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Abstract

Promising approaches to structured learning

problems have recently been developed in the

maximum margin framework. Unfortunately, al-

gorithms that are computationally and mem-

ory efficient enough to solve large scale prob-

lems have lagged behind. We propose using

simple subgradient-based techniques for optimiz-

ing a regularized risk formulation of these prob-

lems in both online and batch settings, and ana-

lyze the theoretical convergence, generalization,

and robustness properties of the resulting tech-

niques. These algorithms are are simple, mem-

ory efficient, fast to converge, and have small re-

gret in the online setting. We also investigate a

novel convex regression formulation of structured

learning. Finally, we demonstrate the benefits

of the subgradient approach on three structured

prediction problems.

1 Introduction

Maximum margin structured learning (MMSL) has re-
cently gained prominence within the machine learning
community as an efficient approach to predicting mul-
tiple, interconstrained labels. However, most current
methods are limited in terms of scalability, conver-
gence, or memory requirements. The resulting convex
optimization problems are often prohibitively large for
generic quadratic programming solvers, and the Struc-
tured SMO method proposed in (Taskar et al., 2003) to
alleviate this difficulty is slow to converge in both the-
ory and practice. Dual exponentiated gradient tech-
niques suffer from sublinear convergence as well as
the often large memory requirements of dual formu-
lations. Recently, (Taskar et al., 2006) have investi-
gated saddle-point methods for optimization and have
succeeded in efficiently solving several problems that
would have otherwise had intractable memory require-
ments. These methods are promising, but are limited

to the (important) special case where the structured
prediction can be cast as a linear program.

Extending work initially proposed in (Ratliff et al.,
2006b) for solving problems in imitation learning, we
develop an alternative gradient based approach to
structured learning using a regularized risk formula-
tion of MMSL derived by placing the constraints into
the objective to create a convex function in w. This
objective is then optimized by a direct generaliza-
tion of gradient descent, popular in convex optimiza-
tion, called the subgradient method (Shor, 1985). The
abundance of literature on subgradient methods makes
this algorithm a decidedly convenient choice. In this
case, it is well known that the subgradient method
is guaranteed linear convergence when the stepsize is
chosen to be constant. Furthermore, this algorithm is
the Greedy Projection algorithm of (Zinkevich, 2003)
in the online setting. Using tools developed in (Hazan
et al., 2006), we can show that the risk of this on-
line algorithm with respect to the prediction loss grows
only sublinearly in time. Perhaps more importantly,
the implementation of this algorithm is simple and has
intuitive appeal since an integral part of the computa-
tion comes from running the inference algorithm being
trained in the inner loop.

Our work connects two previously distinct threads of
research in structured prediction. We show that the
gradient descent approach to learning graph trans-
former backpropagation networks pioneered in (Le-
Cun et al., 1998) may be straightforwardly extended
to solve the novel, margin-scaling structured classifi-
cation approach developed by (Taskar et al., 2006).1

This yields perhaps the simplest, most computation-
ally efficient algorithms for solving structured maxi-
mum margin problems. The application of subgradient

1Recent other work has attempted to make similar con-
nections including suggesting related loss functions (LeCun
et al., 2007) that are not equivalent to the structured max-
imum margin criteria. Section 7 suggests these methods
have poorer performance both empirically and theoreti-
cally.



descent to the structured margin loss functions brings
benefits concomitant with convexity: efficient global
optimization, small online regret, and new bounds on
generalization error for these algorithms. We intro-
duce a new formulation of structured regression that
generalizes support vector regression, and is to our
knowledge the only convex formulation in the liter-
ature. Further, we study the robustness of these al-
gorithms to approximate settings, namely, when infer-
ence is only approximate or subgradients cannot be
computed exactly. Finally, we consider application of
our techniques to two previously studied classification
problems as well as a novel regression problem.

2 Maximum margin structured
classification

We present a brief review of maximum margin struc-
tured classification in terms of convex programming.
In this setting, we attempt to predict a structured ob-
ject y ∈ Y(x) (e.g. a parse tree, label sequence, trajec-
tory for a robot ) from a given input x ∈ X . For our
purposes we assume that the inference problem can
be described in terms of a computationally tractable
max over a score function sx : Y(x) → R such that
y∗ = arg maxy∈Y(x) sx(y) and take as our hypothesis
class functions of the form

h(x;w) = arg max
y∈Y(x)

wT f(x, y) (1)

This class is parameterized by w in a convex param-
eter space W, and f(x, y) are vector valued feature
functions. Given data D = {(xi, yi)}ni=1 we abbreviate
f(xi, y) as fi(y) and Y(xi) as Yi.

