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Abstract

We develop stochastic variants of the well-
known BFGS quasi-Newton optimization
method, in both full and memory-limited
(LBFGS) forms, for online optimization of
convex functions. The resulting algorithm
performs comparably to a well-tuned natu-
ral gradient descent but is scalable to very
high-dimensional problems. On standard
benchmarks in natural language process-
ing, it asymptotically outperforms previous
stochastic gradient methods for parameter
estimation in conditional random fields. We
are working on analyzing the convergence of
online (L)BFGS, and extending it to non-
convex optimization problems.

1 INTRODUCTION

Machine learning poses data-driven optimization prob-
lems in which the objective function involves the sum-
mation of loss terms over a set of data to be modeled.
Classical optimization techniques must compute this
sum in its entirety for each evaluation of the objective,
respectively its gradient. As available data sets grow
ever larger, such “batch” optimizers therefore become
increasingly inefficient. They are also ill-suited for the
online (incremental) setting, where partial data must
be modeled as it arrives.

Stochastic (online) gradient-based methods, by con-
trast, work with gradient estimates obtained from
small subsamples (mini-batches) of training data. This
can greatly reduce computational requirements: on
large, redundant data sets, simple stochastic gradient
descent routinely outperforms sophisticated second-
order batch methods by orders of magnitude (e.g.
Vishwanathan et al., 2006), in spite of the slow con-
vergence of first-order gradient descent. Schraudolph

(1999, 2002) further accelerates stochastic gradient
descent through online adaptation of a gain vector.

Attempts to develop more advanced stochastic gradi-
ent methods are hampered by the fact that core tools
of conventional gradient-based optimization, such as
line searches and Krylov subspaces, are not amenable
to stochastic approximation (Schraudolph and Grae-
pel, 2003). Online implementations of conjugate gradi-
ent methods (Mgller, 1993; Schraudolph and Graepel,
2003) have therefore proven largely ineffective.

The most successful online second-order learning algo-
rithms to date perform either system identification by
global extended Kalman filtering (Puskorius and Feld-
kamp, 1991), or natural gradient descent (Amari et al.,
2000). Both work by incrementally maintaining an es-
timate of the covariance of the residuals (respectively
gradient), whose inverse is then used to scale the pa-
rameter update. While quite effective, these methods
do not model the curvature (Hessian) of the loss func-
tion, and require O(n?) space and time per iteration
to optimize a system with n parameters.

Here we overcome these limitations by system-
atically modifying the Broyden-Fletcher-Goldfarb-
Shanno (BFGS) quasi-Newton method, in both its
full and memory-limited (LBFGS) variants, so as to
make it amenable to stochastic approximation of gra-
dients. This results in a fast, scalable, stochastic quasi-
Newton method for online convex optimization that
outperforms previous approaches.

We first introduce a simple stochastic model, and con-
sider the performance of previous stochastic gradient
methods on it. In Section 3 we briefly review the BFGS
and LBFGS algorithms, and discuss the changes re-
quired to make them work online. Section 4 evaluates
the resulting algorithms against competing methods
on a non-realizable stochastic model, and on condi-
tional random field (CRF) parameter estimation for
natural language processing. Section 5 discusses our
results and ongoing work.



2 PRELIMINARIES

We set up a simple optimization problem to serve as a
model illustrating the performance of stochastic gra-
dient methods as they are subsequently introduced.

2.1 OBJECTIVE FUNCTION MODEL

We follow Schraudolph and Graepel (2003) in their
choice of a simple quadratic (albeit ill-conditioned and
semi-sparse) stochastic model problem.

2.1.1 Deterministic Quadratic

The n-dimensional quadratic provides us with the sim-
plest possible test setting that differentiates between
various gradient methods. In its deterministic form,
the objective function f : R™ — R is given by

fO)=30-6)"JI" (06", (1)

where 0* € R” is the optimal parameter, and J € R™*"
the Jacobian matrix, both of our choosing. By defi-
nition, the Hessian H=JJ " is constant and positive
semi-definite here; the gradient is V f(0) = H (0 —0*).

