
Efficient active learning with generalized linear models

Jeremy Lewi
Bioengineering

Georgia Institute of Technology
jlewi@gatech.edu

Robert Butera
Electrical and Computer Engineering

Georgia Institute of Technology
rbutera@ece.gatech.edu

Liam Paninski
Department of Statistics

Columbia University
liam@stat.columbia.edu

Abstract

Active learning can significantly reduce the
amount of training data required to fit para-
metric statistical models for supervised learn-
ing tasks. Here we present an efficient al-
gorithm for choosing the optimal (most in-
formative) query when the output labels are
related to the inputs by a generalized linear
model (GLM). The algorithm is based on a
Laplace approximation of the posterior distri-
bution of the GLM’s parameters. The algo-
rithm requires only low-rank matrix manip-
ulations and a single two-dimensional search
to choose the optimal query and has com-
plexity O(n2) (with n the dimension of the
feature space), making active learning with
GLMs feasible even for high-dimensional fea-
ture spaces. In certain cases the two-
dimensional search may be reduced to a one-
dimensional search, further improving the al-
gorithm’s efficiency. Simulation results show
that the model parameters can be estimated
much more efficiently using the active learn-
ing technique than by using randomly chosen
queries. We compute the asymptotic poste-
rior covariance semi-analytically and demon-
strate that the algorithm empirically achieves
this asymptotic convergence rate, which is
generally better than the convergence rate
in the random-query setting. Finally, we
generalize the approach to efficiently handle
both output history effects (for applications
to time-series models of autoregressive type)
and slow, non-systematic drifts in the model
parameters.

Introduction

Active learning refers to the problem of selecting the
optimal training set for a learning agent, given our
prior knowledge and any previously observed exam-
ples. Active learning is particularly useful in settings
1) for which it is expensive to obtain labeled training
examples (e.g. user ratings systems or geophysical ap-
plications), or 2) for which we have limited time to
collect data (e.g. biological applications).

Optimal inputs are typically selected by optimizing an
objective function which quantifies the expected utility
of measuring the response to a particular input. One
important objective function is the expected mutual
information between the response and the parameters
of the model being fitted to the data (Fedorov, 1972;
Mackay, 1992; Chaloner and Verdinelli, 1995). Previ-
ous work has shown that constructing a training set
using this criterion is in general asymptotically more
efficient and never less efficient than using a randomly
constructed training set (Paninski, 2005).

Active learning, however, is limited by the computa-
tional challenges of the required optimization (Cohn
et al., 1996; Gilad-Bachrach et al., 2005). In particu-
lar, there are two major computational hurdles. First,
the utility of each possible input depends on what has
already been learned from labeled examples. There-
fore, we need to be able to rapidly update the fit-
ted model as we add new points to the training set.
Second, evaluating and optimizing the mutual infor-
mation over the (high-dimensional) space of unlabeled
examples requires a high-dimensional integration fol-
lowed by a search over the possible inputs. In general,
the complexity of both the integration and optimiza-
tion scales exponentially with the dimensionality. As
emphasized above, many applications require that we
perform these tasks in near-real time.

We present methods for solving these problems using
generalized linear models (GLM) for the input-output
relationship and certain Gaussian approximations of

the posterior distribution of the model parameters.
Our emphasis is on developing techniques that scale
well in high dimensions. We solve the first problem by
using efficient rank-one update methods to update the
Gaussian approximation to the posterior, and the sec-
ond problem by a reduction to a highly tractable two-
dimensional optimization problem. Our results show
that the resulting algorithm produces a training set
which can be up to an order of magnitude more in-
formative than the set produced by random sampling.
Moreover, the algorithm is efficient enough for near
real-time implementation.

Methods

The point of regression analysis is to learn the like-
lihood p(r|~x) which maps inputs ~x into outputs or
class labels r. Our focus here is on parametric rep-
resentations of the likelihood p(r|~x, ~θ) given a finite-
dimensional parameter ~θ. The parameters are learned
from a labeled training set {(~x1, r1)...(~xt, rt)} (for con-
venience we will often denote the sequence of labeled
training points ~xt and rt respectively).

The GLM is a tractable and flexible parametric model
which consists of a linear stage followed by a scalar
nonlinearity1. Only the projection of the input, ~x, on
the parameter vector, ~θ, influences the output. We
denote this linear projection as ε = ~θT ~x. The lin-
ear projection is then pushed through a nonlinearity
known as the “link” function, which gives the mean
µr = f(ε): the output r follows a distribution in the
exponential family with mean µr. It is convenient to
work with the canonical parameterization, with g() de-
noting the mapping from ε to the canonical parameter
η : η = g(ε). The GLM is therefore summarized by
the conditional probability:

p(r|~x, ~θ) = p(r|η = g(~θT ~x)) = h(r) exp(rη −N(η))
(1)

where h(r) determines the distribution in the exponen-
tial family and N(η) = log

∫
h(r) exp(rη) normalizes

the distribution.