The margin is chosen to scale with the loss of choosing
class y over the desired yi. We denote this prediction
loss function by L(yi, y) = Li(y), and assume that
Li(y) > 0 for all y ∈ Yi\yi, and Li(yi) = 0. In learn-
ing, our goal is to find a score function that scores yi

higher than all other y ∈ Yi\yi by this margin. For-
mally, this gives us the following constraint:2

∀i, y ∈ Yi, wT fi(yi) ≥ wT fi(y) + Li(y). (2)

Maximizing the left hand side over all y ∈ Yi, and
adding slack variables, we can express this mathemat-
ically as following convex program:

min
w,ζi

λ

2
‖w‖2 +

1
n

∑
i

ζi (3)

s.t. ∀i wT fi(yi) + ζi ≥ max
y∈Yi

(
wT fi(y) + Li(y)

)
2(Tsochantaridis et al., 2005) describes an alternative

formulation for MMSC based around scaling the slack vari-
ables by the loss rather than scaling the margin. Subgra-
dient methods are applicable to this formulation as well,
though we don’t formally discuss this case.

where λ ≥ 0 is a hyperparameter that trades off con-
straint violations for margin maximization (i.e. fit for
simplicity).

Finally, we note that the constraints is this convex
program are tight (equality holds at the optimum) so
we can place them directly into the objective. Doing
so we arrive at the following regularized risk function:3

c(w) =
1
n

n∑
i=1

ri(w) +
λ

2
‖w‖2

where ri(w) = max
y∈Yi

(wT fi(y) + Li(y))− wT fi(yi)

3 Maximum margin structured
regression

Rather than focusing on predicting an object correctly,
maximum margin structured regression (MMSR) is
designed to learn a structured predictor whose score
matches supervised values. For example, this form
of structured prediction was motivated by the prob-
lem of learning informed heuristic functions for high-
dimensional planners. Optimal high-dimensional plan-
ners often produce very desirable plans, but are too
slow to use in practice at face value. By project-
ing those plans onto a low-dimensional planning space
and training a regressor to match the value of those
plans, an extremely accurate heuristic function can be
learned carefully direct the high-dimensional planner
toward the goal. Section 7 describes this problem in
more detail.

In this setting, we work within the same structured
setting with a set of classes Y(x) for each input
x ∈ X . But this time we are given a data set
D = {(xi, yi, vi)}ni=1 where vi ∈ R and we wish to
learn a function s : X → R given by

s(x;w) = max
y∈Y(x)

wT f(x, y). (4)

Following the common SVM regression approach, we
write down the ε-insensitive criteria ∀i, vi − ε− ≤
maxy∈Yi w

T fi(y) ≤ vi + ε+ as the following con-
straints:

∀i, vi − ε− ≤ max
y∈Yi

wT fi(y) (5)

∀i, vi + ε+ ≥ max
y∈Yi

wT fi(y). (6)

The non-convexity of constraint 5 can be circumvented
by utilizing the structured label information provided

3More generally, we can scale the risk by a data depen-
dent constant and raise it to a power q ≥ 1 as is done
in (Ratliff et al., 2006b). The resulting objective is still
convex and a chain rule for subgradients allows for the cal-
culation of its subgradient. The primary components of
this theory are captured most simply with q = 1, however,
so we have opted to leave it out.



in the data set. Replacing the max score with the
score of the supervised label in that constraint (i.e.
replacing maxy∈Yi

wT fi(y) with wT fi(yi)) results in a
convex constraint. Moreover, satisfying this new con-
straint implicitly enforces the original constraint since
the max score upper bounds the score of the super-
vised label. Adding slacks {αi, βi}ni=1 as we did for
MMSC, and constraining αi ≥ 0 and βi ≥ 0, we arrive
at the following convex program:

min
w,αi,βi

1
n

n∑
i=1

(αi + βi) +
λ

2
‖w‖2 (7)

s.t. ∀i, vi ≥ max
y∈Yi

wT fi(y)− αi − ε+ (8)