2.1.2 Stochastic Quadratic

A stochastic optimization problem analogous to the
above can be defined by the data-dependent objective

S

f(O,X): 20

0-09TIXXTTT(6-6%), (2
where X = [®1, &2, ... 2] is an n x b matrix collecting
a batch of b random input vectors to the system, each
drawn i.i.d. from a normal distribution: x; ~ N(0, I).
This means that E[X X 7] = b1, so that in expectation
this is identical to the deterministic formulation (1):

Ex[f(6,X)] =

% (0-0)TJEXXT]T(0-6%=f(0). (3)
The optimization problem is harder here since the ob-
jective can only be probed by supplying stochastic in-
puts to the system, giving rise to the noisy estimates
H=bv""JXX'J"and Vf(6,X) = H(0—6" of the
true Hessian and gradient, respectively. The degree
of stochasticity is determined by the batch size b; the
system becomes deterministic in the limit as b — oo.

2.1.3 Choice of Jacobian

For our experiments we choose the Jacobian J such
that the Hessian has a) eigenvalues of widely differing
magnitude (ill-conditioning), and b) eigenvectors of in-
termediate sparsity. We achieve this by imposing some

sparsity on the notoriously ill-conditioned Hilbert ma-
trix, defining

71 if imodj =0
Jij = or jmodi = 0, (4)
0 otherwise .

Like Schraudolph and Graepel (2003) we use uncon-
strained online minimization of (2), with J given by
(4) in n = 5 dimensions (condition number of the Hes-
sian: 4.9 - 10%), as our model problem for stochastic
gradient methods.

2.2 STOCHASTIC GRADIENT METHODS

We now briefly review three stochastic gradient opti-
mization algorithms, representative of the spectrum of
such methods developed to date, and illustrate their
performance on the model problem introduced above.

2.2.1 Stochastic Gradient Descent (SGD)

Simple stochastic gradient descent takes the form

011 =6, —n, V[0, X,), (5)

where 6, is the current parameter estimate, n; > 0 a
scalar gain, and X; the current batch of data. Robbins
and Monro (1951) have shown that (5) converges to
0* = arg ming f(0), provided that

Znt:oo and Znt2<oo. (6)
t t

A commonly used decay schedule for 7; that fulfills
these conditions is given by
Nt =

-
T+t

Mo » (7)

where 179, 7 > 0 are tuning parameters. We employ this
schedule in the experiments of Section 4; for our simple
quadratic model a constant gain proved sufficient.

SGD takes only O(n) space and time per iteration. Al-
though it can greatly outperform sophisticated batch
methods on large data sets, it suffers from slow con-
vergence on ill-conditioned problems, as can be seen
for our model problem in Figure 1.

2.2.2 Stochastic Meta-Descent (SMD)

Schraudolph (1999, 2002) accelerates SGD by giving
each system parameter its own gain:

0:11 =0, —1n: - V(0 Xy), (8)

where - denotes Hadamard (element-wise) multiplica-
tion. The gain vector 7; is adapted by a dual gradient
descent in the same objective, leading to the update

ne=m—1-max[5,1—u V6, X)) v], (9
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Figure 1: Average performance (with standard errors) of stochastic gradient methods on our model problem over
10 matched random replications. Left: number of data points needed to reach f(8) < 10715 up to a limit of 222
vs. batch size b. Right: deterministic loss f(0) vs. number of data points seen, at the optimal batch size for each
algorithm. All methods used 7, = b/(b+ 2) (tuned for best performance of SGD) except NG, which required (7)
with 779 = 1 and 7 = 100. BFGS parameters: A = 0,¢ = 0.1;m = 4 (o(LBFGS) resp. 10 (c(LBFGS’).

where 1 > 0 is a scalar tuning parameter, and the
auxiliary vector v is computed by the iterative update

Vip1 = Ay — g - [V (6, Xy) + AH vy, (10)

with 0 < A < 1 another scalar tuning parameter, and
H,; the instantaneous Hessian at time ¢t. Since H;wv,
can be computed very efficiently (Schraudolph, 2002),
SMD still takes only O(n) space and time per itera-
tion. It improves upon SGD by providing an adaptive
gain decay, and handling some (but not all) forms of
ill-conditioning. On our model problem, however, its
performance essentially equaled that of SGD.