The GLM is quite flexible in that it can be used for
either classification or regression by choosing an ap-
propriate distribution in the exponential family. We
may furthermore easily enforce various constraints on
the output (e.g., r might be discrete or continuous,
and/or positive, bounded, binary, etc.). Here we will
assume that the exponential family that best describes
the data, along with the nonlinearity g is chosen a pri-
ori ; thus we will not consider the problem of optimiz-

1For simplicity, we restrict our attention here to the case
of scalar responses r; the case of vector observations will
be treated elsewhere.

ing these parameters, and our goal here will simply be
to learn the coefficients of the linear stage, ~θ, using as
few examples as possible.

Representing and updating the posterior. As
emphasized above, our first key task is to efficiently
update the posterior distribution of ~θ after t trials,
p(~θt|~xt, rt), as new input-output pairs are observed.
The key assumption of this paper is that this poste-
rior may be approximated with a single Gaussian with
suitably chosen mean and covariance parameters ~µt

and Ct. We use the standard Laplace approximation,
in which ~µt is taken to be the maximum a posteriori
(MAP) estimate for ~θ, µt ≡ arg max~θ p(~θ|~xt, rt), and
the covariance matrix Ct is the negative inverse Hes-
sian of the log-posterior evaluated at ~µt. This approx-
imation is justified asymptotically by the main result
of (Paninski, 2005), a central limit theorem for active
learning which indicates that a Gaussian approxima-
tion of the posterior will be asymptotically accurate.

How can we justify this (strong) Gaussian assumption
in a non-asymptotic sense? One key property of the
Gaussian is that it is a smooth, log-concave function,
with no non-global local maximum that would com-
plicate the search for the MAP solution µt. Thus,
we will restrict our attention to the subset of GLMs
with smooth, log-concave likelihood terms2. If we fur-
ther assume that the prior distribution on ~θ is log-
concave (e.g., Gaussian, for simplicity), then the poste-
rior distribution — the normalized product of the prior
and likelihood term, both of which are log-concave —
will also be log-concave, and therefore we can expect
that the Gaussian assumption will be reasonable. (In
some special cases, e.g. linear regression with Gaussian
noise, this Gaussian approximation will be exact.)

We therefore develop a set of constraints to ensure the
likelihood is concave. We start by considering condi-
tions sufficient to ensure concavity with respect to ε.
The second derivative of the log likelihood is

d2 log p(r|η)
dε2

= [r−E(r|η)]
d2g(ε)
dε2

−V ar(r|η)(
dg(ε)
dε

)2;

thus, for distributions for which r is unbounded, the
only way to ensure the log likelihood remains negative
for all r is to restrict d2g(ε)

dε2 = 0. This implies that g
is linear in ε, i.e., the GLM is in the canonical param-
eterization. (As is well-known, the log-likelihood in
this case is always concave because the variance is non-
negative.) On the other hand, if r is bounded above

2Note that the smoothness assumption on the likelihood
function rules out the case of noiseless (deterministic) ob-
servations. In the noiseless setting, computing the pos-
terior involves computing the intersection of half-planes
corresponding to the feasible set (Freund et al., 1997;
Gilad-Bachrach et al., 2005), and the Gaussian approxi-
mation is invalid.

or below, then weaker conditions are sufficient for log
concavity. For example, in the Poisson case, r ≥ 0,
and here it is known that if the link function is convex
and log-concave, then the likelihood is guaranteed to
be log-concave (Paninski, 2004).

The discussion above is in terms of concavity with re-
spect to ε; to translate these results into statements
about concavity in ~θ, we need only note that

d2 log p(r|η)

d~θ2
= ~x

d2 log p(r|η)
dε2

~xT . (2)

This rank-one matrix is negative semidefinite if the log
likelihood is concave with respect to ε; thus, concavity
in ε implies concavity in ~θ.

Now that we have restricted our attention to those
GLMs for which we may guarantee that the log-
posterior is concave, and therefore that the Gaussian
approximation is reasonable, we may discuss how to
efficiently compute the mean and covariance parame-
ters ~µt and Ct. In general, computing these terms di-
rectly requires O(tn2 + n3) time (where n = dim(~θ));
the complexity increases with t because to compute
the posterior we must form a product of t likelihood
terms, and the n3 term is due to the inverse of the
Hessian matrix. Unfortunately, this is too slow when
t or n becomes large.