∀i, vi ≤ wT fi(yi) + βi + ε− (9)
∀i, αi ≥ 0, βi ≥ 0 (10)

If we rearrange inequalities (8) and (9) so that αi and
βi are on the left, and take the max of the resulting
right hand sides with 0, the inequalities 10 become
implicit and the final inequality constraints are tight.
This reduces the constraints to

∀i, αi ≥ max{0, max
y∈Yi

wT fi(y)− vi − ε+} (11)

∀i, βi ≥ max{0, vi − wT fi(yi)− ε−} (12)

Placing these constraints into the objective gives us
the following convex regularized risk function:

R(w) =
1
n

n∑
i=1

(ψi(w) + φi(w)) +
λ

2
‖w‖2 (13)

where ψi(w) = max{0, maxy∈Yi
wT fi(y) − vi − ε+}

and φi(w) = max{0, vi − wT fi(yi)− ε−}.

4 Optimization via the subgradient
method

In Section 2 and 3 we derived convex regularized risk
functions for solving structured prediction problems.
Learning algorithms can be derived using to standard
tools from convex optimization. Probably the most
widely used optimization algorithm from this area is
the subgradient method. As a direct generalization
of gradient descent to nondifferentiable convex objec-
tive functions, this method iteratively computes and
steps in the negative direction of a gradient-like vector
known as a subgradient. Additionally, a simple exten-
sion of this iterative algorithm gives way to straight-
forward online variant within the framework of online
convex programming (Zinkevich, 2003). In this sec-
tion, we define what we mean by a subgradient, present
some tools for computing them in the case of MMSC
and MMSR, and present the resulting algorithm.

Algorithm 1 MMSC subgradient calculation

1: procedure SubgradMMSC( (xi, yi, vi), Li(y),
fi : X → R

d, w ∈ W )
2: y∗ = arg maxy∈Y w

T fi(y) + Li(y)
3: g ← g + fi(y∗)− fi(yi)
4: return g
5: end procedure

Algorithm 2 MMSR subgradient calculation

1: procedure SubgradMMSR( (xi, yi, vi), fi :
X → R

d, w ∈ W )
2: y∗ = arg maxy∈Y w

T fi(y)
3: if wT fi(y∗) > vi then
4: g ← g − f(y∗)
5: end if
6: if wT fi(yi) < vi then
7: g ← g + fi(yi)
8: end if
9: return g

10: end procedure

We define a subgradient using a tangent-like lower-
bound property of the function at the point in ques-
tion. This can be written formally as follows:

Definition 4.1: Subgradient. Let h : W → R

be a convex function over W ⊂ Rd. A subgradient at
w ∈ W is a vector g ∈ Rd for which ∀w′ ∈ W, h(w′) ≥
h(w) + gT (w′ − w).

The set of subgradients at w is called a subdifferential
and is denoted by ∂h(w). A subdifferentiable func-
tion is a function for which we can efficiently compute
a subgradient at every point in W. The gradient is
the unique subgradient at any point of differentiability,
while there exists a continuum of subgradient vectors
at points of nondifferentiability.

Algorithms 1 and 2 demonstrate how to calculate the
exact subgradients for a single term of the MMSC and
MMSR regularized risk functions, respectively. Fol-
lowing the negative of these subgradients has intuitive
appeal; the algorithm decreases the score if it is too
high and increases the score if it is too low. The the-
oretical analysis and experimental results that follow
show that even these simple, intuitively appealing, al-
gorithms perform well for structured learning. In some
cases, their performance is currently unsurpassed.

While analogous to gradient descent for differentiable
functions, there is one key difference. Applying line
search algorithms to nondifferentiable objective func-
tion optimization may cause Algorithm 3 to converge
to a suboptimal fixed point. Consequently, the stepsize
sequence is assumed to be chosen in advance. Com-



Algorithm 3 Subgradient algorithm

1: procedure Subgrad( h =
∑m

i=1 hi, w0 ∈ W )
2: wα ← 0, αs ← 0
3: for t = 1, . . . , T − 1 do
4: Compute gt ← ∇h(wt)
5: Update wt+1 ← PW [wt − αtgt]
6: end for
7: return arg mint h(wt)
8: end procedure

mon sequences include { c
t}
∞
t=1 and { c√

t
}∞t=1 for c > 0.