2.2.3 Natural Gradient Descent (NG)

The natural gradient (NG) algorithm (Amari et al.,
2000) incorporates the Riemannian metric tensor
G; = Ex[Vf(0;,X;)Vf(0;,X;)T] into the stochas-
tic gradient update:

041 =0, —1n C;’;IVf(Ot, Xy), (11)

with gains 7, typically set by (7), and G, an estimate
of G updated via'

. t—1 -~ 1
Gy =——Gi+ EVf(et,Xth(Ot,Xt)T. (12)

The Sherman-Morrison formula can be employed to
directly update é; ! reducing the computational cost
of NG to O(n?) space and time per iteration— still
prohibitively expensive for large n. Where it is afford-
able, NG greatly benefits from the incorporation of
second-order information, as Figure 1 illustrates.

Note that the use of a running average here is specifi-
cally optimized for our quadratic model, where H = const.

3 THE (L)BFGS ALGORITHM

We review BFGS in both full and memory-limited
forms, and describe the changes needed for online use.

3.1 STANDARD BFGS METHOD

The BFGS algorithm (Nocedal and Wright, 1999) was
developed independently by Broyden, Fletcher, Gold-
farb, and Shanno. In the form we use here (Algo-
rithm 1), it incrementally updates an estimate B; of
the inverse Hessian of the objective function. The
rank-two update 3(h) minimizes a weighted Frobenius
norm |[Bit1 — Be|lw subject to the secant equation
sy = By 1y, where s; and y; denote the most recent
step along the optimization trajectory in parameter
and gradient space, respectively.

B; is then used to perform a quasi-Newton step
3(a), with gain 7; determined by a line search 3(b).
A line search obeying Wolfe conditions ensures that
(Vt) s/ y; > 0 and hence (Vt) B; = 0. By is initialized
to the identity but subsequently scaled by an estimate
of the largest eigenvalue 3(f) of the inverse Hessian.

BFGS requires the same O(n?) space and time per
iteration as NG but maintains a better model of loss
curvature, which may permit a stochastic version of
BFGS to converge faster than NG. However, extensive
modifications are required to get BFGS to work online.

3.2 ONLINE BFGS METHOD

Algorithm 2 shows our online BFGS (0BFGS) method,
with all modifications relative to standard BFGS (Al-
gorithm 1) underlined. The changes required to get
BFGS to work well with stochastic approximation fall



Algorithm 1: STANDARD BFGS METHOD

Algorithm 2: ONLINE BFGS METHOD

Given:
e objective f and its gradient V f := 6%]‘(0);
e initial parameter vector Og;
e line search linemin obeying Wolfe conditions;

e convergence tolerance € > 0;
1. t:=0;
2. BO = I;
3. while [|[Vf(6)| > ¢ :
(a) pr = =BV f(0y);

(b) N = linemin(fa 9t7pt);
(¢) 8¢ = mpy;
(d) Ory1 = 0; + 545
(e) ye =V [f(0i11) — Vf(6):
ST’!Jt
(f) ift=0: B;:= tTiI;
Y Yt
(8) o0 =(s{ys)™Y;
(h) By = (T—ois1y] ) Bo(I—0vyes/ )+ 0i5:87;
(i) t:=t+1;

4. return 6;.

into three groups which we shall elaborate on in turn:
making do without line search, modifying the update
of By, and taking consistent gradient measurements.

3.2.1 BFGS without Line Search

Line searches are highly problematic in a stochastic
setting, since the global validity of the criteria they
employ (such as the Wolfe conditions) cannot be es-
tablished from local subsamples of the problem.

Unlike conjugate gradient methods, however, BFGS
does not require an exact line search to correctly up-
date its curvature estimate: we can actually replace
the line search with a gain schedule such as (7) with
no undue effect, provided we can ensure B > 0 by
other means. For now we do this by restricting our
attention to convex optimization problems, for which
(Vt) s; y: > 0 holds (no negative eigenvalues of H).
Very small eigenvalues (s y; ~ 0) are dealt with by
modifying the BFGS update to estimate the inverse of
H + M\, where A > 0 is a model-trust region param-
eter. This is achieved by simply adding As; to y; in
step 3(e).

