodesIi and “regular” nodesXi. In-
stead, we assume that each intervention nodeIi may have
multiple regular children. (Such interventions are some-
times said to be due to a “fat hand”, which “touches” many
variables at once.) If a regular node has multiple interven-
tion parents, we create a new parameter vector for each pos-
sible combination of intervention parents: see Figure 2 for
an example.

We are interested in learning the connections from the in-
tervention nodes to the regular nodes, as well as between
the regular nodes. We do not allow connections between
the intervention nodes, or from the regular nodes back to
the intervention nodes, since we assume the intervention
nodes are exogeneous and fixed.

To explain how we modify the marginal likelihood func-
tion, we need some more notation. LetXGi

be the regular
parents of nodei, andIGi

be the intervention parents. Let
θ`

i be the parameters for nodei given that its intervention
parents have statè. Then the marginal likelihood for a
family becomes

p(x1:N
i |x1:N

Gi
, I1:N

Gi
)

=
∏

`

∫
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n:In
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p(xn
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, θ`
i )



 p(θ`
i )dθ`

i

2.5 The power of interventions

The ability to recover the true causal structure (assum-
ing no latent variables) using perfect and imperfect in-
terventions has already been demonstrated both theoret-
ically [EGS05, EGS06, TP01a, TP01b] and empirically
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Figure 3: Top left: the “cancer network”, from [FMR98]. (a-d)
are Markov equivalent. (c-g) are equivalent under an interven-
tion onB. (h) is the unique member under an intervention onA.
Based on [TP01b].

[CY99, MS03, TP01a, TP01b, WGH06]. Specifically, each
intervention determines the direction of the edges between
the intervened nodes and its neighbors; this in turn may
result in the direction of other edges being “compelled”
[Chi95].

For example, in Figure 3, we see that there are 4 graphs
that are Markov equivalent to the true structure; given ob-
servational data alone, this is all we can infer. However,
given enough interventions (perfect or imperfect) onB, we
can eliminate the fourth graph (d), since it has the wrong
parents forB. Given enough interventions onA, we can
uniquely identify the graph, since we can identify the arcs
out of A by intervention, the arcs into D since it is a v-
structure, and theC→E arc since it is compelled. In gen-
eral, given a set of interventions and observational data,
we can identify a graph up to intervention equivalence (see
[TP01a] for a precise definition).

In Section 4.1, we will experimentally study the question
of whether one can still learn the true structure from un-
certain interventions (i.e., when the targets of intervention
are a priori unknown), and if so, how much more data one
needs compared to the case where the intervention targets
are known.

3 Algorithms for structure learning

The Bayesian approach to structure learning avoids many
of the conceptual problems that arise when trying to com-
bine the results of potentially inconsistent conditional inde-
pendency tests performed on different (“mutated”) models
[Ebe06]. In addition, it is particularly appropriate when the
sample sizes are small, but “soft” prior knowledge is avail-
able, as in many molecular biology experiments.

However, we are left with a computational problem. Com-
puting the full posterior is intractable, since there are

O(d!2(d

2
)) DAGs (directed acyclic graphs) ond nodes

[Rob73].1 So all one can realistically hope to do is to

1The exact formula is given by the following recurrence equa-
tion: r(d) =

Pd
i=1(−1)i+1

`

d
i

´

2i(d−i)r(d − i). This gives
r(2) = 3, r(3) = 25, r(4) = 543, r(5) = 29, 281, r(6) =



compute the posterior probability of certain features of the
graph using Bayesian model averaging:

p(f |D) =
∑

G

p(G|D)f(G)

wheref(G) = 1 if graphG has the feature (e.g., an edge
from i to j), andf(G) = 0 otherwise. (In the small sample
regime, the posterior over models often has many modes,
so it would be unwise to pick any single model, assuming
one’s goal is scientific discovery.)

