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Abstract

The paper introduces a new framework for
learning probability density functions. A the-
oretical analysis suggests that we can tailor
a distribution for a class of tasks by train-
ing it to fit a small subsample. Experimental
evidence is given to support the theoretical
analysis.

1 Introduction

The question of probability density estimation lies at
the core of data modelling and machine learning. It
is regarded as the hardest task since good estimation
of the probability density can be used to solve other
problems such as regression and classification. Fur-
thermore, recent results show that L1 density approx-
imation of a discrete distribution requires sample sizes
supra-polynomial in the cardinality of the support [2].
Vapnik [9] has argued that it is frequently better to
learn the quantity you are interested in rather than
go indirectly through a harder problem. This has cer-
tainly proved a good strategy for problems such as
classification. This paper is concerned with an in-
termediate option where we may not have a single
well-defined task to solve, but at the same time wish
to avoid trying to accurately model the full probabil-
ity density function in either an L1 or KL divergence
sense. We therefore consider a family of tasks (for-
malised in a so-called Touchstone Class) and ask that
the learned density should be accurate on tasks drawn
from this class.
Our main result is that constraining the learning with
just a small sample from the Touchstone Class ensures
good expected performance across the whole class with
high probability. Hence, we can diversify the applica-
bility of our learned density at a relatively low extra
cost.
We further present experimental results that verify

that the effect predicted by the theory can indeed be
observed in practical experiments. Before launching
into the details we give two potential applications as
motivation for the approach.
In many cases probabilistic inference involves two
phases, the learning of a distribution and subse-
quently inference of probabilities of certain configura-
tions within the learned model. A great deal of empha-
sis and work has been devoted to the inference phase,
but relatively little work has been done ensuring that
the model accurately represents the information re-
quired by the inference. This paper aims to address
this question by developing a general framework within
which we can control what applications of a density
function we wish to model.
The question of learning a density with limited re-
sources in such a way that the result will be useful
for a range of potential application scenarios can also
play an important role in sensor networks. Here many
devices cooperate with limited computing and band-
width to assemble a range of information about the en-
vironment without prior knowledge of precisely what
information may be required by users of the network.
The analysis we have developed could help to guide
the density learning to ensure that the range of antic-
ipated queries can be accurately answered.
The rest of this section aims to place our work in the
context of earlier approaches to density estimation.
Mukherjee and Vapnik [10, 6] provide the main inspira-
tion for the approach taken here. They show how a one
class SVM can be augmented by constraints that con-
strain the cumulative density up to each of the training
points to be well approximated by their empirical es-
timate. They added constraints corresponding to all
of the training examples. Our analysis suggests that
adding only a small proportion of these constraints
will give almost as good a fit. This theoretical analy-
sis is borne out by the results of our first experiment
shown in Figure 1 in which we plot the total misfit as
a function of the number of constraints added. None



corresponds the the one class SVM and all to the re-
sult of Mukherjee and Vapnik. As predicted the loss
falls very quickly with the addition of just a few con-
straints before levelling out. The analysis undertaken
by Mukherjee and Vapnik [6] bounds the KL diver-
gence between the target density and a sequence of
estimators and so does not address the weaker notion
that we consider here.
We should also distinguish our work from level set es-
timation [4, 11]. This is the problem of finding the
regions in which the density function exceeds a cer-
tain value. This problem has no obvious formulation
within the framework that we consider and we leave
open the potential connections between the theories
concerning the accuracy of algorithms for this task de-
veloped in [4, 11] and the analysis developed here.
Finally, the paper [5] presents work that is closely re-
lated to our framework. They consider choosing a dis-
tribution by maximising the relative entropy subject to
fitting the marginals for all of a finite set of features or
in our terminology Touchstone functions. The result
of such a constrained optimisation is known to be a
Gibbs distribution from the exponential family. They
do not, however, consider the possibility of generalis-
ing over a Touchstone class, but rather bound the log
loss of the estimated maximum entropy distribution
with that of other Gibbs distributions in the class.