Finally, without line search we need to explicitly en-
sure that the first parameter update — before By has
been appropriately scaled in step 3(f) — does not cause

Given:

e stochastic approximation of convex objective f
and its gradient V f over data sequence Xj;

e initial parameter vector ;

e sequence of step sizes n; > 0;

e parameters 0 < c < 1,A > 0,¢ > 0;

1. t:=0;
2. By = ¢el;
3. while not converged:

a) pr = =BV [f(0:, Xy);
(no line search)

i3

)
(c) 8¢ = Pt
(d) Ory1 = 0; + 543
(€) Yo =V[(Orr1, Xi) — V[(0r, Xy) +Asi;
T
(f) ift=0: B, := LY.
Ye Yt
(8) o= (s/y)™ "
(h) Biy1= I—os1y) )Bi(I—o0iyi8] ) +%St3;r§
(i) t:=t+1;

4. return 6,.

any problems. This is done by multiplying By in step
2 with a very small € > 0, so that the first parameter
update is likewise small. The value of € is application-
dependent but non-critical; we typically use e = 10710,

3.2.2 Modified BFGS Update

We have found empirically that scaling down the last
term of the update 3(h) by a factor 0 < ¢ < 1 substan-
tially improves the performance of oBFGS for small
batch sizes. We compensate for the resulting scaling of
B, by dividing the step size 7; by ¢ in step 3(c). Scaling
strategies for B; are known from conventional BFGS
(Brodlie, 1977). We anticipate being able to determine
the optimal value for ¢ analytically; in the experiments
reported here we simply used ¢ = 0.1 throughout.

3.2.3 Consistent Gradient Measurements

We also need to account for the fact that in the
stochastic setting our gradient measurements are
noisy. This means that a simple convergence test like
IVf(8,)]| > € in Algorithm 1 must be replaced by
a more robust one, for instance checking whether the
stochastic gradient has remained below a given thresh-
old for the last k iterations.



Finally, and most importantly, care must be taken in
the computation of y; in step 3(e). A naive transla-
tion of the “difference of last two gradients” into the
stochastic setting would compute

V(Orr1, Xit1) — VI(0:, Xy), (13)

which would allow sampling noise to enter the BFGS
update. Figure 1 (“BFGS” curves) shows the dis-
astrous consequences: even in our simple quadratic
model this causes divergence for b < 103.

Instead we must compute the difference y; of gradi-
ents on the same data sample X; used to compute the
step s¢. Although this doubles the number of gradi-
ent calculations, the extra computation is well spent:
properly implemented, online BFGS (“oBFGS” in Fig-
ure 1) outperforms natural gradient for all batch sizes.

3.3 LIMITED-MEMORY BFGS

Limited-memory BFGS (LBFGS) is a variant of BEGS
designed for solving large-scale optimization problems
where the O(n?) cost of storing and updating B; would
be prohibitively expensive. In LBFGS the estimation
of the Hessian inverse is based on only the last m steps
in parameter and gradient space; the quasi-Newton di-
rection is obtained directly from these via a matrix-free
approach (Algorithm 3). A conventional implementa-
tion of LBFGS would thus omit steps 2 and 3(f)-3(h)
from Algorithm 1, maintain a ring buffer of the last
m vectors s and y, and replace step 3(a) with Algo-
rithm 3. This reduces computational cost to O(mn)
space and time per iteration.

It is straightforward to implement an LBFGS vari-
ant of our oBFGS algorithm: we simply modify Al-
gorithm 2 analogous to the above, and replace step 3
of the LBFGS direction update (Algorithm 3) by

ep; if t =0;
min(t,m) T
Pt = Pt Si—iYt—i . (14)
m Z Tii otherwise.
9 i=1 yt_zyt 7

This ensures that the first parameter update is small
(cf. step 2 of Algorithm 2), and improves online perfor-
mance by averaging away some of the sampling noise.

Figure 1 shows that for m = 4 our online LBFGS al-
gorithm (oLBFGS) performs well down to b ~ 100 but
degrades for smaller batch sizes. This is not surprising
considering that the curvature estimate is now based
on only 4 noisy measurements of the objective. Fortu-
nately the situation improves rapidly with increasing
buffer size: for m = 10 (oLBFGS’) performance is
close to that of full online BFGS for all batch sizes.?

2Note that for m > n LBFGS is computationally more

Algorithm 3: LBFGS DIRECTION UPDATE

Given:
e integers m > 0,t > 0;

e Vi=12 ... ,min(¢t,m):
vectors s;_; and y;_; from Algorithm 1;

e current gradient V f(6;) of objective f;
1. Dt = —Vf(@t),
2. fori:=1,2,... ,min(t,m) :

-
Si_;Dt

(a) @y = =——;

’ stTfiytfi

(b) Pt ‘= Pt — OYi—i;

3.ift>0 Pt = S;r-l-_lyt_l ts
Y 1Yt—1
4. for i := min(t,m),...,2,1
(a) B= LTLM ;
Yy i St—i

(b) Pt :=pi + (; — B)s¢—s;

5. return py.

