
Incorporating Prior Knowledge on Features into Learning

Eyal Krupka∗ and Naftali Tishby
School of Computer Science and Engineering,

Interdisciplinary Center for Neural Computation
The Hebrew University Jerusalem, 91904, Israel

{eyalkr,tishby}@cs.huji.ac.il

Abstract

In the standard formulation of supervised
learning the input is represented as a vec-
tor of features. However, in most real-life
problems, we also have additional informa-
tion about each of the features. This informa-
tion can be represented as a set of properties,
referred to as meta-features. For instance, in
an image recognition task, where the features
are pixels, the meta-features can be the (x, y)
position of each pixel. We propose a new
learning framework that incorporates meta-
features. In this framework we assume that a
weight is assigned to each feature, as in linear
discrimination, and we use the meta-features
to de�ne a prior on the weights. This prior is
based on a Gaussian process and the weights
are assumed to be a smooth function of the
meta-features. Using this framework we de-
rive a practical algorithm that improves gen-
eralization by using meta-features and dis-
cuss the theoretical advantages of incorpo-
rating them into the learning. We apply our
framework to design a new kernel for hand-
written digit recognition. We obtain higher
accuracy with lower computational complex-
ity in the primal representation. Finally, we
discuss the applicability of this framework to
biological neural networks.

1 Introduction

Incorporating prior knowledge about the representa-
tion of objects has long been known to profoundly in-
�uence the e�ectiveness of learning. This has been
demonstrated by many authors using various heuris-
tics such as specially engineered architectures or dis-
tance measures (see e.g., LeCun et al., 1998, Simard

∗ Intel Research Israel. eyal.krupka@intel.com

et al., 1993). In the context of support vector ma-
chines (SVM) a variety of successful methods to incor-
porate prior knowledge have been published over the
last ten years (see e.g., Decoste and Scholkopf, 2002
and a recent review by Lauer and Bloch, 2006). Since
the nature of prior knowledge is di�erent from task
to task, many of these methods are task-speci�c. For
example, one of the methods applied in digit recog-
nition is to increase the training set size by creating
virtual examples, i.e. new instances are created using
transformations on the original instances. Although
this method works well for digit recognition, it is not
clear how to use it in other tasks such as text classi�-
cation. Since prior knowledge may be available in very
di�erent forms, it is not clear how to develop a general
approach that is suitable to any learning problem.

In our setup, we focus on learning problems where
prior knowledge on each feature can be represented
directly by a vector of meta-features. For example,
in collaborative �ltering, where the features are movie
ratings, the meta-features represent information about
the movie, e.g. genre and year produced. We repre-
sent the possible mappings between meta-features and
weights by a class of functions. In general, we expect
these functions to be smooth, e.g. movies with similar
meta-features (genres) tend to have similar weights.
Therefore, we can de�ne a prior on the mappings from
the meta-features to the weight that �prefers� smooth
functions. Such a prior induces a prior on the weights
which leads to better generalization.

As a simple example, consider a two-class problem
of handwritten digit recognition, where the instances
are represented by vectors of pixel gray levels. We
use a linear discriminator: hw(x) = sign

(
wT x

)
. As-

suming the data are linearly separable, the maximal-
margin approach of linear SVM selects the weight vec-
tor with a minimal L2 norm, ‖w‖2, under the con-
straint

(
wT xi

)
yi ≥ 1, for all instances in the training

set {xi, yi}m
i=1, where yi ∈ {±1} is the label. Here

however, we want to exploit additional information -



the position of the pixel. This position is represented
as a 2-element vector of meta-features (row, column)
for each of the pixels. In general, we expect adjacent
pixels to have similar weights. In other words, we ex-
pect the weights to be a smooth function of the meta-
features. One way to achieve this is to use a Gaussian
prior on w, de�ned by a covariance matrix, C. To en-
courage smoothness, the covariance between a pair of
weights is taken to be a decreasing function of the dis-
tance between their meta-features, i.e. the correspond-
ing pixel positions. This covariance function de�nes
a Gaussian process on the meta-feature space, which
encourages shift invariance. Then, instead of selecting
the minimal norm ‖w‖2, we select w with a minimal
weighted norm, wT C−1w (i.e. maximum likelihood)
under the same constraint

(
wT xi

)
yi ≥ 1. Obviously,

performance can be improved by using richer features
and meta-features. In section 3 we show that using
monomial features with meta-feature based feature se-
lection and a prior on weights can improve accuracy
compared to other monomial-based kernels. Moreover,
although our classi�er does not use the �kernel trick�, it
requires signi�cantly less memory and has lower com-
putational complexity when classifying test instances
compared to other designed kernels (see e.g., Scholkopf
et al., 1998).