Therefore we take a recursive approximate approach,
as in the derivation of the extended Kalman filter, and
use our Gaussian approximation of p(~θt−1|~xt−1, rt−1)
to update the posterior at time t. To see how this
simplifies matters, we write out the derivatives of the
posterior:

d log p(~θ|rt, ~xt)

d~θ
= −(~θ−~µt−1)T C−1

t−1+
[
rt −

dN

dη

]
dg

dε
~xT

t

(3)

d2 log p(~θ|rt, ~xt)
dθidθj

= −C−1
t−1 +

([
rt −

dN

dη

]
d2g(ε)
dε2

− d2N(η)
dη2

(
dg(ε)
dε

)2
)

~xt~x
T
t (4)

Now, to update ~µt we only need to find the peak
of a one-dimensional function (as opposed to a d-
dimensional function); this follows by noting that the
likelihood only varies along a single direction, ~xt, as
a function of ~θ. At the peak of the posterior, ~µt, the
first term in the gradient must be parallel to ~xt be-
cause the gradient is zero. Since Ct−1 is non-singular
(by assumption), ~µt−~µt−1 must be parallel to Ct−1~xt.
Therefore we just need to solve a one dimensional line-
search to determine how much the mean changes in the
direction Ct−1~xt; this requires only O(n2) time. More-
over, from the second derivative term above it is clear

info. max.

Tr
ia

l

1
500

1000
1500
2000

i
1 100 200

i.i.d

−2

0

2

i
1 100 200

(a)

100 200 300 400 500

10−2

10−1

Dimensionality

Ti
m

e(
Se

co
nd

s)

total
eigen.
posterior
optimize

(b)
Figure 1: a) A comparison of the linear filter estimated
using information maximizing input vs. i.i.d. inputs drawn
uniformly from a sphere of radius e. The true filter, a sine-
wave, is plotted beneath the plots of the mean. The GLM
had a Poisson distribution with exponential link function.
The info. max. approach requires an order of magnitude
fewer training points to achieve the same accuracy as using
i.i.d inputs. b) A plot of the timing of the three steps

as a function of the dimensionality of ~θ. The timing for
each step was well-fit by a polynomial of degree 2 for the
eigendecomposition, posterior update and total time, and
degree 1 for the line search. The times are an average over
many iterations. The error-bars for the total time indicate
±1 std. The plot confirms that the empirical running time
of our algorithm is O(n2). The algorithm is also quite fast;
capable of handling n = 200 in less than a tenth of a second.
Running time was measured on a workstation with a dual
core Intel Xeon 2.8GHz processor. The eigendecomposition
is roughly 3x slower than in our previous results (Lewi et
al., 2006) because we require 3 rank one updates as opposed
to 1.

that computing Ct requires just a rank-one matrix up-
date of Ct−1, which can be evaluated in O(n2) time via
the Woodbury matrix lemma. Thus this Gaussian ap-
proximation of p(~θt−1|~xt−1, rt−1) provides a large gain
in efficiency (from O(tn2 + n3) to O(n2)); our simu-
lations (discussed in more depth below) demonstrate
that, despite this improved efficiency, the loss in accu-
racy due to this approximation was minimal.

Deriving an approximate objective function for
the next unlabeled example. To choose the op-
timal unlabeled example for trial t + 1, we want to

maximize the conditional mutual information

I(~θ; rt+1|~xt+1, rt) = H(~θ|~xt, rt)−H(~θ|~xt+1, rt+1)
(5)

with respect to the input ~xt+1. The first term does
not depend on ~xt+1, so maximizing the information
requires minimizing the conditional entropy:

H(~θ|~xt+1, rt+1) =

Ert+1|~xt+1

∫
−p(~θ|rt+1, ~xt+1) log p(~θ|rt+1, ~xt+1)d~θ

= (1/2)Ert+1|~xt+1 log |Ct+1|+ const. (6)

The equality above is due to our Gaussian approxima-
tion of p(~θ|~xt+1, rt+1). Therefore, we need to minimize
Ert+1|~xt+1 log |Ct+1| as a function of ~xt+1. Our deriva-
tion proceeds in two steps. 1) We derive an expres-
sion for |Ct+1| which avoids any costly inverses and
determinants. 2) We show how the expectation can
be simplified to a 2-d integration in the general (non-
canonical) case and a 1-d integration in the case of the
canonical response.