4 EXPERIMENTS

Having established the utility of our online BFGS al-
gorithms on a simple quadratic stochastic model, we
now turn to more challenging and realistic— albeit
still convex — optimization problems.

4.1 NON-REALIZABLE QUADRATIC

Our quadratic objective (2) models realizable prob-
lems, i.e., those where the loss at the optimum reaches

zero for all inputs:
(VX) f(6",X) =0 (15)

Of greater practical relevance are non-realizable prob-
lems, in which the optimum carries a non-zero loss
reflecting the best compromise between conflicting de-
mands placed on the model by the data. Following
Schraudolph and Graepel (2003) we model this by in-
corpating, along with each data sample X;, an i.i.d.
Gaussian random vector v; with zero mean and vari-

ance E¢[vyv,] | = 021 into our objective:
1
f(0,Xy) 2% e/(0)"e,(0), where (16)
e(0) = X,/ TT(O-6%) + v;.

expensive than full BFGS. For higher-dimensional prob-
lems, however, the beneficial effect of increasing m will be
realized well before approaching this anomalous regime.
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Figure 2: Average performance (with standard errors) of stochastic gradient methods on the non-realizable
quadratic (16) with o = 1072 over 10 matched random replications. Left: number of data points needed to
converge to f(6)< 107> up to a limit of 222 vs. batch size b. Right: deterministic loss f(6) vs. number of data
points seen, at the optimal batch size for each algorithm. All methods used (7) with ny and 7 tuned for fastest
convergence at small batch sizes: 79 = b/(b+ 2),7 = 10* (SGD); o = 0.1,7 = 50 (NG); no = b/(b+2),7 = 20
(oBFGS); 79 = 0.1-b/(b+2),7 =2-10* (0LBFGS); 19 = b/(b+ 2),7 = 10 (o0LBFGS’); A, ¢, m as in Figure 1.

This makes the expected loss at the optimum 6* be

E[f(6% X,)] = 2ib Ev/vi] = $0° (17)
Moreover, the presence of v; makes it impossible to
determine 6% precisely from a finite data sample: the
smaller the batch size b, the greater (for a given o)
the uncertainty in 6* Annealing the gains 7; as in
(7) addresses this by effectively averaging the gradient
over progressively larger stretches of data.

Figure 2 shows our experimental results for optimiz-
ing this non-realizable objective. Because the noise
term vy inflates the metric tensor G, natural gradient
overestimates the curvature, and ends up performing
no better than SGD here. BFGS, by contrast, bases its
curvature estimate on differences of gradient measure-
ments; as long as these are consistent (Section 3.2.3)
any data-dependent noise or bias terms will thus be
cancelled out.

Consequently, oBFGS greatly outperforms both SGD
and NG here, converging about 20 times faster at the
convenient mini-batch size of b = 4. The performance
of oLBFGS with small buffer (m = 4) degrades for
batch sizes below b = 64; a more generous buffer (m =
10), however, restores it to the level of full o0 BFGS.

4.2 CONDITIONAL RANDOM FIELDS

Conditional Random Fields (CRFs) have recently
gained popularity in the machine learning commu-
nity (Lafferty et al., 2001; Sha and Pereira, 2003;
Kumar and Hebert, 2004). Conventional algorithms
for batch CRF training — that is, penalized maximum

likelihood parameter estimation —include generalized
iterative scaling (GIS), conjugate gradient (CG), and
limited-memory BFGS (Sha and Pereira, 2003). Vish-
wanathan et al. (2006) have recently shown that first-
order stochastic gradient methods can greatly outper-
form the conventional batch algorithms.

4.2.1 Experimental Tasks

We replicate two experiments by Vishwanathan et al.
(2006) which apply 1-D chain CRFs to problems in
natural language processing, using their software — an
enhanced version of Taku Kudo’s CRF++ code® —and
following their choice of CRF features, tuning param-
eter values, and optimization methods.