Standard MCMC methods for sampling from the posterior
(see e.g., [MY95]) are very slow and do not mix well, due
to the size of the search space and the “peakiness” of the
posterior landscape. A significant advance was made by
Friedman and Koller [FK03], who suggested sampling over
the space of node orderings, which “only” has sizeO(d!).
Koivisto and Sood [KS04, Koi06] made another significant
advance, by showing that one can compute the exact poste-
rior probabilities of all edges using dynamic programming
(DP) inO(d2d) time, essentially by summing over all node
orderings instead of sampling them. While still exponential
in d, this is significantly better thanO(d!2d2

), and allows
exact analysis of models with up to aboutd = 20 variables.

The DP algorithm is rather complex, and we do not have
space to explain it here. For the purposes of this paper, it
suffices to know that the input to the algorithm is a prior
over node orderingsqi(Ui), a prior over possible parent
sets,ρi(Gi), and a local marginal likelihood function for
every node and every possible parent set,p(Xi|XGi

). We
discuss each of these in turn below. We then discuss exten-
sions to the algorithm to handle interventions.

3.1 Priors

A node ordering≺ may be specified by the vector
(U1, . . . , Ud), whereUi = {j : j ≺ i} are the set of nodes
that preceedi. Following [KS04], we will assume a uni-
form prior over orderings,qi(Ui) ∝ 1.

A parent set may be specified by the vectorGi ⊂ V , where
V is the set of nodes. Note that this is an unordered set;
the ordering of the elements is specified byUi. Follow-

ing [KS04], we setρi(Gi) ∝
(

d−1

|Gi|

)−1
, if |Gi| ≤ k, and

ρi(Gi) = 0 otherwise, wherek is a fan-in bound for each
node. (By settingk = d − 1, we can eliminate the fan-in
restriction.)

Of course,Gi and Ui are not independent, since we re-
quire Gi ⊆ Ui. Henceqi(Ui) andρi(Gi) should not be
thought of as probabilities, but rather as potential functions
or factors, which jointly define the prior over orderings and

3, 781, 503, r(7) = 1.1 × 109, etc.

graphs as follows

p(≺, G) =
1

Z

d
∏

i=1

qi(Ui)ρi(Gi)× I(≺, G consistent)

where the last term checks thatG is consistent with≺, and
that≺ is a total order (and henceG is acyclic).Z is a nor-
malization constant which will cancel out when computing
posterior features. By marginalizing over≺, we induce a
prior over graphsp(G). The induced prior is highly non
uniform, but favors sparse graphs, since parent sets that are
smaller are consistent with more orderings and therefore
more probable.

The reason the prior is defined in this indirect way is that
the dynamic programming algorithm relies on the fact that
we can compute the score for certain parent sets without
knowing what the order of those parents are; hence we
can re-use that score for all orderings of the parents. See
[KS04, FK03, EW06] for a more detailed discussion of the
relationship between priors on orders and graphs.

3.2 Likelihoods

The final inputs to the algorithm are the local conditional
marginal likelihoodsp(x1:N

i |x1:N
Gi

, I1:N
Gi

), which must be
computed for every nodei and every possible parent set
Gi (up to sizek). There are

(

d
k

)

= O(dk) such terms. The
cost of computing each term depends on the form of the lo-
cal CPDsfi and the priorp(θi). We have already given
the formula for the multinomial-Dirichlet case. It takes
O(N) time to compute the sufficient statistics (counts)
Nijk, whereN is the number of training cases. We have
found that 95% of the overall algorithm time is spent com-
puting these terms, even for relatively small (N ∼ 5000)
datasets. Fortunately, one can use AD-trees [ML98] to
speed this up.