From our Gaussian approximation of the posterior,
Ct+1 is just the negative inverse Hessian of the log-
posterior:

Ct+1 =

(
C−1

t − ∂2 log p(rt+1|~xt+1, ~θ)
∂θi∂θj

∣∣∣∣
~θ=µt+1

)−1

(7)

Since the Hessian of the log likelihood is rank one, we
can use the Woodbury lemma to evaluate the inverse
and the appropriate identities to evaluate the determi-
nant. To simplify notation we abbreviate

D(rt+1, ε) = −∂2 log p(r|η)/∂ε2,

with the derivative evaluated at ε = εt+1; thus

|Ct+1| = |Ct| · (1 + D(rt+1, ε)~xT
t+1Ct~xt+1)−1. (8)

We therefore just need to minimize

Ert+1|~xt+1 log |Ct+1|
= −Eε Ert+1|ε log

(
1 + D(rt+1, ε)σ2

ε

)
+ const. (9)

ε = ~θT ~xt+1 σ2
ε = ~xT

t+1Ct~xt+1.

Thus our Gaussian approximation reduces the com-
putation of our objective function from an intractable
high-dimensional integral over ~θ and rt+1 to a much
simpler two-dimensional integral over ε and rt+1.
Since p(~θ) is Gaussian, p(ε) is a 1-dimensional Gaus-
sian variable with mean µε = ~µT

t ~xt+1 and variance
σ2

ε = ~xT
t+1Ct~xt+1; that is, this expectation only de-

pends on ~µt and Ct through the two scalar variables
(µε, σ

2
ε). Thus, instead of computing this expectation

102 104

10−4

10−2

100

σ2

Parallel

Trial
102 104

10−2

100

Trial

Orthogonal

Figure 2: Comparison of the actual variance of the poste-
rior in our simulations to the asymptotic variance predicted
based on the central limit theorem. Despite our approx-

imations, the variance of ~θ estimated using information
maximizing inputs converges to the predicted value. Black
lines are for information maximizing inputs; grey lines are
for i.i.d inputs. Dashed lines show predicted values; solid
lines indicate actual values; The first axis shows the vari-
ance in the direction of the posterior mean. The second
axis is the geometric mean of the variances in directions
orthogonal to the mean; asymptotically the variances in
these directions are equal. Fig. 1(a).

online, for each new input-output pair ~xt, rt, we may
precompute this expectation before training begins on
a suitable 2-d region of (µε, σ

2
ε), greatly reducing the

necessary on-the-fly computation time.

We may further simplify matters if our GLM uses the
canonical link function. In this case, d2g(ε)

dε2 = 0, and
therefore the posterior covariance is independent of the
observations rt. Thus the expectation simplifies and
we just need to compute

Ert+1|~xt+1 log |Ct+1|
= log |Ct| − Eε log(1 + V ar(rt+1|ε)σ2

ε). (10)

Finally, if V ar(rt+1|ε)σ2
ε is sufficiently small (as is the

case asymptotically provided V ar(rt+1|ε) is bounded,
since σ2

ε → 0 as t →∞ (Paninski, 2005)), we may use
the standard linear approximation log(1+x) = x+o(x)
to simplify our objective function even further. For
certain models (e.g. the canonical Poisson (Lewi et
al., 2007), or the standard linear Gaussian), this linear
approximation allows us to compute the expectation
in Eq. 10 analytically, further reducing the computa-
tional complexity.

Similar versions of our objective function Eq. 10 have
appeared in other settings, e.g. the “D-optimal” strat-
egy from the experimental design literature (Fedorov,
1972; Mackay, 1992). We may interpret the two key
quantities σ2

ε and V ar(rt+1|ε) as usual: the first mea-
sures our uncertainty about ~θ in the direction of the
input ~x, while the second measures the system’s vari-
ability given ε. Optimal design according to Eq. 10
requires a kind of balanced optimization of these two

terms as a function of ~xt+1.

Computing the optimal unlabeled example. We
now consider the problem of picking the optimal un-
labeled training example. In many applications (e.g.,
document classification), the inputs must be selected
from some finite set. A reasonable approach in this
case is simply to compute (µε, σ

2
ε) for the possible in-

puts and then perform a search over this set. More
generally, we need to perform a search over a contin-
uous set of possible inputs ~x. For the GLM in this
setting the optimal stimulus is undefined, since in gen-
eral increasing the allowed stimulus power ||~xt+1||2 in-
creases the maximal informativeness of the stimulus.
Therefore to get a well-defined optimization problem
we impose a power constraint on the input:

min
~xt+1

Ert+1|~xt+1 log |Ct+1| ||~xt+1||2 ≤ e. (11)

In addition to the power constraint, we consider the
possibility that some of the components of the input
are fixed. For example, we typically need to include a
bias term, ε = ~θT ~x+m, where the offset term m is an
unknown constant which we wish to estimate in addi-
tion to ~θ. This situation is typically handled by simply
concatenating m onto the end of ~θ and the fixed term,
1, onto the end of ~x. Another important example arises
in time-series applications, when we may wish to in-
clude autoregressive terms in our GLM; here the fixed
terms in ~x correspond to outputs which have already
been observed (or in the more general graphical model
setting, to outputs in the graph neighborhood of the
vertex of interest). To include these fixed terms in our
analysis we break ~x into two terms, ~x = (~xT

k ~xT
a)T ,

where the subscripts k and a denote the variable and
fixed components respectively.