Due to the high-dimensional nature of these CRFs
(over 10° parameters), neither full BFGS nor natu-
ral gradient methods can be used here. Since the CRF
parameter estimation problem is convex, however, we
can apply our online LBFGS algorithm to it. To cope
with regions of low curvature, we employ a model-trust
region parameter A > 0. The specific tasks were:

CoNLL-2000 Base NP Chunking (Sang and Buch-
holz, 2000): Text chunking, an intermediate step to-
wards full parsing, divides a text into syntactically
correlated chunks of words. The training set consists
of 8936 sentences, each word annotated automatically
with part-of-speech (POS) tags. The task is to label
each word with a label indicating whether it lies out-
side, starts, or continues a chunk.

3Note that the line search used by CRF++ for LBFGS
does not guarantee a monotonic decrease in the objective.
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BioNLP /NLPBA-2004 Shared Task (Kim et al.,
2004): This problem involves biomedical named-entity
recognition on the GENIA corpus, aiming to identify
and classify molecular biology terms in 18546 sentences
of Medline abstracts.

Due to space constraints, we will present only the
CoNLL-2000 experiment below; our results on the
BioNLP/NLPBA-2004 task were analogous.

4.2.2 Results on CoNLL-2000 Task

Figure 3 shows that oLBFGS initially tracks the per-
formance of SGD but asymptotically achieves the low-
est loss of the stochastic methods. Eventually (and
not surprisingly) it is surpassed by the much slower
but noise-free batch LBFGS algorithm. Whether the
stochastic methods ultimately converge on the same
solution as batch LBFGS is not clear at this point.

Figure 4 (left) shows that the generalization perfor-
mance achieved by batch LBFGS after about 130
passes through the data—an F-score of 93.6% —is
reached by oLBFGS in about 30 passes, and by SMD in
just 7. An interesting observation here is that the algo-
rithms differ substantially in their generalisation abil-
ity at a given loss level (Figure 4, right). It has been
argued that stochastic approximation acts as a regu-
larizer (Neuneier and Zimmermann, 1998, p. 397); our
results illustrate how the utility of this effect depends
on the particular stochastic gradient method used.

5 DISCUSSION

We have developed stochastic variants of the BFGS
and LBFGS quasi-Newton methods, suitable for on-
line optimization of convex functions. Experiments

on realizable and non-realizable quadratic objectives
show that our methods can greatly outperform other
stochastic gradient algorithms, including a well-tuned
natural gradient method. Unlike natural gradient,
our oLBFGS algorithm scales well to very high-
dimensional problems, such as parameter estimation
for conditional random fields in natural language pro-
cessing. One limitation is that for very sparse data,
oLBFGS may require a substantial buffer size m to
produce a non-degenerate inverse curvature estimate.

We are now working to extend our approach to local
optimization of non-convex objectives as well. We can
already handle negative curvature by taking the abso-
lute value of p; for updating By in Algorithm 2. A gen-
eral method for nonlinear optimization, however, will
also require online adaptation of gain 7; and model-
trust region parameter \. We are looking into modify-
ing stochastic gain adaptation methods such as SMD
(Schraudolph, 1999, 2002) for this purpose.

We are also pursuing analytical proofs of conver-
gence for our algorithms. Although such proofs are
known for both first-order stochastic gradient and
batch BFGS methods, extending them to oBFGS
has proven challenging. Bottou and LeCun (2005)
give general convergence conditions for second-order
stochastic gradient methods; unfortunately they in-
clude that B, — H~! as t — oo, which does not hold
for our algorithms. We are developing an alternative
path to establish the convergence of oBFGS, based on
the work of Robbins and Siegmund (1971).

This analysis should also provide insight into the free
parameters (7, ¢, and \) of the algorithm. Although
online (L)BFGS does not require elaborate parameter
tuning, we expect further improvements from develop-
ing ways to automatically set and adapt them.



93.8 I 1
93.6 I
9345

~

%

93.2

-score

Qo930 4

— oLBFGS

92.8 [+
: — — LBFGS

92.6 [

n n PR | n ' J P |
10° 10! 102
Passes

— sGD
920 - - SMD \ 1
— oLBFGS ‘\
15 - - LBFGS ]
| " " N | AN
5.103 10* 2.-104

Loss

Figure 4: F-score on the CoNLL-2000 test set vs. number of passes through (left) resp. loss on (right) the training

set, for the same experiment as in Figure 3.