3.3 Layering

In the case where we include the intervention nodes in the
graph, we use a two layered graph structure,V = X ∪ I,
whereX are the regular nodes andI are the intervention
nodes. The prior ensures there are no edges between the
I nodes, and no edges fromX back toI. Let dI = |I|
be the number of intervention nodes, anddX = |X | be
the number of regular nodes. The time complexity of the
DP algorithm in this case isO(d2dX + dk+1C(N)), where
d = dI +dX , andC(N) is the cost of computing each local
marginal likelihood term. Note that layering is crucial for
efficiently handling uncertain interventions, otherwise the
algorithm would takeO(d2d) instead ofO(d2dX ) time.

4 Experimental results

We first present some results on synthetic data generated
from a Bayes net of known structure, and then present re-



sults on a real biological data set.

4.1 Synthetic data

In this section, we experimentally study the question of
whether one can still learn the true structure, even when
the targets of intervention are a priori unknown, and if so,
how much more data one needs compared to the case where
the intervention targets are known.2 We assessed this us-
ing the following experimental protocol. We considered
the graph structure in Figure 3, and then generated random
multinomial CPDs by sampling from a Dirichlet distribu-
tion with hyper-parameters chosen by the method described
in [CM02]. This ensures that there are reasonably strong
dependencies between the nodes. (We used binary nodes
for simplicity.) We then generated data using forwards
sampling; the first 2000 casesD0 were from the original
model, the second 2000 casesD1 from a “mutated” model,
in which we performed a perfect intervention either onA
or B, forcing it to the “off” state in each case.

Next we tried to learn back the structure using varying sam-
ple sizes ofN ∈ {100, 500, 2000}. Specifically we used
N observational samples andN interventional samples,
D = (D1:N

0 , D1:N
1 ). We ran the algorithm using dataD

and under increasingly vague prior knowledge: (1) using
the perfect interventions model; (2) using the soft interven-
tions model3; (3) using the imperfect (mechanism change)
model; and (4) using the uncertain interventions model. In
the latter case, we also learned the children of the interven-
tion node. As a control, we also tried just using observa-
tional data,D = D1:2N

0 .

Our results are shown in Figure 4. We see that with ob-
servational data alone, we are only able to recover the v-
structureB→D←C, with the directions of the other arcs
being uncertain (e.g.,P (C→E) ≈ 0.75.) With perfect in-
terventions onB, we can additionally recover theA→B
arc, and with perfect interventions onA, we can recover
the graph uniquely, consistent with the theoretical results
in Section 2.5. With imperfect and soft interventions, we
need somewhat more data, but results are otherwise very
similar to the perfect case, and are omitted due to lack of
space. With uncertain interventions, we see that the en-
tropy of the posterior on the regular edges is higher than
when using perfect interventions, but it too reduces with
sample size. Eventually the posterior converges to a delta
function on the intervention equivalence class. We obtain
similar results with other experiments on random graphs.

2Tian and Pearl [TP01a] briefly mention the case of “unknown
focal variables” (which we are calling uncertain targets ofinter-
vention) in the context of constraint based learning methods, but
do not present any algorithms for identifying focal variables. We
are not aware of any other papers that address this question.

3[MGR05] do not discuss how to set the pushing strengthwi.
We set it equal to0.5N , so that the data does not overwhelm the
hyper-parameterα1

ijk.
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Figure 4: Results of structure learning on the cancer network
(Figure 3). Left column: ground truth. Subsequent columns:
posterior edge probabilitiesp(Gij = 1|D) for increasing sample
sizesN , where dark red denotes 1.0 and dark blue denotes 0.0.
H is the entropy of the factored posterior

Q

ij p(Gij |D). See text
for details. This figure is best viewed in colour.

This suggests that our proposed mechanism is easily able
to learn causal structure even from uncertain interventions.

4.2 Biological data

We now apply our methodology to a real biological data
set, which had previously been analyzed using MCMC by
Sachs et al [SPP+05] (who used multiple restart simulated
annealing in the space of DAGs), Werhli et al. [WGH06]
(who used Metropolis Hastings in the space of node order-
ings), and Ellis and Wong [EW06] (who used equi-energy
sampling in the space of node orderings). The purpose
of our experiment is to determine the exact posterior over
edges, and hence to assess the quality of the MCMC tech-
niques, and also to learn the effects of the interventions that
were performed.