2 Learning model

As indicated above learning a probability density func-
tion (pdf) can be viewed as learning an oracle that can
answer a variety of questions. In order to fully specify
the learning task we propose that the set of questions
that can be asked of the oracle be specified. The fol-
lowing definition makes this notion precise.

Definition 1 A touchstone class for learning a prob-
ability density function (pdf) on a measurable space
X is a class of measurable real-valued functions F on
X with a distribution PF defined over F . Given an
unknown pdf function p, the error err(p̂) of an approx-
imate pdf function p̂ is defined as

err(p̂) = Ef∼PF [`(Ep[f ],Ep̂[f ])] ,

where ` is an appropriate loss function such as the ab-
solute value, its square or an epsilon-insensitive ver-
sion of either.

Note that taking an ε-insensitive binary valued loss
would make the error measure equal to the probability
of the estimate being out by more than ε.
We begin by giving examples of touchstone classes that
can motivate the definition.

Example 2 If we take FS to be the set of indicator
functions IS(a) for sets of the form

S = {S(a) : a ∈ Rn}
where

S(a) = {x ∈ Rn : xi ≤ ai, 1 ≤ i ≤ n} ⊂ Rn

the error measure assesses the accuracy of the cumu-
lative density function defined by p̂, since

err(p̂) = ES(a)∼PS

[
|P (S(a))− P̂ (S(a))|

]

where PS is a distribution over the sets S(a) and P
(P̂ ) is the probability distribution for the density p
(p̂). This is the approach taken by Mukherjee and
Vapnik [10, 6] where they attempt to match the val-
ues P (S(xi)) and P̂ (S(xi)) for all training examples
xi, i = 1, . . . , m. Note that in their case PS is implic-
itly chosen to be equal to the input distribution, while
a touchstone class allows for any distribution for PF .
Mukherjee and Vapnik form part of the inspiration for
the framework proposed here.

Example 3 A further example of a touchstone class
is given by extending to a general class of indicator
functions T to obtain the touchstone class FT . We
would now require that P̂ (S) be a good estimate of the
probability P (S) for a randomly drawn set from the
class T . This corresponds to the measure between dis-
tributions introduced by Ben-David et al. [3]. Their
results are an important example of the power of the
proposed approach.

Example 4 For a third example consider a distribu-
tion over {0, 1}n. The touchstone class FI is taken
as a set of ‘projection’ functions πi,v onto subsets
i = {i1, . . . , i|i|} ∈ I of variables drawn from a set
I ⊆ 2{1,...,n} with prescribed values v ∈ {0, 1}|i|

FI =
{

πi,v : i ∈ I,v ∈ {0, 1}|i|
}

,

where

πi,v(x) =
{

1 if xij = vj , for j = 1, . . . , |i|,
0; otherwise.

For this case the expectation Ep[πi,v] is the marginal
for the variables indexed by i set to the values v.
Hence, the framework includes the computation of
marginal distributions over prescribed subsets of binary
variables.

We expect that learning will proceed by choosing a
particular p̂ from a class of modelling densities P for
which the evaluation of Ep̂[f ] can be computed exactly.
We introduce the definition of approximation that we
will use to guide the learning.



Definition 5 We say that p̂ ∈ P is an ε-
approximation of the true density p with respect to the
Touchstone Class F and loss function `, if err(p̂) ≤ ε.

Definition 6 We say that a class of densities P is
learnable with respect to the Touchstone Class F and
loss function ` if there is an algorithm A such that
given any p ∈ P, ε > 0 and δ > 0, A given as input a
sample of m points according to p where m is polyno-
mial in 1

ε and 1
δ , returns an estimate p̂ ∈ P that with

probability 1 − δ over the choice of random sample is
an ε-approximation of p wrt F and `.