In Algorithm 3, {αt}∞t=1 denotes a predefined stepsize
sequence. A given step might land outside the feasi-
ble set W, so after each step, the resulting point is
projected back onto W using a projection operator
PW : Rd →W. 4

5 Theoretical results

Framing these structured learning problems as con-
vex regularized risk functions and optimizing them via
variants of the subgradient method allows for straight-
forward analysis of the optimization and learning con-
vergence in the batch, online, and approximate set-
tings. Here we consider the case in which we can com-
pute the subgradients exactly. Approximate settings
are analyzed in Section 6. A number of proofs have
been omitted due to their length; they can be found
in the extended version of this paper (Ratliff et al.,
2006a)

5.1 Convergence rate of batch optimization

To bound the convergence rate of the subgradient
method in the batch setting we adapt some results
introduced by (Nedic & Bertsekas, 2000) who ana-
lyze incremental subgradient algorithms. The theorem
shows that we attain linear convergence to a small re-
gion of the minimum using a constant stepsize. This
result require a strong convexity assumption to hold
for the objective function. Given W ⊆ R

d, a func-
tion f : W → R is µ-strongly convex if there exists
g :W → R

d such that for all w,w′ ∈ W:

f(w′) ≥ f(w) + gT
w(w′ − w) + µ‖w′ − w‖2. (14)

In our case, both the MMSC and MMSR objective
functions are are λ

2 -strongly convex because of their
regularization term.

Theorem 5.1: Linear convergence of constant
stepsize sequence. Let the stepsize sequence {αt} of
Algorithm (3) be chosen as αt = α ≤ 1

λ . Furthermore,

4This projection operator need not be exact. See
(Ratliff et al., 2006b) for details.

assume that for a particular region of radius R around
the minimum, ∀w, g ∈ ∂c(w), ‖g‖ ≤ C. Then the
algorithm converges at a linear rate to a region of the
minimum w∗ = arg minw∈W c(w) bounded by ‖wmin −
w∗‖ ≤

√
αC2

λ ≤ C
λ .

5.2 Regret bound in the online setting

In this section, we analyze the online setting of MMSC.
Following online convex programming framework of
(Zinkevich, 2003), our sequence of convex objective
functions can be written as follows: ct(w) = λ

2 ‖w‖
2 +

maxy∈Yt(w
T ft(y)+Lt(y))−wT ft(yt) = λ

2 ‖w‖
2+rt(w).

which we evaluate given yt, Yt, and ft(·). Note that
these are λ

2 -strongly convex.

(Hazan et al., 2006) have shown that with this learning
rate, our online optimization problem has logarithmic
regret with respect to the objective function. However,
the loss we truly care about on round t is the prediction
loss, Lt(y∗t ), where y∗t is the prediction made during
this round. The following may be derived using tools
from (Hazan et al., 2006):

Theorem 5.2: Sublinear regret for subgradient
MMSC. Assume that the features in each state are
bounded in norm by 1, then:

T∑
t=1

Lt(y∗t ) ≤
T∑

t=1

rt(w∗)+λT‖w∗‖2+
1
λ

(1+lnT ) (15)

Choosing λ =
√

1+ln T

‖w∗‖
√

T
, then:

T∑
t=1

Lt(y∗t ) ≤
T∑

t=1

rt(w∗) + ‖w∗‖
√
T (1 + lnT ) (16)

Thus, if we know our horizon T and the achievable
margin, our loss grows only sublinearly with time.

5.3 Generalization guarantees on
out-of-sample examples for MMSC

Our online algorithm also inherits interesting general-
ization guarantees when applied in the batch setting.
Given independent, identically distributed data, the
expected loss of our algorithm can be bounded, with
probability greater than or equal to 1−δ, by the errors
it makes at each step of the incremental subgradient
method using the techniques of (Cesa-Bianchi et al.,
2004):5

E[LT+1(w̄)] ≤ 1
T

T∑
t=1

rt(wt) +

√
2
T

log
(

1
δ

)
(17)

5To achieve this result we must actually use the average
weight vector w̄ computed during learning, not merely the
last one.