Our key motivation for explicitly de�ning and using
meta-features is as follows. By representing prior
knowledge on features as vectors of meta-features, we
can develop common tools and theoretical results to
incorporate prior knowledge into a variety of learning
tasks. In this paper we introduce one of these tools,
which is based on kernel design by de�ning a Gaussian
process on the meta-feature space. This tool is demon-
strated on a digit recognition task, but can easily be
adapted to other learning tasks. We also analyze the
theoretical advantages of using meta-features.

In section 5 we discuss the possible relation of our
framework to biological neural networks in the cortex,
where meta-features are represented by the spatial po-
sition of the neurons in the cortex.

2 Kernel design by meta-features

In this section we use meta-features to de�ne a Gaus-
sian process prior on the meta-features to weights map-
ping. Consider a training set {xi, yi}m

i=1, where yi is
the label and xi ∈ Rd can be the raw input variable
or features extracted from the inputs. Each of the d
elements in the vector x is a feature. Let {u1, . . . ,ud}
be vectors of meta-features, where uj ∈ Rk are the
meta-features of the jth feature. A key point is that
the value of the meta-features is �xed per feature, i.e.
it is not dependent on the instances. Therefore, we

Figure 1: The hypothesis space of the basic setup. H is
the hypothesis space of the standard learning problem,
parametrized by w. In our setup, we de�ne a class
of mappings, G, from a vector of meta-features u, to
the weight of the corresponding feature. Given the
values of the meta-features of all the features {uj} d

j=1,
the mapping g(u) ∈ G indirectly de�nes a hypothesis
h ∈ H by its weights {wj} d

j=1. Moreover, a prior on
the mappings in G, indirectly de�nes a prior on H, i.e.
on w. As discussed in Section 4, G can also be used
to de�ne a subclass HG ∈ H, and hence reduce the
hypothesis space.

refer to the meta-features as prior knowledge.

Let H be the class of homogeneous linear discrimina-
tion functions, where each function in the class hw ∈ H
is de�ned by the weight vector w, i.e. hw(x) =
sign

(
wT x

)
. In order to use the meta-features, we

view the weights as a function of the meta-features.
Let G be the class of meta-features to weights map-
ping, then for g ∈ G, each weight satis�es wj = g(uj)
(j = 1, . . . , d). The prior on w is de�ned by a prior on
the functions in G, i.e. the prior on meta-features to
weight mapping. This is illustrated in Figure 1.

A learning algorithm uses the training set to select
w. Assuming that the training set is linearly sepa-
rable, there exists an in�nite set of w such that all
instances in training set

(
wT xi

)
yi ≥ 1. In the stan-

dard approach of linear SVM, we solve the following
optimization problem

w = argmin
w:(wT xi)yi≥1, i=1,...,m

‖w‖2 (1)

This can be viewed as �nding the maximum-likelihood
hypothesis, under the above constraint, where we have
a Gaussian prior on w

P (w) ∝ e−
1
2wT C−1w (2)

and the covariance matrix C equals the unit matrix,
i.e. all weights are assumed to be independent and
have the same variance. However, we can exploit
the meta-features in order to create a better prior on



Table 1: Meta-features for various learning tasks.
Application Features Meta-features Notes

Handwritten
recognition

Monomials Position, orientation,
geometric shape descriptors

See Section 3

Collaborative
�ltering (movies)

Vector of movie
ratings per use

Movie genres, year, actors A detailed experiment is available
in [Krupka and Tishby, 2007]

Text classi�cation Words
(bag of words)

Stem, semantic meaning,
synonym, co-occurrence,
part of speech, is stop word

Covariance is determined by
relation between words that is
represented by meta-features.
Variance by type (e.g. stop word)

w. For this purpose we de�ne the covariance between
weight i and j as a function of the meta-features asso-
ciated with features i and j, i.e.