The dataset consists of 11 protein concentration levels mea-
sured under 6 different interventions, plus 3 unperturbed
measurements. The proteins in question constitute part of
the signaling network of human T-cells, and therefore play
a vital role in the immune system. See Figure 6(a) for a de-
piction of the commonly accepted “ground truth” network,
including hidden nodes.

The data in question were gathered using a technique called
flow cytometry, which can record phosphorylation levels
of individual cells. This has two advantages compared to
other measurement techniques: first, it avoids the informa-
tion loss commonly incurred by averaging over ensembles
of cells; second, it creates relatively large sample sizes (we
haveN = 5400 data points in total, 600 per condition).
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The raw data was discretized into 3 states, representing low,
medium and high activity. We obtained this discretized data
directly from Sachs; see Figure 5 for a visualization. This
constituted the input to our algorithm.

We tried two different analyses. In the first version, we as-
sumed that the targets of intervention were known, and we
modeled these using perfect interventions (as did Sachs et
al). The results are shown in Figure 6(c). These should be
compared with the results of the MCMC analysis of Sachs
et al, which are shown in Figure 6(b), and the ground truth
network, which is shown in Figure 6(a).

While there is substantial agreement between the three
models, there are also many differences. For example,
the ground truth shows no edge from jnk to p38, or from
mek12 to jnk, yet both inference methods detect such an
edge. This may be due to the presence of various hidden
variables. Looking at the data in Figure 5, mek12 and jnk
seem quite highly correlated, although this is obviously not
enough evidence to suggest there should be an edge be-
tween them (as shown in [SPP+05], nearly all of the vari-
ables are significantly pairwise correlated!).

There are also several edges in our model that seem to be
absent in the MCMC analysis of Sachs et al. (denoted by
dashed edges). This is possibly because Sachs et al only
perform model averaging over a “compendia of high scor-
ing networks”, as found by 500 restarts of simulated an-
nealing, whereas our method averages over all graphs, and
hence may detect support for many more edges. (Note that
averaging over many sparse, but different, graphs can result
in a dense set of marginal edge probabilities.) Also, the two
methods use different graph priorsp(G), and hence cannot
be directly compared.

In the second experiment, we added the intervention nodes

to the graph and learned their children, rather than pre-
specifying them. The results are shown in Figure 6(d). We
successfuly identified the known targets of all but one of
the 6 interventions. (We missed the G06967→ pkc edge.)
However, we also found that the interventions have multi-
ple children, even though they were designed to target spe-
cific proteins. Upon further investigation, we found that
each intervention typically affected a node and some of its
immediate neighbors. For example, from the ground truth
network in Figure 6(a), we see that Psitect (designated 8
in that figure) is known to inhibit pip2; in our learned net-
work (Figure 6(d)), we see that Psitect connects to pip2,
but also to plcy, which is a neighbor of pip2. This is bi-
ologically plausible, since some of these interventions ac-
tually work by altering hidden variables, which can there-
fore cause changes in several neighboring visible variables.
Also, although we missed the G06967→ pkc edge, the
other children of G06967 (plcy, pka, mek12, erk and p38)
seem to be strongly affected by G06967 when looking at
the data in Figure 5.

We also tried analysing the continuous data using linear-
Gaussian Bayes nets [GH02]. Following [EW06], we took
a log transform of each variable and then standardized
them. Our results (omitted due to lack of space) are sim-
ilar to [EW06], but our graph is much denser, suggesting
that their MCMC scheme failed to visit sufficiently many
modes. (Although once again our results are not directly
comparable due to the different prior.) The graphs inferred
using the Gaussian and multinomial models have much in
common, but they also differ in many of the details. A dis-
cussion of which model is more appropriate is beyond the
scope of this paper.