This bound is similar in form to previous generaliza-
tion bounds given using covering number techniques
(Taskar et al., 2003). Importantly, though, this ap-
proach removes the dependence entirely on the num-
ber of bits b being predicted in structured learning;
most existing techniques introduce a log b factor for
the number of predicted bits. Similar results hold for
our regression algorithm. A similarly tight bound does
not hold for the loss functions considered in (LeCun
et al., 2007).

6 Robustness to approximate settings

This section derives two robustness results. In the first
subsection, we consider the case in which inference is
only approximate, and in the second subsection we an-
alyze the case in which we can only compute approxi-
mate subgradients of the structured margin objective.
Unfortunately, we find that the approximate subgra-
dient resulting from approximate inference is not that
which is needed in the latter theoretical analysis, but
nevertheless these results illustrate a general robust-
ness in our algorithm.

6.1 Using approximate inference

Following (Shmoys & Swamy, 2004), we define a γ-
subgradient similar to the way an exact subgradient is
defined in Definition 4.1, but we replace the inequality
with ∀w′ ∈ W, h(w′) ≥ h(w)+gT (w′−w)−γh(w). In
other words, we allow the lower bound to be violated
slightly by an amount that scales with the approxima-
tion constant γ and objective value h(w) at the point
in question.

Additionally, we define an approximate inference op-
erator η-max as follows:

Definition 6.1 : η-max. We call an algorithm
an η-approximate max operator, denoted maxη, if
for any collection {sy | y ∈ Y}, we are guaranteed
maxη

y∈Y sy ≥ ηmaxy∈Y sy. η is known as the compet-
itive ratio of the approximate max.

It is well known that if each sy is a convex function over
W, then h(w) = maxy∈Y sy(w) is a convex function
and ∇sy∗(w) is a subgradient of that function for any
y∗ = arg maxy∈Y sy(w). We prove here a generalized
theorem of this sort in terms of an approximate max
operator.

Theorem 6.2: η-max gives (1− η)-subgradient.
Define h = maxy∈Y sy(w) and let g = ∇sy∗η (w)
where y∗η = arg maxη

y∈Y wy(w). Then g is a (1 − η)-
subgradient per Definition 4.1.

Proof. Since g is a subgradient of the score func-
tion sy∗η (w), we have gT (w′−w) ≤ sy∗η (w′)− sy∗η (w) ≤
h(w′) − ηh(w), where the final inequality comes from

the optimality of h and the definition of η-max. Rear-
ranging, we get
h(w′)− h(w) ≥ gT (w′ − w)− (1− η)h(w). 2

6.2 Optimizing with approximate
subgradients

In this section, we can bound the regret of following
approximate subgradients rather than exact subgradi-
ents within the online setting defined in Section 5.2.
Borrowing notation from that Section and following
arguments similar to those that lead to Theorem 5.2,
we can derive the following

T∑
t=1

Lt(y∗t ) ≤
T∑

t=1

ct(wt)

≤
T∑

t=1

rt(w∗) + ‖w∗‖
√
T (1 + lnT ) + γ

T∑
t=1

ct(wt)

Another, potentially more insightful, way to write this
is in terms of the average regret. In this case, if we
denote S(T ) = ‖w∗‖

√
T (1 + lnT ) (note that this is a

sublinear function), we find

1
T

T∑
t=1

Lt(y∗t ) ≤ 1
1− γ

(
1
T

T∑
t=1

rt(w∗) +
S(T )
T

)
(18)

−→
T→∞

1
1− γ

R, (19)

where R = limT=∞
1
T

∑T
t=1 rt(w

∗) is the asymptotic
optimal average risk. Equation 19 says that in the
limit, we have paid on average only a factor 1

1−γ more
regret each time step than if we had been able to com-
pute and follow exact subgradients.

7 Experimental results

We present experimental results on two previously
studied structured classification problems: optical
character recognition (Taskar et al., 2003), and ladar
classification (Anguelov et al., 2005). Additionally, we
present results on a new problem for maximum mar-
gin structured regression: value function approxima-
tion. We compare the latter to a method demonstrated
(Ratliff et al., 2006c).

7.1 Optical character recognition

We implemented the incremental subgradient method6

for the sequence labeling problem originally explored
by (Taskar et al., 2003) who used the Structured SMO

6Similar to the online method, this method updates the
weights with each term’s subgradient contribution rather
than combining them into a single step.



