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Abstract

We consider the problem of estimating the
joint density of a d-dimensional random vec-
tor X = (X1,X2, ...,Xd) when d is large.
We assume that the density is a product of
a parametric component and a nonparamet-
ric component which depends on an unknown
subset of the variables. Using a modification
of a recently developed nonparametric regres-
sion framework called rodeo (regularization of
derivative expectation operator), we propose
a method to greedily select bandwidths in a
kernel density estimate. It is shown empiri-
cally that the density rodeo works well even
for very high dimensional problems. When
the unknown density function satisfies a suit-
ably defined sparsity condition, and the para-
metric baseline density is smooth, the ap-
proach is shown to achieve near optimal min-
imax rates of convergence, and thus avoids
the curse of dimensionality.

1 Introduction

Let X1,X2, ...,Xn be a sample from a distribution F
with density f . We are interested in estimating the
density f when the dimension d of Xi is moderate
or large. Nonparametric density estimation methods
such as the kernel estimator [1, 2], or local likeli-
hood [3, 4, 5], work well for low-dimensional prob-
lems (d ≤ 3), but are not effective for high dimen-
sional problems. The major difficulty is due to the in-
tractable computational cost of cross validation when
bandwidths need to be selected for each dimension,
and to the slow rates of convergence of the estima-
tors. Density estimation in high dimensions is often
carried out by the use of mixture models [6, 7, 8, 9];

however, mixture models with a fixed number of com-
ponents are parametric and only useful to the extent
that the assumed model is correct. While nonparamet-
ric mixture models can adapt the number of compo-
nents to the data, such estimators achieve, at best, the
same rates as kernel estimators. In fact, the theoretical
guarantees with mixtures are generally not as good as
for kernel estimators; see [10] and [11]. Other methods
for high dimensional density estimation include projec-
tion pursuit [12], log-spline models [13] and penalized
likelihood [14].

In d-dimensions, minimax theory shows that the
best convergence rate for the mean squared error
under standard smoothness assumptions is Ropt =
O(n−4/(4+d)); this exhibits the “curse of dimensional-
ity” when d is large. In this paper we present a method
that achieves faster rates of convergence when a cer-
tain sparsity assumption is satisfied. Moreover, the
method is based on a greedy algorithm that is compu-
tationally efficient. The idea comes from the recently
developed nonparametric regression framework called
rodeo [15]. For the regression problem, Yi = m(Xi)+ǫi,
i = 1, . . . , n, where Xi = (Xi1, ...,Xid) ∈ Rd is a d-
dimensional vector. Assuming that the true function
only depends on r covariates, where r ≪ d, the rodeo
simultaneously performs bandwidth selection and (im-
plicitly) variable selection to achieve a better minimax

convergence rate of Õ(n−4/(4+r)), which is optimal up
to a logarithmic factor, as if the r relevant variables
were known and explicitly isolated in advance. The
purpose of this paper is to extend this idea to the non-
parametric density estimation setting.

It is first necessary to define an appropriate sparsity
condition in the density estimation setting. Our key
assumption is

f(x1, . . . , xd) = g(xR) b(x1, . . . , xd)

where g is an unknown function, xR = (xj : j ∈ R)



is a subset of the variables, and b is a baseline den-
sity, which is either completely known or known up
to finitely many parameters. If the number of coor-
dinates in R is small, then we can exploit the fact
that the nonparametric component g only depends on
a small number of variables. Two examples of this
model are where the baseline density b is uniform, so
that f(x) = g(xR), and where b is normal, as in [3, 4].
We develop two versions of the rodeo for density esti-
mation, a local version and a global version. The local
version estimates f at a fixed point x and results in a
local bandwidth selection algorithm. The global ver-
sion estimates a single set of bandwidths that is used
at each test point.

2 The Local Rodeo

Suppose first that data lie in the unit cube [0, 1]d and
that b(x) is uniform. Let x be a d-dimensional target
point at which we want to estimate f(x). The kernel
density estimator is

f̂H(x) =
1

ndet(H)

n∑

i=1

K(H−1(x−Xi))

where K is a symmetric kernel with
∫
K(u)du = 1

and
∫

uK(u)du = 0d. We assume that K is a product
kernel and H = diag(h1, ..., hd) is diagonal, so that

f̂H(x) =
1

ndet(H)

n∑

i=1

K(H−1(x−Xi))

=
1

n

n∑

i=i

d∏

j=1

1

hj
K

(
xj −Xij

hj

)

The density rodeo is based on the following idea. We
start with a bandwidth matrix H = diag(h0, . . . , h0)
where h0 is large. We then compute derivatives (Zj :
1 ≤ j ≤ d) of the kernel density estimate with respect
to each bandwidth hj , and reduce bandwidth hj if Zj

is large. The test statistic is

Zj =
∂f̂H(x)

∂hj

=
1

n

n∑

i=1

∂

∂hj

(
d∏

k=1

1

hk
K

(
xk −Xik

hk

))

≡
1

n

n∑

i=1

Zji.