Cij = C(ui,uj) (3)

where C is a covariance function. In general, we ex-
pect weights of features with similar meta-features to
be similar. Therefore, the covariance function should
be some decreasing function of the distance between
ui and uj . Note that the prior de�ned by equations
2 and 3 is a Gaussian process prior on the function
class G, i.e. the weights can be viewed as a Gaus-
sian process in the meta-feature space. Therefore, we
can use known results from the literature of Gaussian
processes (see e.g., Williams and Rasmussen, 1996) to
de�ne a valid covariance function, i.e. guarantee that
the result covariance matrix is positive semi-de�nite.

Once the covariance function is de�ned, we need to
solve the following equation

w = argmin
w:(wT xi)yi≥1, i=1,...,m

wT C−1w (4)

this can be done by mapping the original input by
de�ning x̃i = C1/2xi (i = 1, ...,m), and solving the
standard linear SVM optimization for w̃

w̃ = argmin
w̃:(w̃T x̃i)yi≥1, i=1,...,m

‖w̃‖2 (5)

where w = C1/2w̃. Equations 5 and 4 are equiv-
alent since wT xi = w̃T C1/2C−1/2x̃i = w̃T x̃i and
wT C−1w = ‖w̃‖2. This means that our solution is
also equivalent to using kernel K (xi,xj) = xT

i Cxj .
Since this kernel is based on linear transformation
we can save memory and computations at classi�ca-
tion time. By transforming the result weights using
w = C1/2w̃, we can directly calculate wT x for each
new instance in the test set without having to keep the
support vector.

We showed that the prior on the weights in eq. 2 can
be achieved by multiplying x by C1/2. Using other

considerations, Scholkopf et al. [1998] proposed mul-
tiplying the input by a matrix B, where B is opti-
mized to achieve invariance to local transformations.
In our setup, the invariance is incorporated by the as-
sumption of smoothness of weights in the meta-feature
space. The advantage of this approach is that it can
be applied to other applications, e.g. collaborative �l-
tering, where �local transformations� are not de�ned,
but meta-features that describe features can easily be
de�ned (see Table 1).

The link between Gaussian process and SVM has been
pointed out by a number of authors (see e.g., Sollich,
2002). In previous works, the Gaussian process is on
the mapping x → y and therefore re�ects the smooth-
ness of y (or P (y|x)) in the feature space. The key
di�erence is that in our work, the Gaussian process
is on the mapping u → w, i.e. the meta-features to
weights mapping. The advantage of this approach is
that we incorporate the prior knowledge available in
the meta-features.

2.1 A toy example

We �rst apply this method to a toy problem of a bi-
nary classi�er for handwritten digit recognition that
learns from two instances (one for each label). For
this purpose we use the MNIST dataset [LeCun et al.,
1998]. Since the training set is extremely small, direct
usage of the gray level of pixels as features is good
enough, i.e. we do not need to use feature extraction.
The meta-features, u, are the (row, column) position
of each feature. The covariance function we use is

C(ui,uj) = e−
1

2σ2 ‖ui−uj‖2 (6)

where ui, uj are the meta-features of the weights re-
lated to features i and j. σ is a parameter. This prior
re�ects our expectation of smoothness of the weights
as a function of the feature position, and indirectly
encourages shift invariance. The accuracy improved
from 82% of 88% relative to max-margin. Figure 2
shows the result weights per pixel after training with
the standard linear max-margin approach, compared



(a) (b)

(c)

(d)

Figure 2: A toy example. Result weights of meta-
features based prior vs. max-margin when training
from two instances. (a,b) Gray level of the two digits
used for training. (c) The weight per pixel of max-
margin classi�er (white is positive, black is negative).
(d) The weights when using a Gaussian process prior
on meta-features to weight mapping. The accuracy
improved from 82% to 88% relative to max-margin.

to using a Gaussian process prior of meta-features to
weights mapping. In the case of a larger training set
we need to use richer features and meta-features, as
done in Section 3.