3 Analysis Framework

In this section we indicate the style of analysis that
we propose for the model described above. The results
given here are applicable to all of the possible scenarios
discussed. In the next section we will consider the
application of this approach to implementations of the
cases described in Examples 2 and 3.
The aim of the theoretical analysis is to derive bounds
on the err(p̂) for an estimate p̂ of the pdf p in terms
of quantities that can then be optimised in algorithms
designed to approximate the pdf p.
There are two phases to the estimation, first we must
estimate the accuracy of p̂ for a particular function f ∈
F , and secondly we need to consider the expectation
of this quantity over a random choice of f according
to PF .
Ignoring for the moment the first phase, the second
phase can be viewed as learning a function q that maps
F to the reals:

q : f ∈ F 7−→ q(f) = Eq(f) ∈ R,

where we have deliberately overloaded the notation of
q. This is a supervised learning problem with the tar-
get function given by f 7→ p(f) = Ep(f), that is a
standard regression problem modulo the fact that we
do not have exact evaluations of Ep(f) for our training
sample.
This brings us to the problem covered by the first
phase, namely estimating Ep(f) for a given f ∈ F .
Since the expectation of the function f(x) is Ep(f),
the empirical estimate Ê(f) = (1/m)

∑
i f(xi) of the

expected value of this f should give a good estimate
of its true value.
The rest of this section is concerned with results that
ensure both of these phases give good approximations.
Again we first consider the second phase. Now we
consider the Rademacher complexity of our distribu-
tion class P from which p̂ is chosen. We first give the
definitions and main result. Note that we have re-
moved the standard absolute value from the definition

of Rademacher complexity as the main result holds in
the stronger form given here (see for example [1]).

Definition 7 For a sample S = {x1, · · · , xm} gener-
ated by a distribution D on a set X and a real-valued
function class F with a domain X, the empirical
Rademacher complexity of F is the random variable

R̂m (F) = Eσ

[
sup
f∈F

2
m

m∑

i=1

σif (xi)

∣∣∣∣∣ x1, · · · , xm

]
(1)

where σ = {σ1, · · · , σm} are independent uniform
{±1}-valued Rademacher random variables. The
Rademacher complexity of F is

Rm (F) = ES

[
R̂m (F)

]
= ESσ

[
sup
f∈F

2
m

m∑

i=1

σif (xi)

]

(2)

Theorem 8 Fix δ ∈ (0, 1) and let F be a class of
functions mapping from S to [0, 1]. Let (xi)

m
i=1 be

drawn independently according to a probability distri-
bution D. Then with probability at least 1 − δ over
random draws of samples of size m, every f ∈ F sat-
isfies

ED [f (x)] ≤ Ê [f (x)] + Rm (F) + 3
√

ln(2/δ)
2m

≤ Ê [f (x)] + R̂m (F) + 3
√

ln(2/δ)
2m

(3)

Before beginning the analysis we quote Hoeffding’s in-
quality.

Theorem 9 (Hoeffding’s inequality) If
X1, . . . , Xn are independent random variables
satisfying Xi ∈ [ai, bi], and if we define the random
variable Sn =

∑n
i=1 Xi, then it follows that

P{|Sn − E[Sn]| ≥ ε} ≤ 2 exp
(
− 2ε2

∑n
i=1(bi − ai)2

)
.

Definition 10 For a class P of distributions and a
Touchstone Class F of functions we define the F-
derived class of functions to be

PF = {f ∈ F 7→ Ep[f ] : p ∈ P} .

Furthermore we define the empirical `-loss of a density
q ∈ PF with respect to finite sets Sf ⊆ F and Sx ⊆ X ,
as

Êf [`(Êx[f ],Eq[f ])],

where Êf refers to the empirical expectation using the
sample Sf and Êx to the empirical expectation using
Sx.

We can now state our first result.



Theorem 11 Let F be a Touchstone Class and P a
class of distributions such that there exists a polyno-
mial Q with the property that for m ≥ Q(1/ε),

Rm(PF ) ≤ ε,

where the associated symmetric loss function ` has
range [0, 1], satisfies the triangle inequality and is Lip-
schitz continuous with constant L. Then an algorithm
that can select a function from PF that minimises the
empirical ` loss can learn P with respect to the func-
tion class F .