Figure 1: These plots show a comparison between the structured margin (green), perceptron (blue), and unstructured

margin (red) algorithms using 10 fold cross-validation iterations of 600 training examples and 5500 test examples. The

figure on the left displays error in terms of hamming loss, and the figure on the right displays word classification error.

Upper lines of a given color represent test error and lower lines represent training error. See text for details.

algorithm.7 Running our algorithm with 600 training
examples and 5500 test examples using 10 fold cross
validation, as was done in (Taskar et al., 2003), we
attained an average prediction error of 0.20 using a
linear kernel. This result is statistically equivalent to
the previously published result; however, the entire 10
fold cross validation run completed within 17 seconds.
Furthermore, when running the experiment using the
entire data set partitioned into 10 folds of 5500 training
and 600 test examples each, we achieved a significantly
lower average error of 0.13, again using the linear ker-
nel.

We additionally compared our algorithm to two previ-
ously proposed algorithms: the perceptron algorithm,
and the unstructured margin (LeCun et al., 2007).8

We ran each algorithm using 10 fold cross validation
with the partitioning of 600 training examples and
5500 test examples. Figure 1 plots both the train-
ing error (lower lines) and the test error (upper lines)
for each in terms of both hamming loss (left) and word
classification (right). The structured margin algorithm
(our algorithm), displayed in green, generalizes no-
ticeably better than the other two algorithms. The
perceptron algorithm (blue) overfits very quickly on
this problem, and the unstructured margin algorithm
(red) falls somewhat between the other two in terms
of performance. In all cases, we used a stepsize rule
of αt = 1

2
√

t
and set the regularization constant to

λ = 1
200N where N is the number of training exam-

ples.

7This data can be found at http://www.cs.berkeley.
edu/~taskar/ocr/

8The perceptron risk is given by ri(w) =
maxy∈Yi wT fi(y) − wT fi(yi); The unstructured margin
risk is given by ri(w) = max{0, 1 + maxy∈Yi\yi

wT fi(y) −
wT fi(yi)}.

7.2 Ladar scan classification

We next consider application of subgradient tech-
niques to a problem of classifying ladar point clouds
captured by a mobile robot. Full details of the training
data can be found in (Anguelov et al., 2005). Briefly,
a maximum margin structured classification problem
is set up to classify each point in a point cloud of laser
range data into one of four classes: ground, shrubbery,
trees, and building. One-vs-all classification of ground
based on a height threshold was reportedly simple, ef-
fectively reducing the problem to a three class classi-
fication problem (per ladar point).

To capture spatial correlation between classification
labels of the ladar points, an associative conditional
Markov random field between nearby points was con-
structed throughout the point cloud. Labels for the
point clouds were determined by the joint maximum
probability labeling of the nodes in the Markov net-
work. (Anguelov et al., 2005) built the maximum mar-
gin structured classification problem as a quadratic
program (QP) and solved it using CPLEX, a well
known commercial solver. Node potentials were log-
linear in 90 features each derived from the original
ladar data (e.g. spin images features, distance from
ground) and edge potentials were constant for each
class. See (Anguelov et al., 2005) for more additional
information on the features.

Limited by CPLEX’s fairly intensive memory require-
ments, the training set consisted of only approximately
30 thousand of the original 20 million points in the
data set. We note that the subgradient methods we
here have only linear memory requirements in the
number of training points.

Moreover, the quadratic programming problem used
for training was derived as a relaxation to the



Figure 2: Left: Pictorial representation of ladar classification results on a test region. Classes are denoted as red:

building, green: tree, and blue: shrubbery. Right: Ladar scan classification results. Subgradient method (blue) converges

off the edge of the graph, but within the same amount of time as it took to obtain the best QP result. The Newton Step

method converges significantly faster. See Section 7.2 for details.

intractable integer programming problem, but the
alpha-beta swap/expansion algorithm (Szeliski et al.,
2006) was employed for approximate inference at test
time. While both of these algorithms admit a con-
stant factor approximation, they qualitatively differ
in practice. The subgradient method has the ad-
ditional appeal of relying solely on the alpha-beta
swap/expansion algorithm (Szeliski et al., 2006), it-
eratively optimizing it to perform well.