2.2 Discussion

At this point one may wonder about the advantage
of de�ning and using the meta-features explicitly. Af-
ter all, there are other methods to incorporate knowl-
edge of shift-invariance in an image. For example, we
can �nd invariant hyperplanes [Scholkopf et al., 1998]
or smooth the input images by some �lter. The an-
swer is two-fold. First, our framework is more gen-
eral, and can be used for more sophisticated features,
meta-features and priors. This is demonstrated in sec-
tion 3 for a more realistic problem of handwritten
digit recognition. Actually, in the above toy exam-
ple, �ltering the input image by 2-D convolution with
a Gaussian kernel can be considered a special case of
our framework, since it can be derived from the so-
lution of x̃i = C1/2xi, where C is built using eq. 6.
The second, and more important part of the answer
is that our method can be successfully addressed to
other types of learning problems where concepts such
as �ltering or transforming the instances do not apply

but meta-features can be used (see Table 1). One key
aim is to use similar mechanism of incorporating prior
knowledge for di�erent tasks.

3 Handwritten digit recognition aided

by meta-features

In kernel methods, we map the input vectors into a
high-dimensional feature space using a kernel function
K(xi,xj). The kernel trick (see e.g., Vapnik, 1998)
enables us to implement a linear classi�er in a high
or even in�nite-dimensional space of features, without
explicitly calculating the features. The memory size
and required number of operations at test time is in
order of the number of support vectors times the num-
ber of raw inputs, instead of the number of features in
the high-dimensional space. This method has proven
itself to be very successful on a wide range of applica-
tions. However, using the kernel trick does not enable
us to �freely� select or design the features we use. In
many cases, this is not a problem, since �feature de-
sign� can be replaced by kernel design. For the task
of handwritten recognition, Scholkopf et al. [1998] de-
signed a kernel that improves generalization by using
local correlations between pixels.

We propose a new way to apply SVM to handwrit-
ten digit recognition. First, we explicitly calculate a
relatively small subset of the monomials of the polyno-
mial kernel. This subset is selected by de�ning meta-
features for the candidate monomials, and selecting a
�good� subset by the value of their meta-features. Sec-
ond, we apply our framework to build a prior on the
weights, based on the meta-features of the monomial
features. Perhaps surprisingly, in addition to achiev-
ing better accuracy relative to other specially-designed
kernels, our classi�er requires signi�cantly less mem-
ory and computations per test instance relative to
other kernels which are based on the dual represen-
tation. This is because our approach achieves good
performance with a relatively small number of features
(monomials), and we do not have to keep the support
vectors.

Outline. The proposed method of incorporating
meta-features to �standard� learning can be summa-
rized as follows:

1. De�ne simple features and meta-features (Fig. 3).
Meta-features should be informative on feature
relevance or relations between features.

2. Select a subset of features by their meta-features.

3. De�ne a Gaussian process prior of meta-features
to weights mapping, i.e. covariance function
C(ui,uj) (eq. 7).



Table 2: List of features used (for 3 inputs).
base len. (ur) Orientations (uφ) Pos. (ux, uy)

2 0o, 45o, . . . , 315o 20× 20 area
4 0o, 22.5o, . . . , 337.5o 20× 20 area
6 0o, 22.5o, . . . , 337.5o 20× 20 area

Figure 3: Features used in the experiments. Each fea-
ture is a monomial, multiplying the gray level of two
or three pixels. The input pixels of a monomial form
an isosceles triangle with its height equal to a quarter
of its base (for two inputs, the middle input is omit-
ted). Each feature is described by �ve meta-features
(ut, ur, uφ, ux, uy). ut is the number of inputs (2 or 3).
ur is the distance between the two pixels at the base of
the triangle. uφ is the orientation of the base. (ux, uy)
is the position of the feature in the 28× 28 image.

4. Build the covariance matrix C and solve SVM by
kernel K(xi,xj) = xT

i Cxj or linear transforma-
tion x̃i = C1/2xi (eq. 4, 5). Calculate result
weights (w̃) and assign w = C1/2w̃. Only w is
required for the classi�er (test time).

5. Optimize selected features by tuning value of
meta-features (e.g. using cross validation). The
concept of feature selection by their meta-features
appears in Krupka et al. [2006].