Proof: Given ε > 0 and δ > 0, choose

mf = max
{

Q(4/ε),
72
ε2

ln
4
δ

}
. (4)

Sample mf functions Sf from F according to PF . Now
sample mx input points Sx according to p where

mx =
8L2

ε2
ln

4mf

δ
. (5)

Now let p̂ be the density approximation returned by
the algorithm that minimises

Êf [`(Ep̂[f ], Êx[f ])].

Since, the algorithm minimises the empirical ` loss we
have

Êf [`(Ep̂[f ], Êx[f ])] ≤ Êf [`(Ep[f ], Êx[f ])]. (6)

An application of Hoeffding’s inequality shows that
the choice of mx ensures that for a fixed function f ,
|Êx[f ]− Ep[f ]| ≥ ε/(4L) with probability at most

2 exp
(
−mxε2

2L2

)
≤ δ

2mf

so that with probability 1− δ/2

sup
f∈Sf

|Êx[f ]− Ep[f ]| ≤ ε/(4L).

Together with equation (6) and the triangle and Lips-
chitz property of the loss ` this implies that

Êf [`(Ep[f ],Ep̂[f ])] ≤ Êf [`(Ep[f ], Êx[f ])]

+Êf [`(Ep̂[f ], Êx[f ])]

≤ 2Êf [`(Ep[f ], Êx[f ])]

≤ 2Êf

[
L|Êx[f ]− Ep[f ]|

]

≤ ε/2. (7)

Equation (7) bounds the empirical estimate in the ap-
plication of the Rademacher Theorem 8 to the function
class PF with probability at least 1− δ/2:

err(p̂) = Ef∼PF [`(Ep[f ],Ep̂[f ])]

≤ Êf [`(Ep[f ],Ep̂[f ])] + Rmf
(PF ) + 3

√
ln (4/δ)

2mf
.(8)

The choice of mf ensures that the last two terms sum
to ε/2. Hence, with probability at least 1− δ we have
the required total bound of err(p̂) ≤ ε. ¤
The result is couched in the slightly traditional frame-
work of prescribing a given accuracy and confidence,
but nonetheless we believe illustrates some of the con-
straints implicit in the framework.
The main points to highlight are as follows.

• The required number of function samples mf de-
pends principally on the Rademacher complexity
of the class PF , that is the class of densities that
are being used, and only indirectly (as inputs) on
the Touchstone class F itself. We will see an ex-
ample of this dependency in the next section.

• The sample complexity mx is very benign for
small L as for example when using an L1 norm,
since its main dependence is on ln mf .

• The main insight that the analysis provides is that
we can expect to get good approximation across
the Touchstone class by choosing a density that
gives good performance on a small random sample
of these functions.

Section 5 will present experiments to illustrate these
points, particularly the last item. First, however, in
the next section we introduce the specific function
classes that will be used and derive bounds on their
performance.

4 Support Vector Density Estimation

We now define a specific class of density functions in-
spired again by Mukherjee and Vapnik [10]. The start-
ing point is the one class SVM [7] but with a kernel κ
normalised so that for all z ∈ X ,

∫

X
κ(x, z)dx = 1.

The standard choice for κ is a normalised Gaussian

κ(x, z) =
1

(√
2πσ

)d
exp

(
−‖x− z‖2

2σ2

)

where d is the dimension of the input space. In general
we assume that there is a finite constant Cκ such that

Cκ := sup
z,z′

√
κ(z, z′) =

√
κ(x,x),

for all x ∈ X with κ(z,x) ≥ 0 for all x, z. If we now
consider learning a density function in a dual repre-
sentation

q(x) =
m∑

i=1

αiκ(xi,x),



the constraint
∑m

i=1 αi = 1 ensures that the density is
correctly normalised, that is q satisfies

q(X ) =
∫

X
q(x)dx = 1.

We therefore define a sequence of spaces P(B)
parametrised by B ∈ R+ to be

P(B) =
{

qw : x 7→ 〈w, φ(x)〉
∣∣∣ ‖w‖ ≤ B, qw(X ) = 1

}
,

where φ is the feature mapping corresponding to κ.
The corresponding space PF (B) is given by

PF (B) =
{

qw : f 7→ Eqw [f ]
∣∣∣ ‖w‖ ≤ B, qw(X ) = 1

}
.