It is difficult to rigorously assess the quality of our results
when there is no ground truth. (The biological model in
Figure 6(a) is unlikely to be the “true” model that generated
the data in Figure 5. Also, it contains hidden variables, so
is not directly comparable to what we are learning.) The
approach taken by Ellis et al [EW06] was to compare the
predictive log-likelihood in a cross-validation framework.
This can also be done using the DP algorithm, by com-
putingp(x|D) = p(x, D)/p(D); these normalization con-
stants can be obtained by running the “forwards” algorithm
of [KS04] using the “dummy” featuref = 1. We are cur-
rently performing this experiment. However, this is quite
slow, since we need to rerun the algorithm for every test
pointx.

4.3 Running time

For the 3-state biological data, withd = 11 nodes (using
perfect interventions) andN = 5400, our Matlab imple-
mentation only took 30 seconds.4 For the case where we
learned the effects of interventions (sod = 17), it took

4Experiments were performed on a laptop with a 2 GHz Intel
Core Duo Processor and 2GB RAM running under Windows XP.
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Figure 6: Models of the biological data. (a) A partial model of the T-cell pathway, as currently accepted by biologists. The small round
circles with numbers represent various interventions (green = activators, red = inhibitors). From [SPP+05]. Reprinted with permission
from AAAS. (b) Edges with marginal probability above 0.5 as estimated by [SPP+05]. (c) Edges with marginal probability above 0.5
as estimated by us, assuming known perfect interventions. Dashed edges are ones that are missing from the union of (a) and(b). These
are either false positives, or edges that Sachs et al missed.(d) Edges with marginal probability above 0.5 as estimated by us, assuming
uncertain, imperfect interventions, and a fan-in bound ofk = 2. The intervention nodes are in red, and edges from the intervention
nodes are light gray. Dashed edges are ones that are missing from the union of (a) and (b). This figure is best viewed in colour.



about 30 minutes (using a fan-in bound ofk = 2).

5 Summary and future work

We have shown how to apply the dynamic programming
algorithm of Koivisto and Sood [KS04, Koi06] to learn
causal structure from interventional data. The main bottle-
neck to tackling larger problems is the space and time limit
of O(d2d), which limits us to aboutd = 20. However, one
can exploit the layering idea to extend this to much larger
graphs. (See [MKTG06] for some ideas on how to partition
nodes into groups/ layers in an unsupervised way.) Layer-
ing should also enable the learning of dynamic Bayes nets
(DBNs) [FMR98].

Another issue that deserves more attention is the non-
uniform prior p(G) that the DP algorithm implictly uses.
It would be useful if one could use an arbitrary prior on
graphs. We are currently developing a method where we
use the output of the DP algorithm as a proposal distribu-
tion for a Metropolis Hastings search through DAG space;
this lets us use an arbitrary graph prior, but works much bet-
ter than standard proposal distributions. Finally, it would
be interesting to extend the ideas in this paper to the ac-
tive learning case [Mur01, TK01], where one has to decide
which interventions to perform.

Acknowledgements

We would like to thank Karen Sachs and Byron Ellis for
sharing their data with us, and Mikko Koivisto for sending
us a pre-release version of his C++ code.

References

[Chi95] D. Chickering. A transformational characterization
of equivalent Bayesian network structures. InUAI,
1995.

[CM02] D. Chickering and C. Meek. Finding Optimal
Bayesian Networks. InUAI, 2002.

[CY99] G. Cooper and C. Yoo. Causal discovery from a mix-
ture of experimental and observational data. InUAI,
1999.

[Ebe06] F. Eberhardt. Sufficient condition for pooling data
from different distributions. InFirst Symposium
on Philosophy, History, and Methodology of Error,
2006.

[EGS05] F. Eberhardt, C. Glymour, and R. Scheines. On the
number of experiments sufficient and in the worst
case necessary to identify all causal relations among
N variables. InUAI, 2005.