Experimental setup. We use the MNIST [LeCun
et al., 1998] dataset which contains images of 28× 28
pixels of centered digits. Each pixel was normalized
to range [−1, 1]. We randomly selected 5000 out of
60000 instances from the MNIST training set, and
checked the performance using the MNIST test set,
which includes 10000 instances. We repeated the ex-
periment with four di�erent randomly selected train-
ing sets. The reported results are the average of these
selections. As a general reference, we used multi-class
SVM [Crammer and Singer, 2001] with a polynomial
kernel of degree 4, which is the optimal degree, and ob-
tained an error rate of 4.2%. The feature space of this
kernel includes O(1011) features, where each feature is
a monomial (multiplication of up to 4 pixels).

Features and meta-features. We use the same type
of features as the polynomial kernel uses indirectly.

However, in order to build a prior on the weights, we
need to explicitly calculate the features. Obviously,
we cannot use all the O(1011) features; therefore we
selected a small subset of them. Since each feature
is a monomial, it is de�ned uniquely by the position
of its inputs. We used monomials with two or three
inputs. The meta-features of two input monomials are
the distance between the two inputs, the orientation
and the center position. The three input monomials we
used are de�ned by the same meta-features as the two
input monomials, but with an additional pixel between
the two pixels, forming an isosceles triangle . These
features and meta-features are described in Figure 3.

The meta-features of the features we used are de-
scribed in Table 2. Our initial selection was deter-
mined somewhat arbitrarily, and only the height of the
triangle1 and maximum length (ur ≤ 6) were tuned
by a simple search, at coarse resolution (using cross-
validation). The total number of features with 3 inputs
is 40× 20× 20 = 16000 (40 stands for the ur and uφ,
and 20 × 20 for the center positions). Note that for
two inputs, we get the same feature for a rotation of
180o; therefore the number of features with two inputs
is only 8000. We have a total of 24000 features.

The learning process. As previously, the prior on
weights is determined by the covariance function C.
First we use the simple covariance function

C (ui,uj) =
e
− 1

2σ2
P

‖ui−uj‖2
if features i, j have
the same value of ut, ur, uφ

0 otherwise
(7)

where σP is a parameter. Note that we assume that
the weights across features with di�erent sizes, ori-
entations or number of inputs are uncorrelated. The
correlation is determined by the distance between the
center position of the features. Options for more so-
phisticated priors on weights are discussed below. The
resulting covariance matrix C is a block diagonal, with
60 identical blocks of size 400× 400. Hence, C1/2 can
be calculated e�ciently2. Note also that x̃ only needs
to be calculated for training instances.

The hyper-parameter σP can be optimized using cross-

1The height of the triangle is also a meta-feature, but
we use the same height for all features (can be considered
�meta-features sharing�).

2Since the function C is Gaussian and stationary it
can be shown (using Fourier analysis) that the solution

of C1/2x is equivalent to 2D convolution of each of the
20 × 20 �maps� in feature space, with a Gaussian kernel
with a standard deviation equal to

√
σP . Hence, x̃ can be

calculated e�ciently without explicitly calculating C1/2x.



validation. However, the performance is not sensitive
to the exact value of this parameter. We achieved
nearly the same performance for 4 ≤ σP ≤ 9. The
reported results are for σP = 6. After calculating x̃,
the optimization was solved using a multi-class linear
SVM [Crammer and Singer, 2001]. Since it is a linear
SVM, it can also be solved online without calculating
the kernel matrix [Shalev-Shwartz and Singer, 2006].

Results. The results are summarized in Table 3. The
error range is about ±0.1% and includes the results of
all four random selections of the training set. A sig-
ni�cant performance improvement relative to the 4th
degree polynomial SVM was achieved just by using the
subset of monomials (4.2% to 2.9%). The overall im-
provement of our method (4.2% to 1.8%) is slightly
better than what was reported by Scholkopf et al.
[1998] for a combined method of virtual examples (but
only with translations) and a specially designed kernel
(4% to 2%)3. We believe that further research regard-
ing the choice of features and the covariance function
may lead to even better results. Since we calculate the
features explicitly, we can choose any type of feature,
and are not restricted to monomials. In addition, we
can also incorporate methods of creating virtual ex-
amples.