Thus, |Zj | is large if changing hj leads to a substantial
change in the estimator. To carry out the test, we
compare Zj to its variance

σ2
j = Var(Zj) = Var

(
1

n

n∑

i=1

Zji

)
=

1

n
Var(Zj1)

Density Estimation Rodeo

1. Select parameter 0 < β < 1 and initial band-
width h0 = c0/log log n for some constant c0.
Also, let cn = O(log n).

2. Initialize hj , and activate all dimensions:

(a) hj = h0, j = 1, 2, ..., d.

(b) A = {1, 2, ..., d}.

3. While A is nonempty, do for each j ∈ A:

(a) Estimate the derivative and variance: Zj

and s2
j .

(b) Compute the threshold λj = sj

√
2 log(ncn).

(c) If |Zj | > λj , then set hj ← βhj ; otherwise
remove j from A.

4. Output bandwidths H∗ and estimator f̂H∗(x)

Figure 1: The density rodeo algorithm.

We estimate σ2
j with s2

j = v2
j /n where v2

j is the sample
variance of the Zjis. The resulting algorithm is given
in Figure 1.

For a general kernel, we have that

Zj = −
1

n

n∑

i=1

(
1

hj
+

xj −Xij

h2
j

K̃

(
xj −Xij

hj

))

×
d∏

k=1

1

hk
K

(
xk −Xik

hk

)

where K̃(x) = d log K(x)
dx . In the case where K is the

Gaussian kernel this becomes

Zj =
∂f̂H(x)

∂hj

=
C

n
·

n∑

i=1

(
(xj −Xij)

2 − h2
j

) d∏

k=1

K

(
xk −Xik

hk

)

∝
1

n

n∑

i=1

(
(xj −Xij)

2 − h2
j

) d∏

k=1

K

(
xk −Xik

hk

)

=
1

n

n∑

i=1

(
(xj −Xij)

2 − h2
j

)
e
−
∑

d

k=1

(xk−Xik)2

2h2
k

Here, the constant of proportionality C = 1
h3

j

∏d
k=1

1
hk

can safely be ignored to avoid overflow in the compu-
tation as hk → 0 for large d.

2.1 Local Likelihood Rodeo

Hjort et al. and Loader [3, 4, 5] formulate the local like-
lihood density estimation problems as the optimization



problem maxθ ℓ(f, x) where

ℓ(f, x) =

n∑

i=1

K
(
H−1(Xi − x)

)
logf(Xi; θ)

− n

∫

X

K
(
H−1(u− x)

)
f(u; θ)du

is a localized version of the usual log-likelihood func-
tion for density estimation problems:

ℓ(f) =
n∑

i=1

log f(Xi; θ)− n

(∫

X

f(u; θ)du− 1

)

Since the true density function f is unknown, a poly-
nomial is used to approximate the log density. The
large sample properties of the local likelihood estima-
tor are parallel to those of local polynomial regression.
The most appealing property of the resulting estima-
tor is its good performance with respect to boundary
effects [5]. When assuming a product Gaussian kernel,
the closed form of the local likelihood estimator can be
written as f̃H(x) = f̂H(x)× eB , with

B = −
1

2

d∑

k=1

h2
k



∑n

i=1

∏d
j=1 K

(
Xij−xj

hj

)(
Xik−xk

h2
k

)

∑n
i=1

∏d
j=1 K

(
Xij−xj

hj

)




2

which can be viewed as a standard kernel density es-
timator f̂H(x) multiplied by an exponential bias cor-

rection term. To evaluate Zj = ∂f̂H(x)
∂hj

, m = 1, ..., d,

define

ĝk(x) =
1

n

n∑

i=1

d∏

j=1

1

hj
K

(
Xij − xj

hj

)(
Xik − xk

h2
k

)
.