We ran the subgradient method and a modified ap-
proximate Newton step method9 to optimize this prob-
lem, the results of which are shown in Figure 2. We
preprocessed the node features using a whitening op-
eration to remove linear dependencies and poor condi-
tioning of the features. Whitening intuitively amounts
to scaling the principle directions of variance of the
feature vectors inversely proportional to the standard
deviation along those directions.

The black horizontal line across Figure 2 denotes the
minimum objective value attained by CPLEX on this
problem, and the blue and green plots, respectively,
show the objective values per iteration of the subgra-
dient method and the Newton step method. The New-
ton step objective progression drops below the smallest
CPLEX value within 550 iteration, which is equiva-
lent to approximately 15 minutes of CPU time. This
computation time is primarily dominated by executing
of the alpha-beta expansion algorithm (Szeliski et al.,
2006). While the first-order subgradient method lags
behind the Newton step counterpart, it is important to

9This more complex variant works better in practice
for certain problems and is an extension of Newton type
methods to nondifferentiable problems where the Hessian
might not exist. See (Hazan et al., 2006) for details and
analysis of this method. Briefly, under the Newton step
method, the update rule becomes wt+1 ← wt − αt(Ht +
εI)−1gt, where gt is the subgradient at time t and Ht is
updated as Ht+1 ← t

t+1
Ht + 1

t+1
gtg

T
t .

note that it also does well, surpassing the CPLEX re-
sult by iteration 1950. This amounts to approximately
65 minutes of computation time, the same amount of
time as was reported in (Anguelov et al., 2005) for
CPLEX training. Importantly, however, both of these
subgradient-based algorithms scale to data set sizes
significantly greater than those reported here, which
neared the upper bound of what CPLEX could orig-
inally handle. Indeed, they are limited solely by the
computational performance of the inference algorithm.

7.3 Value function approximation

Maximum margin structured regression is well suited
for learning a value function approximator. Value
function approximators attempt to estimate the cost-
to-go of running a policy from any state. It can be
very difficult to design features (especially to general-
ize across different goals and problems) that can cap-
ture the cost-to-go. Even in problems with higher di-
mensional state-spaces it is often the case that a sim-
ple, lower dimensional state-space can explain much
of the value for a given state. For instance, in mobile
robot navigation, much of the cost-to-go is captured by
considering a simple two-dimensional holonomic plan-
ning problem.

We consider the heuristic value function learning prob-
lem studied in Section 4.3 of (Ratliff et al., 2006c). At
a high level, a value function approximator is learned
to approximate the value of a policy acting within a
space of footsteps on a quadrupedal robot. An optimal
policy is available through the path returned by foot-
step planner, and a set of examples can be collected
accordingly. Each example consists of the navigational
trajectory induced by the optimal footstep plan be-
tween two points in the world and the corresponding
cost of that plan. The objective is to learn a naviga-
tional cost map using this data for which the cost-to-go



Figure 3: MMSR Value function approximation results.

See text for details.

of the optimal paths approximates these values.

The method studied in (Ratliff et al., 2006c), is built
atop a maximum margin structured classification al-
gorithm applied to learning MDPs, known as Maxi-
mum Margin Planning (MMP). As such, the primary
learning algorithm cares more about getting the shape
of the path correct than getting the value correct.
The resulting path costs are consistent only relative
to the costs of other paths (e.g. a scaled cost map
produces the same minimum cost paths as the orig-
inal cost map). For that reason, once the cost map
is learned, the best scaling of that map is learned via
simple linear regression. We refer to this method as
regressed MMP.

Maximum margin structured regression provides a
more direct way to learn such a cost function. By con-
struction, MMSR utilizes the provided data to learn
precisely the cost map we desire: that for which the
minimum cost paths match the supervised values. Fig-
ure 3 demonstrates the performance improvement seen
over the previous suggested regressed MMP method
(blue). Within a relatively small number of iterations,
MMSR (green) surpasses the best rms error attained
by the more indirect method. Additionally, we exper-
imented with augmenting the objective function us-
ing a linear combination of “value features” (i.e. fea-
tures that are not plugged in as costs to the lower-
dimensional planner, but are instead fit directly to help
estimate the cost-to-go.) such as distance-to-goal to
improve the approximation. The result, shown in red,
shows a slight improvement over the basic method.
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