For a training set of 5000 instances, our method needs
about 80% less memory and computations to predict
labels of new instances (after training) relative to poly-
nomial SVM. The computational advantage is even
greater when compared to specially designed kernels in
the dual representation [Scholkopf et al., 1998] and use
of virtual examples which may increase the number of
support vectors. Moreover, a preliminary experiment
shows that we can signi�cantly reduce the number of
features with only a slight drop in accuracy. However,
in order to apply our method to larger training sets
with signi�cantly improved performance we need to
use (and design) more features. This is a disadvan-
tage of our approach compared to most other kernel
methods which scale easier with the size of training
set by increasing the number of support vectors. Fur-
ther research is required to determine the number of
required features vs. training set size. In particular,
we need to compare it to the increase in the number
of support vectors. An interesting question is whether
the computational advantage of our approach relative
to methods that work on the dual representation in-
creases or decreases for large training sets.

Discussion. The covariance function in eq. 7 ex-
ploits only part of the prior knowledge available in the
meta-features. We can incorporate small orientation

3They used the same size of training and test sets as we
did. However, they did not report which of the instances
they used for training or for test.

Table 3: Test performance on MNIST (with 5000
training instances)

Classi�er Test Err

Multiclass SVM, 4th degree polynom 4.2%
Linear SVM on a subset of monomials 2.9%
Gaussian process on meta-feature space 1.8%
Local kernel and virtual SVM
[Scholkopf et al., 1998]

2.0%

invariance and the e�ect of base length and number of
inputs on the variance by multiplying the covariance
function in eq. 7 by

At (ut)Ar(ur)e
− (∆φij)

2

2σ2
φ

where ∆φij is the orientation di�erence between the
features i and j. At (ut) is a function of the num-
ber of inputs, that can control the balance between 2
and 3 input monomials. Similarly, Ar (ur) can control
the prior variance as a function of distance between
inputs (ur in Figure 3); we expect large triangles to
have smaller weights. We found that the contribution
of adding these terms is not signi�cant relative to the
contribution of the prior in eq. 7. However, for small
sizes of training sets, the improvement is signi�cant.

4 Towards a theory of meta-features

In this section we analyze the theoretical advantage of
using meta-features. We focus on a simple case, where
the meta-features are used to reduce the hypothesis
space, and some special cases of mappings from meta-
features to weights. For example, if we allow only
smooth mappings from meta-features to weights, only
a subset of the hypotheses in H can be used. We de-
note this subset by HG (see Figure 1). Although the
proposed theorems are simple, they illustrate the ad-
vantages of using meta-features.

We compare the VC-dimension (VCD) [Vapnik, 1998]
of HG relative to the VC-dim of H. Without using the
meta-features, VCD (H) is the number of features. Our
results show that for a large number of features, the
complexity of mappings from meta-features to weights
(G) is more important than the number of features.
This is especially valuable when one can measure or
generate many features (feature extraction), and hence
increase the complexity of H, while keeping the com-
plexity of G low. The next theorem states that when
G is the class of linear regression functions, VCD(HG)
is upper bounded by the number of meta-features.



Theorem 1 Let H be the class of linear discrimina-
tion functions on Rd. We assume that the hyperplane
passes through the origin, i.e. ∀h ∈ H, hw(x) =
sgn

(
wT x

)
. Let G be the class of homogeneous lin-

ear regression functions from meta-features to weights
Rk → R, i.e. ∀g ∈ G, g(u; c) = cT u, where c is a
vector of k parameters. Then VCD(HG) ≤ min(k, d).

Proof: Let U be a k × d matrix, where the jth col-
umn is uj , i.e. the vector of meta-features of the jth
feature. By de�nition, w = UT c and hence we get
hw(x) = sgn

(
cT x̃

)
, where x̃ = Ux. Since x̃ ∈ Rk, we

get an equivalent linear discrimination problem with k
parameters. Therefore VCD (HG) ≤ k. Since HG ∈ H
we also get VCD (HG) ≤ VCD (H) = d.

From theorem 1 we can conclude that our theoretical
gain from using meta-features is signi�cant when the
number of meta-features is small relative to the num-
ber of features. The next corollary generalizes Theo-
rem 1 to a richer class of functions G.