[EGS06] F. Eberhardt, C. Glymour, and R. Scheines. Inter-
ventions and causal inference. In20th Mtg. Philos.
of Sci. Assoc., 2006.

[EW06] B. Ellis and W. Wong. Sampling Bayesian Networks
quickly. In Interface, 2006.

[FK03] N. Friedman and D. Koller. Being Bayesian about
Network Structure: A Bayesian Approach to Struc-
ture Discovery in Bayesian Networks.Machine
Learning, 50:95–126, 2003.

[FMR98] N. Friedman, K. Murphy, and S. Russell. Learning

the structure of dynamic probabilistic networks. In
UAI, 1998.

[GH02] D. Geiger and D. Heckerman. Parameter priors for
directed acyclic graphical models and the character-
ization of several probability distributions.The An-
nals of Statistics, 30(5):1412–1440, 2002.

[HGC95] D. Heckerman, D. Geiger, and M. Chickering.
Learning Bayesian networks: the combination of
knowledge and statistical data.Machine Learning,
20(3):197–243, 1995.

[KHNA04] K. Korb, L. Hope, A. Nicholson, and K. Axnick. Va-
rieties of causal intervention. InPacific Rim Confer-
ence on AI, 2004.

[Koi06] M. Koivisto. Advances in exact Bayesian structure
discovery in Bayesian networks. InUAI, 2006.

[KS04] M. Koivisto and K. Sood. Exact Bayesian struc-
ture discovery in Bayesian networks.J. of Machine
Learning Research, 5:549–573, 2004.

[MGR05] F. Markowetz, S. Grossmann, and R.Spang. Prob-
abilistic soft interventions in Conditional Gaussian
networks. In10th AI/Stats, 2005.

[MKTG06] V. Mansinghka, C. Kemp, J. Tenenbaum, and
T. Griffiths. Structured priors for structure learning.
In UAI, 2006.

[ML98] Andrew W. Moore and Mary S. Lee. Cached suf-
ficient statistics for efficient machine learning with
large datasets.J. of AI Research, 8:67–91, 1998.

[MS03] F. Markowetz and R. Spang. Evaluating the effect of
perturbations in reconstructing network topologies.
In Proc. 3rd Intl. Wk. on Distrib. Stat. Computing,
2003.

[Mur01] K. Murphy. Active learning of causal Bayes net
structure. Technical report, Comp. Sci. Div., UC
Berkeley, 2001.

[MY95] D. Madigan and J. York. Bayesian graphical models
for discrete data. Intl. Statistical Review, 63:215–
232, 1995.

[Pea00] J. Pearl.Causality: Models, Reasoning and Infer-
ence. Cambridge Univ. Press, 2000.

[Rob73] R. W. Robinson. Counting labeled acyclic digraphs.
In F. Harary, editor,New Directions in the Theory of
Graphs, pages 239–273. Academic Press, 1973.

[SGS00] P. Spirtes, C. Glymour, and R. Scheines.Causation,
Prediction, and Search. MIT Press, 2000. 2nd edi-
tion.

[SPP+05] K. Sachs, O. Perez, D. Pe’er, D. Lauffenburger, and
G. Nolan. Causal protein-signaling networks derived
from multiparameter single-cell data.Science, 308,
2005.

[TK01] S. Tong and D. Koller. Active learning for struc-
ture in Bayesian networks. InIntl. Joint Conf. on AI,
2001.

[TP01a] J. Tian and J. Pearl. Causal discovery from changes.
In UAI, 2001.

[TP01b] J. Tian and J. Pearl. Causal discovery from changes:
a Bayesian approach. Technical report, UCLA,
2001.

[WGH06] A. Werhli, M. Grzegorczyk, and D. Husmeier. Com-
parative evaluation of reverse engineering gene reg-
ulatory networks with relevance networks, graphical
Gaussian models and Bayesian networks.Bioinfor-
matics, 22(20):2523–2531, 2006.