Then

Zj =
∂

∂hj


f̂H(x) exp



−

1

2

d∑

k=1

h2
k

(
ĝk(x)

f̂H(x)

)2







= f̃H(x)

(
∂

∂hj
log f̂H(x)

)

+ f̃H(x)
∂

∂hj


−1

2

d∑

k=1

h2
k

(
ĝk(x)

f̂(x)

)2



where ∂
∂hj

log f̂H(x) =
∂

∂hj
f̂H(x)

f̂H(x)
is calculated as in the

previous section. The derivation of the second term,
though quite involved, is straightforward. The same
algorithm in Figure 1 applies.

2.2 Other Baseline Densities

When using a different baseline density, for example,
a normal density, we use the semiparametric density

estimate

f̄H(x) =
b̂(x)

∑n
i=1KH(Xi − x)

n
∫
KH(u− x)̂b(u)du

where b̂(x) is a parametric density estimate at the
point x, with its parameters estimated by maximum
likelihood. Since the parameters in this term are easy
to estimate, we treat them as known. The motiva-
tion for this estimator comes from the local likelihood
method; instead of using a polynomial P (x) to approx-
imate the log density log f(x), we use log b(x) + P (x).
In this setting, if the true function is b(x), the algo-
rithm will tend to freeze all of the bandwidths for the
estimator at their large initial values h0.

Suppose that b(x) is a multivariate normal density
function with diagonal variance-covariance matrix Σ.
When we use the product Gaussian kernel with band-
width matrix H, a closed form estimator can be de-
rived as

f̄H(x) =
1

n

n∑

i=1

d∏

j=1

K

(
Xij − xj

hj

)√
|H + Σ̂|

|Σ̂|

× exp



−

(x− µ̂)T
(
Σ̂−1 − (H + Σ̂)−1

)
(x− µ̂)

2





where (µ̂, Σ̂) is the M.L.E. for the normal distribution.
It’s easy to see that the local likelihood estimator is
a special case of this semiparametric estimator when
b(x) = uniform. The partial derivative of f̄H(x) with
respect to the bandwidth hj is calculated in a similar
manner. The variance of Zj can be estimated using
the bootstrap; see Section 4.1.

3 The Global Rodeo

Instead of using the local rodeo, which selects band-
widths for each evaluation point, the method can be
modified to carry out global bandwidth selection, in
which case each dimension uses a single bandwidth for
all points. The idea is to average the test statistic over
multiple evaluation points x1, ..., xm, which are sam-
pled from the empirical distribution of the observed
sample.

Averaging the Zjs directly leads to a statistic
whose mean for relevant variables is asymptotically
1
mhj

∑m
i=1 fjj(xi). However, as observed in [15], be-

cause of sign changes in fjj(x), cancellations can lead
to an artificially small value for the statistic. To avoid
this problem, the statistic is squared. Let x1, ..., xm

denote the evaluation points and let Zj(xi) denote the
derivative for the i-th evaluation point with respect to



the bandwidth hj . Therefore,

Zj(xi) =
1

n

n∑

k=1

Zjk(xi), i = 1, ...,m, j = 1, ..., d

Let γjk = (Zj1(xk), Zj2(xk), ..., Zjm(xk))T , for k =
1, ..., n. Assuming that Var(γjk) = Σj , denote Zj· =
(Zj1, Zj2, ..., Zjm)T . By the multivariate central limit
theorem, Var(Zj·) = Σj/n ≡ Cj . Based on this, we
define the test statistic

Tj =
1

m

m∑

k=1

Z2
j (xk), j = 1, ..., d

where

sj =
√

Var(Tj) =
1

m

√
Var(ZT

j Zj)

=
1

m

√
2tr(C2

j ) + 4µ̂j
T
Cj µ̂j

with µ̂ = 1
m

∑m
i=1 Zj(xi). For an irrelevant dimension

j ∈ Rc, it can be shown that EZj(xi) = oP (hj), so
that ETj ≈ Var(Zj(xi)). We use s2

j as an estimate for
Var(Zj(xi)). Therefore, we take the threshold to be

λj = s2
j + 2sj

√
log(ncn)

Several examples of this algorithm are given in Sec-
tion 5.

4 Extensions

In this section we briefly discuss extensions of the den-
sity estimation rodeo, one involving bootstrap estima-
tion of the variance, and another that runs the algo-
rithm in reverse, with bandwidths starting small and
gradually becoming larger.