The optimization now proceeds in two steps: A)
We perform a 2-d search over (µε, σ

2
ε) to find the

values (µε, σ
2
ε)∗ which maximize Ert+1|~xt+1 log |Ct+1|,

and then B) we choose ~xt+1 so that (µε, σ
2
ε)∗ =

(~µT
t ~xt+1, ~x

T
t+1Ct~xt+1). Step (B) turns out to be easy

once step (A) is complete.

To compute the feasible region in (µε, σ
2
ε) space we

need only compute the maximum and minimum values
of σ2

ε as a function of µε. This is sufficient because for
fixed µε, σ2

ε is continuous on the interval between
its maximum and minimum values. The optimization
problems we need to solve are

max σ2
ε = max

~xk

~xT
k Ck~xk + 2~xT

a Cak~xk + ~xT
a Ca~xa (12)

minσ2
ε = min

~xk

~xT
k Ck~xk + 2~xT

a Cak~xk + ~xT
a Ca~xa (13)

s.t
~µT

k,t~xk

||~µk,t||
= α ||~xk|| ≤ e2 − e2

a − α2, (14)

where ea = ||~xa||2, and µε and α are related by
µε = α||~µk,t|| + ~µT

a,t~xa, and we have written Ct in
block matrix form:

Ct =
[

Ck Cka

Cak Ca

]
.

This allows us to perform the optimization only over
the components of ~xt+1 which we can control. To trace
out the borders of the feasible region, we solve these
optimization problems for α ∈ [−ek, ek], with e2

k =
e2 − e2

a.

It is possible to solve these two optimization prob-
lems directly, by introducing two Lagrange multipliers.
However, this direct approach leads to a somewhat dif-
ficult nonlinear search (details omitted), and a slightly
less direct approach turns out to be more efficient. We
begin by reformulating the optimizations slightly, to
work within the linear subspace of ~xk corresponding
to the projection constraint in Eq. 14. For a suitable
matrix A, vector ~b, and scalar d (see Appendix), op-
timizing Eqs. 12 and 13 is equivalent to finding the
maximum and minimum of:

σ2
ε = ~xT

k A~xk +~bT ~xk + d s.t ||~xk||2 ≤ e2
k − α2.

(15)

Here A is defined as the rank 2 perturbation of Ck

which removes the projection along the mean ~µk. As
a result, we can drop the linear constraint in Eq. 14
because the value of this expression is independent of
the projection of ~xt+1 on ~µk. The power constraint,
however, now depends on α.

We therefore need to optimize a quadratic expression
with a single quadratic constraint, Eq. 15. This is a
well studied optimization problem known as the Trust
Region Subproblem (TRS) (Fortin, 2000). For the
TRS, it can be proved that the Karush-Kuhn-Tucker
(K.K.T) conditions are both necessary and sufficient
(Fortin, 2000). Therefore, we can find the minima and
maxima by solving the K.K.T. conditions.

Solving the K.K.T conditions is simplified if we diago-
nalize A. We therefore define the following terms using
the eigenbasis of A:

A = SΛST ~y = ST ~xt+1 ~w = ST~b (16)

Using these terms we can rewrite the optimization
problem in Eq. 15 as

max
~y

σ2
ε = max

~y

∑
i

ci(yi +
wi

2ci
)2 − w2

i

4ci
(17)

min
~y

σ2
ε = min

~y

∑
i

ci(yi +
wi

2ci
)2 − w2

i

4ci
(18)

s.t
∑

i

y2
i ≤ e2

k − α2. (19)

To obtain the first order K.K.T conditions we intro-
duce the Lagrange multiplier λ which enforces the
power constraint:

σ2
ε =

∑
i

ci(yi +
wi

2ci
)2 − w2

i

4ci
+ d− λy2

i (20)

where ci denotes the ith eigenvalue of A. We then set
the derivatives with respect to yi to zero. This leads
to a system of n equations which are satisfied by any
local minima or maximum:

2yi(ci − λ) = −wi ∀i. (21)

The second order K.K.T. conditions restrict the range
of λ where the max and minimum can occur. For
σ2

ε,max, the second order conditions are

ci − λ ≤ 0 ∀i; (22)

Therefore, σ2
ε,max must occur with λ ≥ cmax, where

cmax is the maximum eigenvalue. The corresponding
conditions for the minimum are

ci − λ ≥ 0 ∀i, (23)

i.e., σ2
ε,min must occur for λ ≤ cmin. Thus, for any

value of α, we can find a value of λ to solve problem
(15); this requires a nonlinear search over λ. However,
recall that our goal is actually to trace out the values
of σ2