Acknowledgements

National ICT Australia is funded by the Australian
Government’s Department of Communications, Infor-
mation Technology and the Arts and the Australian
Research Council through Backing Australia’s Abil-
ity and the ICT Center of Excellence program. This
work is supported by the IST Program of the European
Community, under the Pascal Network of Excellence,
IST-2002-506778.

References

S.-i. Amari, H. Park, and K. Fukumizu. Adaptive method
of realizing natural gradient learning for multilayer per-
ceptrons. Neural Computation, 12(6):1399-1409, 2000.

L. Bottou and Y. LeCun. On-line learning for very large
datasets. Applied Stochastic Models in Business and In-
dustry, 21(2):137-151, 2005.

K. W. Brodlie. An assessment of two approaches to variable
metric methods. Mathematical Programming, 12:344—
355, 1977.

J.-D. Kim, T. Ohta, Y. Tsuruoka, Y. Tateisi, and N. Col-
lier. Introduction to the bio-entity recognition task at
JNLPBA. In Proc. Intl. Joint Workshop on Natural Lan-
guage Processing in Biomedicine and its Applications
(NLPBA), pages 70-75, Geneva, Switzerland, 2004.

S. Kumar and M. Hebert. Discriminative fields for model-
ing spatial dependencies in natural images. In S. Thrun,
L. Saul, and B. Scholkopf, editors, Advances in Neural
Information Processing Systems 16, 2004.

J. D. Lafferty, A. McCallum, and F. Pereira. Conditional
random fields: Probabilistic modeling for segmenting
and labeling sequence data. In Proc. Intl. Conf. Machine
Learning, volume 18, pages 282-289, San Francisco, CA,
2001. Morgan Kaufmann.

M. F. Mgller. A scaled conjugate gradient algorithm for
fast supervised learning. Neural Networks, 6(4):525-533,
1993.

R. Neuneier and H. G. Zimmermann. How to train neural
networks. In G. B. Orr and K.-R. Miiller, editors, Neural

Networks: Tricks of the Trade, volume 1524 of Lecture
Notes in Computer Science, chapter 17, pages 373-423.
Springer Verlag, Berlin, 1998.

J. Nocedal and S. J. Wright. Numerical Optimization.
Springer Series in Operations Research. Springer, 1999.

G. V. Puskorius and L. A. Feldkamp. Decoupled extended
Kalman filter training of feedforward layered networks.
In Proc. Intl. Joint Conf. on Neural Networks, volume I,
pages 771-777, Seattle, WA, 1991. IEEE.

H. E. Robbins and S. Monro. A stochastic approximation
method. Annals Mathem. Statistics, 22:400-407, 1951.

H. E. Robbins and D. O. Siegmund. A convergence theo-
rem for non negative almost supermartingales and some
applications. In Proc. Sympos. Optimizing Methods in
Statistics, pages 233-257, Ohio State Univ., Columbus,
Ohio, 1971. Academic Press, New York.

E. F. T. K. Sang and S. Buchholz. Introduction to the
CoNLL-2000 shared task: Chunking. In Proc. Conf.
Computational Natural Language Learning, pages 127—
132, Lisbon, Portugal, 2000.

N. N. Schraudolph. Fast curvature matrix-vector products
for second-order gradient descent. Neural Computation,
14(7):1723-1738, 2002.

N. N. Schraudolph. Local gain adaptation in stochastic
gradient descent. In Proc. Intl. Conf. Artificial Neural
Networks, pages 569-574, Edinburgh, Scotland, 1999.
IEE, London.

N. N. Schraudolph and T. Graepel. Combining conjugate
direction methods with stochastic approximation of gra-
dients. In C. M. Bishop and B. J. Frey, editors, Proc.
9th Intl. Workshop Artificial Intelligence and Statistics,
pages 7-13, Key West, 2003. ISBN 0-9727358-0-1.

F. Sha and F. Pereira. Shallow parsing with condi-
tional random fields. In Proceedings of HLT-NAACL,
pages 213-220, Edmonton, Canada, 2003. Association
for Computational Linguistics.

S. V. N. Vishwanathan, N. N. Schraudolph, M. Schmidt,
and K. Murphy. Accelerated training conditional ran-
dom fields with stochastic gradient methods. In Proc.
Intl. Conf. Machine Learning, pages 969-976, New York,
NY, USA, 2006. ACM Press. ISBN 1-59593-383-2.