4.1 Bootstrap Version

As we have seen, an explicit expression for the deriva-
tives Zj and variance s2

j can be derived when the un-
derlying density estimate has an explicit form. In
some cases, however, the density estimate itself may
not have a closed form, and evaluation of the deriva-
tives becomes problematic. When explicit forms can
not be derived, the derivatives can still be practically
approximated using finite differences:

Zj ≈
f̂H+△hj

(x)− f̂H(x)

△hj

where H+△hj means adding a small value△hj to the
j-th diagonal element of H. The variance of Zj can
then be estimated using the bootstrap; the algorithm
is detailed in Figure 2.

Bootstrap Variance Estimation

1. Draw a sample X∗
1 , ...,X∗

n of size n.

2. Compute Z∗
j from data X∗

1 , ...,X∗
n.

3. Repeat steps 1 and 2, B times, to obtain Z
∗(b)
j for

b = 1, . . . , B.

4. Output estimated variance

s2
j =

1

B

B∑

b=1

(
Z

∗(b)
j −

1

B

B∑

r=1

Z
∗(r)
j

)2

Figure 2: The bootstrap method to calculate s2
j .

The bootstrap applies to both the local and global
rodeo algorithms, and thus provides a general tool
when explicit formulas for the variance are not avail-
able. Such cases include the local likelihood rodeo and
the rodeo applied in the semiparametric case. We ex-
pect that a theoretical analysis can be derived similar
to the results we discuss in Section 6 below. The draw-
back of this approach is that the bootstrap is compu-
tationally intensive.

4.2 Reverse Rodeo

Thus far, the rodeo algorithms presented have em-
ployed a sequence of decreasing bandwidths, estimat-
ing the optimal value by a sequence of hypothesis
tests. As an alternative, it is possible to begin with
very small bandwidths, and test whether the estima-
tor changes significantly as a bandwidth is increased.
This reverse rodeo can be helpful when many dimen-
sions are expected to need small bandwidths; an illus-
tration of this is given in the following section with
image data.

5 Examples

In this section, we demonstrate rodeo density estima-
tion on both synthetic and real data, including one-
dimensional, two-dimensional, and high dimensional
examples that illustrate the behavior of the algorithm
in various conditions. For the purpose of evaluating
the algorithm’s performance quantitatively, we use the
Hellinger distance. Assuming we have m evaluation
points, this distance is approximated as

d(f̂ , f) =

∫ (√
f̂(x)−

√
f(x)

)2

dx

= 2− 2

∫ √
f̂(x)

f(x)
f(x) dx
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Figure 3: Different versions of the algorithms run on
the highly skewed unimodal example. The first three
plots are results for the different estimators; the last
plot shows the bandwidths selected by the local rodeo.

≈ 2−
2

m

m∑

i=1

√
f̂(Xi)

f(Xi)

This measure is more numerically stable than the com-
monly used Kullback-Leibler (KL) divergence for eval-
uating the discrepancy between two density functions.
In the following, we first use simulated data to investi-
gate the algorithm performance, where the true distri-
bution is known. We then apply the rodeo to some real
data. If not explicitly stated otherwise, the data are
always rescaled to lie in a d-dimensional cube [0, 1]d,
and a product Gaussian kernel is used. The default
parameters are c0 = 1, cn = log d, and β = 0.9.

5.1 One-Dimensional Examples

We first apply the density rodeo on one-dimensional
examples. We conduct a comparative study on a list of
15 “test densities” proposed by Marron and Wand [16],
which are all normal mixtures representing several
different challenges for density estimation methods.
Our approach achieves performance that is compara-
ble to the built-in kernel density estimator with band-
width selected by unbiased cross-validation (from the
R base library). Due to space considerations, only
the strongly skewed example is reported here, since
it demonstrates the advantage of adaptive bandwidth
selection for the local rodeo algorithm.

Example 1 (Strongly skewed density). This density
is chosen to resemble the lognormal distribution; the
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Figure 4: Perspective plots of the estimated density
functions by the global rodeo (left) and the R built-
in method KDE2d (right) on a 2-dimensional synthetic
data.

distribution is

X ∼
7∑

i=0

1

8
N
(
3
(
( 2
3 )i − 1

)
,
(

2
3

)2i
)

.