ε,max and σ2
ε,min for all possible values of α, not

just a single value. Therefore, instead of solving the
above problems for each value of α (which requires a
nonlinear search over λ), we may simply find the so-
lutions ~y(λ) of the first order K.K.T. on the relevant
ranges λ ≤ cmin and λ ≥ cmax; the key point is that
we may compute ~y(λ) directly, without any additional
nonlinear searching. Now, since the K.K.T. conditions
are necessary and sufficient, this procedure is guaran-
teed to find every local maximum and minimum of σ2

ε

for every value of α. Thus, by tracing out the curves
σ2

ε,max and σ2
ε,min as a function of λ, we can easily

determine the feasible region in (µε, σ
2
ε) space, com-

pleting step (A) in our program.

Having computed the feasible (µε, σ
2
ε) region, we can

perform a 2-d search to find the optimal pair (µε, σ
2
ε)∗.

Now, to finish, we need only find an input ~xt+1 such
that ~µT

t ~xt+1 = µ∗ε and ~xT
t+1Ct~xt+1 = σ2

ε
∗; this requires

only that we solve a one-dimensional quadratic equa-
tion. Let ~xmin and ~xmax denote the solutions to our op-
timization problem corresponding to the optimal value
µε = µε

∗; of course we have already computed these
vectors in the previous step. Now it is sufficient to find
a linear combination of these two vectors which yields
σ2

ε
∗; that is, we search s ∈ [0, 1] to find a value which

solves:

~x(s)T A~x(s) +~bT ~x(s) + d = σ2
ε
∗ (24)

~x(s) = (1− s)~xmin + s~xmax (25)

where A , ~b , d , are as in Eq. 15. Note that this is just
a quadratic equation in s. All such ~xt+1(s) necessarily
satisfy the magnitude constraint and the projection
constraint, and therefore finding the solution to this
quadratic equation completes our optimization task.

The bottleneck of our algorithm is the eigendecompo-
sition of A required in the optimization step; an eigen-
decomposition generally requires O(n3) time. How-
ever, we may speed this up by recalling that A is a
symmetric rank-two modification of Ck,t, and Ck,t is
a symmetric rank-one modification of Ck,t−1, since

Ck,t = Ck,t−1 −
D(rt, ε)

1 + D(rt, ε)σ2
ε

~z~zT ,

with ~z = Ck,t−1~xt−1,k + Ca,t−1~xt−1,a. It is known
(Gu and Eisenstat, 1994) that a symmetric rank-one
perturbation of an eigendecomposition may be com-
puted much more efficiently than computing the eigen-
decomposition from scratch; here we need only apply
Gu and Eisenstat’s rank-one symmetric eigenupdate
code three times (once to obtain the eigendecomposi-
tion of Ck,t from that of Ck,t−1, and twice to obtain
that of A from that of Ck,t). The Gu-Eisenstat algo-
rithm achieves an average running time here of just
O(n2) because of deflation which reduces the cost of
the matrix multiplications associated with finding the
eigenvectors for repeated eigenvalues. Asymptotically
n−1 of our eigenvalues are nearly equal, see discussion
of asymptotic efficiency below, allowing us to speedup
the eigendecomposition through deflation (Fig. 1(b)).

Finally, in certain cases, we can reduce the two-
dimensional search over (µε, σ

2
ε) to a much simpler

one-dimensional search. For example if our objective
function is monotonically increasing in σ2

ε then we only
need to consider σ2

ε ,max(µε) for each possible value of
µε; thus a one-dimensional search over σ2

ε ,max(µε) is
sufficient for finding the optimal input. Simple suf-
ficient conditions may be derived fairly easily from
Eqs. (9) and (10) (details omitted); for example, in
the asymptotic regime, where σ2

ε is small, then we may
use a linear expansion for log(1+x) to conclude that if
V ar(rt+1|ε) is convex in ε in the canonical case — or
more generally D(rt+1, ε) is convex in ε for all rt+1 —
then the objective function is increasing in σ2

ε , and a
one-dimensional search suffices. This convexity condi-
tion is satisfied, for example, in the canonical Poisson
case (Lewi et al., 2007).

To summarize, updating the posterior and choosing
the optimal input requires three steps: 1) a rank-
one matrix update and one-dimensional search to
compute ~µt and Ct; 2) three rank-one modifications
of our eigendecomposition of Ck ; and 3) a two-
dimensional search over (µε, σ

2
ε) (which in certain

cases may be restricted to a simpler one-dimensional

search). The time-complexity is dominated by the
low-rank eigendecomposition updates, which in the
worst case can require O(n3) but on average takes only
O(n2) operations. Thus a simple Gaussian approxima-
tion of the posterior distribution reduces our appar-
ently exponentially-difficult information-maximization
problem to a quite tractable O(n2) problem.