Corollary 1 Using the above de�nition, but G here is
the class of linear regression functions from a set of t
�xed functions ψ1, ..., ψt of u

g(u) =
t∑

j=1

cjψj(u)

where c1, ..., ct are the parameters that de�ne g. Then
VCD(HG) ≤ min(t, d).

In the next Theorem, we use corollary 1 to relate the
smoothness of the functions in G to VCD (HG). Our
measure of smoothness is the bandwidth of the func-
tions in G. The idea is rather simple � consider the
case where the number of features is very large, but
the features are crowded in the meta-feature space. If
the meta-features to weights mapping is smooth, then
the weights depend strongly on each other. Therefore
VCD (HG) is determined by the smoothness (band-
width) of g and the volume in the meta-feature space
where the features reside.

Theorem 2 Let H be the class of linear discrimi-
nation functions on Rd, where the hyperplane passes
through the origin. Let G be the class of periodic
functions of the meta-features, where the period in
the rth dimension is Tr, i.e. g(uj1, ..., ujr, ..., ujk) =
g(uj1, ..., ujr + Tr, ..., ujk) (∀g ∈ G, ∀uj). We further
assume that for all g ∈ G, the bandwidth of g is limited
as follows,

ĝ(f1, f2, ..., fk) = 0 if there exists r such that |fr| > Br

for some constants B1, ..., Bk, where ĝ is the multi-
dimensional continuous Fourier transform of g and

f1, ..., fk are the frequencies. Then

VCD (HG) ≤
k∏

r=1

(2BrTr + 1)

Proof: There are at most t =
∏k

r=1 d2BrTr + 1e non-
zero Fourier coe�cients for all g ∈ G. Let the set
of �xed functions de�ned in theorem 1 {ψ1, ..., ψt} be
the (sin / cos) functions corresponding to the Fourier
basis functions that can have a non-zero coe�cient.
Any g ∈ G is a linear sum of these functions. Using
corollary 1 we get theorem 2.

Note that the requirement that g must be a periodic
function is not a signi�cant limit on the function class.
Assuming the value of meta-features is bounded, we
can choose Tr such that all our meta-feature vectors
are within a half period of g. However, VCD (HG)
increases with Tr.

The algorithmic application of Theorem 2 is that we
can reduce the dimensionality by representing the fea-
tures in the frequency domain of the meta-feature
space, and discard features that represent high fre-
quencies. This dimensionality reduction is di�erent
from principle component analysis (PCA), since it is
not based on the joint statistics of the features (empiri-
cal covariance matrix) but on a �xed prior information
(the meta-features).

5 Discussion

We introduce a new framework of incorporating knowl-
edge about features into learning by de�ning a prior
on the mapping from meta-feature space to weights.
We show how the prior information can be incorpo-
rated using standard classi�cation methods such as
SVM for primary learning and Gaussian processes for
the meta-features to weights mapping. We further
show that a smoothness assumption in meta-feature
space (u → w) captures domain knowledge such as
shift invariance better than the standard assumption
of smoothness in the feature space (x → y). In ad-
dition, the meta-features are also informative about
the relevance of features, and can be used for de�ning
a prior on the weight variance and for feature selec-
tion (see also Krupka et al., 2006). The theoretical
advantage of using meta-features was shown by relat-
ing the smoothness in meta-feature space to the VC-
dimension. We demonstrated the use of meta-features
for handwritten digit recognition, and showed that we
can achieve competitive accuracy and lower computa-
tional complexity with respect to other designed ker-
nels.

The framework is applicable to other types of applica-
tions. We evaluated our framework on a dataset of col-



laborative �ltering, where the goal is to predict movie
ratings, and showed that we can improve accuracy of
prediction. Due to lack of space, this experiment is not
included here, but is available (see appendix in Krupka
and Tishby, 2007). In Table 1 we list candidate meta-
features for some learning tasks. Another potential
application is gene-expression. In this case the gene-
expression is the feature, and the meta-features repre-
sent our knowledge about each gene.