The estimated density functions by the local rodeo,
the global rodeo, and the built-in kernel density esti-
mator with bandwidth chosen by unbiased cross val-
idation are shown in Figure 3, where the sample size
is n = 200. In these figures, the solid line is the true
density function, and the dashed line illustrates the
estimated densities by different methods. The local
rodeo performs best. This is because the true density
function is highly skewed, and a fixed bandwidth den-
sity estimator fails to fit the very smooth tail. The last
subplot from Figure 3 shows the selected bandwidth
for the local rodeo; it illustrates how smaller band-
widths are selected where the function varies more
rapidly. Comparing the Hellinger distances of the es-
timates to the true density shows that the local rodeo
works best, while the global rodeo and the unbiased
cross-validation methods are comparable in this one-
dimensional example.

5.2 Two-Dimensional Examples

Two-dimensional examples can also be easily visu-
alized. We evaluate a synthetic dataset and a real
dataset. The density rodeo’s performance is compared
with the built-in method KDE2d from the MASS package
in R. The empirical results show that the density rodeo
outperforms the built-in method on the synthetic data,
where we know the ground truth. For the real-world
dataset, where we do not know the underling density,
our method achieves results that are very similar to
those of previous authors.

Example 2 (Mixture of Beta distributions, with the
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Figure 5: Marginal distributions of the relevant and
the irrelevant dimensions for Example 2.

uniform distribution for an irrelevant dimension). In
this example we simulate a 2-dimensional dataset with
n = 500 points. The two dimensions are independently
generated as

X1 ∼ 2
3Beta(1, 2) + 1

3Beta(10, 10)

X2 ∼ Uniform(0, 1)

Figure 4 shows perspective plots of the estimated den-
sity functions by the global rodeo and the built-in
method KDE2d. The global rodeo fits the irrelevant
uniform dimension perfectly, while KDE2d fails. For a
quantitative comparison, we evaluated the empirical
Hellinger distance between the estimated density and
the true density. The global rodeo algorithm outper-
forms KDE2d uniformly on this example. For a quali-
tative comparison, Figure 5 illustrates the numerically
integrated marginal distributions of the two estima-
tors (not normalized); it is seen that the rodeo fit is
better than that of KDE2d, which is consistent with the
previous observations.

Example 3 (Geyser data). This example uses a ver-
sion of the eruptions data from the “Old Faithful”
geyser in Yellowstone National Park [17]. The data

duration

w
ai

t

D
ensity

duration

w
ai

t

D
ensity

Rodeo estimate KDE2d estimate

duration
w

a
it

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

duration

w
a

it

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 6: Top: Perspective plots of the estimated den-
sity functions by the global rodeo (left) and the R
built-in method KDE2d (right) on the geyser data. Bot-
tom: Contour plots of the result from the global rodeo
(left) and KDE2d (right)

consist of measurements taken between August 1 to
August 15, 1985; there are two variables with 299 ob-
servations altogether. The first variable, “duration,”
represents the numeric eruption time in minutes. The
second variable, “wait,” represents the waiting time
between eruptions. We apply the global rodeo algo-
rithm on this dataset. The estimated densities using
the rodeo and the built-in KDE2d method (used by the
original authors) are provided in the upper plot of Fig-
ure 6. The two lower plots of Figure 6 show the cor-
responding contour plots. Based on visual inspection,
the two estimates are very similar.

5.3 High Dimensional Examples

Example 4 (High dimensional synthetic data). Fig-
ure 7 illustrates the output bandwidths from the lo-
cal rodeo for a 30-dimensional synthetic dataset with
r = 5 relevant dimensions (n = 100, with 30 trials).
The relevant dimensions are generated as

Xi ∼ N (0.5, (0.02i)2), for i = 1, ..., 5.

while the irrelevant dimensions are generated as

Xi ∼ Uniform(0, 1), for i = 6, ..., 30.
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Figure 7: The bandwidth output by the local density
rodeo for a 30-dimensional synthetic dataset (left) and
its boxplot for 30 trials (right).
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Figure 8: An image processing example: Evaluation
digit (top left) and the bandwidths output by the re-
verse rodeo (top right). Each pixel corresponds to a
dimension, and is assigned a bandwidth. The lower
subplots illustrate a series of bandwidths sampled at
different reverse rodeo steps: 10, 20, 40, 60, and 100.
Darker colors correspond to smaller bandwidths.