Non-stationary ~θ. It is worth noting that the
proposed algorithm can easily be extended to han-
dle parameters ~θ which change slowly and non-
systematically with time, e.g., in applications to rat-
ings data (where the users’ preferences may change
slowly over time) or biological applications (where
the health of the preparation might drift with time).
To handle this non-stationarity an extended Kalman-
based formulation is natural. We model slow changes
in ~θ by letting ~θ experience diffusion :

~θt+1 = ~θt + wt (26)

Here wt is a normally distributed random variable with
mean zero and covariance matrix Q. (We take Q to be
known although it could potentially be learned from
the data as well.) This implies that p(~θt+1|~xt, rt) is
Gaussian with mean ~µt and covariance Ct + Q, where
~µt and Ct are the mean and covariance of the poste-
rior, recursively computed after t trials. To update the
posterior and choose the optimal stimulus, we use the
same procedure described above3.

Asymptotic efficiency We can evaluate the effi-
ciency and accuracy of our implementation by compar-
ing the covariance of our estimated ~θ to the asymptotic
value predicted by the central limit theorem in (Panin-
ski, 2005). Asymptotically, the covariance matrix con-
verges to an average of expected Fisher information
matrices:

(1/t)C−1
t → E~x(Jexp(~θtrue, ~x)), t →∞. (27)

Jexp is the expected Fisher information (evaluated at
the true underlying parameter value, ~θtrue) and the
expectation is over the sampling distribution of the
inputs p(~x). For i.i.d. data in our simulations, we
take piid(~x) to be a uniform distribution on the sphere
||~x||2 = e, for simplicity, while in the information-

3The one difference is that the covariance matrix of
p(~θt+1|~xt+1, rt+1) is in general no longer just a rank-one

modification of the covariance matrix of p(~θt|~xt, rt); thus,
we cannot use the rank-one update to compute the eigende-
composition. However, it is usually reasonable to take the
diffusion matrix Q to be of full-rank; in this case, we may
apply a single whitening change of basis (Q → I), implying
that the eigenvectors of Ct + Q expressed in the new basis
are unchanged, and the eigenvalues simply ci + 1, with ci

denoting the ith eigenvalue of Ct. Thus in this case, our
methods may be applied with only slight modifications.

maximizing case, the expectation is taken over the dis-
tribution popt(~x) which minimizes the determinant of
the asymptotic covariance matrix, evaluated at ~θtrue.
That is,

popt(~x) = arg max
p(~x)

|E~x(Jexp(~θtrue, ~x))|, (28)

where we are taking the maximum of the log-concave
determinant function over the convex set of all dis-
tributions p(~x) with support on ||~x||2 ≤ e. As dis-
cussed in (Paninski, 2005), the info. max. approach
will in general therefore be asymptotically superior
to the i.i.d. sampling approach (in the sense that
the posterior covariance of ~θ will have a smaller log-
determinant, i.e., that the posterior Gaussian entropy
will be smaller) whenever the optimizer popt(~x) is non-
constant as a function of ~θtrue, i.e., there is not a single
distribution which simultaneously maximizes the effi-
ciency for all (a priori unknown) values of ~θtrue.

In order to evaluate the asymptotic Fisher informa-
tion, we need to solve the above optimization problem;
this problem turns out to be surprisingly tractable.
Without loss of generality, we choose a coordinate sys-
tem in which ~x is aligned with ~θ: θi = 0 ∀ i 6= 1. Using
this parameterization,

E~xJexp(~θtrue, ~x) =
∫

x1

Er|x1D(r, x1θ1)p(x1)

×
∫

x2...xn

~x~xT p(x2, . . . , xn|x1) (29)

The second integral above is just the correlation ma-
trix of ~x taken over the conditional distribution given
x1; a simple symmetry argument, along with the log-
concavity of the determinant, establishes that the op-
timal distribution popt(x2 . . . xn|x1) given the power
constraint is just a uniform distribution on the sphere
of radius e2 − x2

1, which is the largest sphere given x1

and the power constraint.