Our framework may also be related to learning in bio-
logical neural networks by using the following assump-
tions. First, feature values are represented by neuron
activity. Second, neurons in the cortex are spatially or-
ganized by the value of meta-features related to each
neuron, i.e. neurons which represent similar features
are proximate, where similarity of features refers to
proximity in meta-feature space. This assumption is
supported by the existence of organization maps in the
cortex, e.g. in the organization of the primary visual
cortex the meta-features can be position, orientation
and scale (see e.g., Miikkulainen et al., 2005). The
third assumption is that the learning rule of updating
weights of a neuron depends not only on the activity
of the input neurons, but also on their relative spa-
tial position, such that weight update to proximate
input neurons tend to be correlated (this is the online
implementation of the smoothness of weights prior).
There is evidence for this type of learning in the brain,
for example Engert and Bonhoe�er [1997] found that
weights (synaptic strength) to input neurons in close
spatial proximity tend to be potentiated together, even
if some of the input neurons are not active.

Meta-features are used di�erently in the work of Raina
et al. [2006] (although they do not use this term).
They showed how to transfer knowledge about words
from task to task by using the properties of the words
(meta-features in our context). Another way of de�n-
ing and using meta-features was proposed by Taskar
et al. [2003]. In their setup they use meta-features to
learn the role of words (features) that are unseen in the
training set, but appear in the test set. In their work
the features are words and the meta-features are words
in the neighborhood of that word. Another framework
of learning from observed features to unobserved fea-
tures is described in Krupka and Tishby [2005] in the
context of clustering. The commonality between this
paper and the works above lies in extending learning
from the standard instance-label framework to learn-
ing in the feature space, i.e. from feature to feature.

Acknowledgments

We thank Amir Navot, Ran Gilad-Bachrach, Idan
Segev and Shai Shalev-Shwartz for helpful discussions.
We also thank Koby Crammer for the use of code for

Multiclass SVM [Crammer, 2003].

References

K. Crammer. MCSVM_1.0: C Code for Multiclass SVM.
2003. http://www.cis.upenn.edu/~crammer.

K. Crammer and Y. Singer. On the algorithmic imple-
mentation of multiclass kernel-based vector machines.
Journal of Machine Learning Research, 2001.

D. Decoste and B. Scholkopf. Training invariant support
vector machines. Machine Learning, 46(1-3):161�190,
2002. ISSN 0885-6125.

F. Engert and T. Bonhoe�er. Synapse speci�city of long-
term potentiation breaks down at short distances. Na-
ture, 1997.

E. Krupka and N. Tishby. Generalization in clustering with
unobserved features. In NIPS, 2005.

E. Krupka and N. Tishby. Incroporating prior knowl-
edge on features into learnning. Technical re-
port, Leibniz Center, the Hebrew University, 2007.
http://leibniz.cs.huji.ac.il/tr/937.pdf.

E. Krupka, A. Navot, and N. Tishby. Learning to
select features using their properties. Technical re-
port, Leibniz Center, the Hebrew University, 2006.
http://leibniz.cs.huji.ac.il/tr/926.ps.

F. Lauer and G. Bloch. Incorporating prior knowledge in
support vector machines for classi�cation: a review. Sub-
mitted to Neurocomputing, 2006.

Y. LeCun, L. Bottou, Y. Bengio, and P. Ha�ner. Gradient-
based learning applied to document recognition. Pro-
ceedings of the IEEE, 86(11):2278�2324, November 1998.

R. Miikkulainen, J. A. Bednar, Y. Choe, and J. Sirosh.
Computational Maps in the Visual Cortex. Springer,
Berlin, 2005.

R. Raina, A. Y. Ng, and D. Koller. Constructing informa-
tive priors using transfer learning. In ICML, 2006.

B. Scholkopf, P. Simard, A. Smola, and V. Vapnik. Prior
knowledge in support vector kernels. In NIPS, 1998.

S. Shalev-Shwartz and Y. Singer. E�cient learning of label
ranking by soft projections onto polyhedra. Journal of
Machine Learning Research, 2006.

P. Y. Simard, Y. A. Le Cun, and Denker. E�cient pat-
tern recognition using a new transformation distance.
In NIPS. 1993.

P. Sollich. Bayesian methods for support vector machines:
Evidence and predictive class probabilities. Machine
Learning, 46, 2002.

B. Taskar, M. F. Wong, and D. Koller. Learning on the
test data: Leveraging unseen features. In ICML, 2003.

V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

C. K. I. Williams and C. E. Rasmussen. Gaussian processes
for regression. In NIPS, 1996.