The evaluation point is x = (1
2 , ..., 1

2 ). The boxplot
illustrates the selected bandwidths for 30 trials. This
plot shows that the bandwidths of the relevant dimen-
sions shrink towards zero, while the bandwidths of the
irrelevant dimensions remain large, indicating that the
algorithm’s performance is consistent with our analy-
sis discussed in the following section. Also, from the
bandwidth plot we see that, for the relevant dimen-
sions, the smaller the variance is, the smaller the esti-
mated bandwidth will be.

Example 5: (Scanned digits). Here we apply the re-
verse local rodeo on image data. The results are shown
in Figure 8. The algorithm was run on 2000 grayscale
images of handwritten 1s and 2s. Each scanned hand-
written digit has 256 = 16 × 16 pixels with some un-

known background noise. Each pixel is considered a
variable; this is therefore a 256-dimensional density
estimation problem. An evaluation point is shown in
the upper left subplot of Figure 8; the bandwidths out-
put by the reverse rodeo algorithm are shown in the
upper right subplot. The estimated bandwidth plots
in different rodeo steps (10, 20, 40, 60, and 100) are
shown in the lower series of plots—smaller bandwidths
have darker colors. The pixels with larger bandwidth
are more informative than those with smaller band-
widths. This is a good example to illustrate the use-
fulness of the reverse rodeo. For the image data, many
background pixels have a marginal density close to a
point mass. This requires a small bandwidth since
the marginal density is highly peaked. The reverse
rodeo starts from a small bandwidth, which is more
efficient than the original rodeo and is more stable nu-
merically. Figure 8 shows the evolution of the band-
widths, which can be viewed as a dynamic feature se-
lection process—-the earlier a dimension’s bandwidth
increases, the more informative it is, and the greater
variation there is in the local density. The reverse
rodeo is quite efficient for this extremely high dimen-
sional problem. It is interesting to note how the early
stages of the rodeo reveal that some of the 2s in the
data have looped bottoms, while others have straight
bottoms; the evaluation point does not have such a
loop.

In addition to these examples, we also conducted ex-
periments using the Gaussian density as the baseline
distribution, the results are similar to the above. De-
tails will be available in the long version of the paper.

6 Asymptotic Properties

We conclude with a brief discussion of the asymp-
totic properties of the density rodeo, assuming that
the baseline density b(x) is a very smooth function. At
a high level, our theoretical analysis shows that, with
probability approaching one with sample size, when
f(x) = g(xR) b(x), the bandwidths for the variables
appearing in the nonparametric factor g have band-
widths that shrink, while the bandwidths for the re-
maining variables remain large. Note that, intuitively,
the algorithm eventually halts before the bandwidths
become too small, since the variance of the derivatives
increases as the bandwidths shrink; thus, all deriva-
tives are eventually below threshold. In fact, we are
able to show that the variables in R have bandwidths
that shrink all the way down to size hj ≈ n−1/(4+|R|).
Together with asymptotic expansions of the bias and
variance of the kernel or local linear estimators, this
implies that the risk of the density rodeo estimator is
of order ÕP (n−4/(4+|R|)). Thus, the rate of conver-
gence is as if we were carrying out density estimation



in |R| dimensions.

In a bit more detail, we assume that the underlying
density function f has continuous second order deriva-
tives in a neighborhood of x. For convenience of nota-
tion, the dimensions are numbered such that the rel-
evant variables xj in R correspond to 1 ≤ j ≤ r and
the irrelevant variables xj in the complement Rc cor-
respond to r + 1 ≤ j ≤ d. We make standard as-
sumptions on the kernel, and assume that d = O(1);
the remaining technical assumptions are omitted for
clarity and lack of space.

Theorem. The density rodeo algorithm outputs

bandwidths H∗ = diag(h∗
1, ..., h

∗
d) that satisfy

P
(
h∗

j = h
(0)
j for all j > r

)
−→ 1

Furthermore, for all j ≤ r

P
(
h

(0)
j (nbn)

−1
(4+r) ≤ h∗

j ≤ h
(0)
j (nan)

−1
(4+r)

)
→ 1

for certain constants an and bn that are logarithmic

in n. Moreover, the risk RH∗ of the rodeo density

estimator satisfies

RH∗ = E

∫ (
f̂H∗(x)− f(x)

)2

dx = ÕP

(
n−4/(4+r)

)

The proof is structured in a way that parallels the
proof of the analogous statement for the regression
rodeo [15]. However, there are modifications required;
for example, we use the Berry-Esseen method to ob-
tain uniform bounds on the deviation of the estimator
from its mean over a set of bandwidths. Details are
provided in the full version of the paper.
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