Thus to compute popt(~x) we need only solve the easier
problem of computing the optimal distributions on x1:

popt(x1) = arg max
p(x1)

[
log φ + (n− 1) log(

e2ω − φ

n− 1
)
]

,

with the abbreviations φ = Ex1(Er|x1D(r, x1θ1)x1
2)

and ω = Ex1(Er|x1D(r, x1θ1)). The objective function
on the right-hand side here depends only on the two
linear projections φ and ω of p(x1); from this fact it
is not difficult to establish that an optimal popt(x1)
may be chosen which is supported on just two val-
ues of x1. The infinite-dimensional optimization prob-
lem therefore reduces to a much more tractable three-
dimensional problem. Having computed the optimal

popt(x1), it is straightforward to evaluate the asymp-
totic covariance matrix and compare it to the asymp-
totic covariance obtained in the i.i.d. setting (Fig. 2).
In each case, the symmetry of p(x2 . . . xn|x1) implies
that this covariance has a simple structure: one eigen-
vector is parallel to ~θtrue, and the eigenvalues corre-
sponding to all of the other eigenvectors (which are
orthogonal to ~θtrue) are equal.

Results

We tested our algorithm by simulating its applica-
tion to system identification in experimental neuro-
science. By modeling a neuron as a GLM with canoni-
cal Poisson distribution (McCullagh and Nelder, 1989;
Paninski, 2004), we can use our algorithm to design op-
timal experiments for identifying a neuron’s response
function. We generated synthetic data by simulating
a neuron as a GLM with exponential link function
(see (Lewi et al., 2007) for details). A comparison of
the posterior means, ~µt, estimated using information
maximizing inputs vs. i.i.d. inputs, Fig. 1(a), shows
that the information maximizing strategy converges
more rapidly to the true ~θ. These results are sup-
ported by the conclusion of (Paninski, 2005) that the
information maximization strategy is asymptotically
never worse than using random stimuli and is generi-
cally strictly more efficient. Fig. 1(b) confirms that the
running time of our algorithm is O(n2). Finally, the
results of analyzing the asymptotic efficiency of our al-
gorithm are shown in Fig. 2. Despite the Gaussian ap-
proximation made here, asymptotically our algorithm
performs at the limits predicted by the central limit
theorem of (Paninski, 2005).

Appendix

The quantities in Eq. 15 are as follows (details of the
derivation will be provided elsewhere):

A = Ck −
1
2
~v~vT +

1
2

~w~w (30)

~v =
−~µT

k Ck~µk + 2
2

~µk + Ck~µk (31)

~w =
−~µT

k Ck~µk − 2
2

~µk + Ck~µk (32)

~b = 2αCk~µk − 2α(~µT
k Ck~µk)~µk

+ 2(Cka~xa)− 2(~µT
k Cka~xa)~µk (33)

d = α2(~µT
k Ck~µk) + 2α~µT

k Cka~xa + ~xT
a Ca~xa. (34)

Acknowledgments

JL is supported by the Computational Science Grad-
uate Fellowship Program of the Office of Science and

National Nuclear Security Administration in the DOE
under contract DE-FG02-97ER25308 and by the NSF
IGERT Program in Hybrid Neural Microsystems at
Georgia Tech via grant number DGE-0333411. LP is
supported by grant EY018003 from the NEI and by a
Gatsby Foundation Pilot Grant. We thank P. Latham
for helpful conversations.

References

Chaloner K, Verdinelli I (1995) Bayesian experimen-
tal design: A review. Statistical Science 10:273–304.

Cohn DA, Ghahramani Z, Jordan MI (1996) Active
learning with statistical models. Journal of Artificial
Intelligence Research 4:129–145.

Fedorov VV (1972) Theory of Optimal Experiments
Academic Press.

Fortin C (2000) A Survey of the Trust Region Sub-
problem within a Semidefinite Framework Ph.D.
diss., University of Waterloo.

Freund Y, Seung HS, Shamir E, Tishby N (1997) Se-
lective sampling using the query by committee algo-
rithm. Machine Learning 28:133–168.

Gilad-Bachrach R, Navot A, Tishby N (2005) Query
by committe made real In Advances in Neural In-
formation Processing Systems 18, pp. 443–450. MIT
Press.

Gu M, Eisenstat SC (1994) A stable and efficient al-
gorithm for the rank-one modification of the symmet-
rical eigenproblem. SIAM Journal on Matrix Analy-
sis and Applications 15:1266–1276.

Lewi J, Butera R, Paninski L (2007) Real-time adap-
tive information-theoretic optimization of neurophys-
iology experiments In Advances in Neural Informa-
tion Processing Systems 19. MIT Press.

Mackay DJC (1992) Information-based objective
functions for active data selection. Neural Compu-
tation 4:590–604.

McCullagh P, Nelder J (1989) Generalized linear
models Chapman and Hall, London.

Paninski L (2004) Maximum likelihood estimation of
cascade point-process neural encoding models. Net-
work: Computation in Neural Systems 15:243–262.

Paninski L (2005) Asymptotic theory of information-
theoretic experimental design. Neural Computa-
tion 17:1480–1507.