(9)
We can evaluate Eqw [f ] as follows

Eqw [f ] =
∫

X
qw(x)f(x)dx

=
∫

X
〈w, φ(x)〉f(x)dx

=
∫

X
〈w, f(x)φ(x)〉dx

=
〈
w,

∫

X
f(x)φ(x)dx

〉
,

implying that we are working in a linear space defined
by the feature map

φF : f 7−→
∫

X
f(x)φ(x)dx.

The corresponding inner product or kernel function κF
is given by

κF (f, g) = 〈φF (f), φF (g)〉 =
∫

X 2
f(x)g(z)κ(x, z)dxdz.

We quote a standard result for the Rademacher com-
plexity of linear function spaces.

Theorem 12 If κ : X × X → R is a kernel, and
S = {x1, · · · , xm} is a sample of point from X, then
the empirical Rademacher complexity of the class FB

of linear functions in the kernel defined feature space
with norm bounded by B satisfies

R̂m (F) ≤ 2B

m

√√√√
m∑

i=1

κ (xi, xi) =
2B

m

√
tr (K), (10)

where K is the kernel matrix defined on the set S and
tr is the trace of a matrix.

We have a lemma bounding the empirical Rademacher
complexity of the space PF (B).

Lemma 13 Let PF be defined by equation (9) with
respect to the kernel κ and the function space F . Then
the empirical Rademacher complexity of PF (B) on the
sample {f1, . . . , fmf

} is bounded by

R̂mf
(PF (B)) ≤ 2B

mf

√√√√
mf∑

i=1

min
(
C2

κ‖fi‖2L1
, ‖fi‖L1‖fi‖L∞

)
.

Proof: In order to apply Theorem 12, we must com-
pute the trace of the kernel matrix K corresponding
to the sample {f1, . . . , fmf

}. Consider the i entry

κF (fi, fi) =
∫

X 2
fi(x)fi(z)κ(x, z)dxdz

≤ C2
κ

∫

X 2
|fi(x)||fi(z)|dxdz

=
(∫

X
|fi(x)|dx

)2

= C2
κ‖fi‖2L1

,

for the first term of the minimum. For the second term

κF (fi, fi) =
∫

X 2
fi(x)fi(z)κ(x, z)dxdz

=
∫

X

∫

X
fi(z)κ(x, z)dzfi(x)dx

≤ ‖fi‖L∞

∫

X

∫

X
κ(x, z)dz|fi(x)|dx

= ‖fi‖L∞

∫

X
|fi(x)|dx

= ‖fi‖L∞‖fi‖L1

as required. ¤
This in turn provides a bound on the Rademacher com-
plexity for a function space with bounded L1 norm.

Corollary 14 Let PF be defined by equation (9) with
respect to the kernel κ and the function space F sat-
isfying ‖f‖L1 ≤ C for f ∈ F . Then the Rademacher
complexity of PF (B) is bounded by

Rmf
(PF (B)) ≤ 2BCCκ√

mf
.

Note that the corollary implies that PF (B) satisfies
the Rademacher condition of Theorem 11 for the poly-
nomial

Q(1/ε) =
4B2C2C2

κ

ε2
.

As indicated above the application of Theorem 11 is
slightly unnatural as in practice we are typically not
able to specify the size mx of the sample of inputs.
We therefore now present a bound on the error of a
pdf function returned by an algorithm in terms of the
sample sizes and complexities.



Theorem 15 Suppose that we learn a pdf function p̂
in the space PF (B) defined in equation (9) based on
a sample of mx inputs and mf sample functions from
the space F . Then with probability at least 1− δ over
the generation of the two samples we can bound the
error of p̂ by

err(p̂) ≤ L

√
2

mx
ln

4mf

δ
+ Êf [`(Ep̂[f ], Êx[f ])]

+
2BCκ

mf

√√√√
mf∑

i=1

‖fi‖2L1
+

√
9

2mf
ln

4
δ
(11)

Proof: The bound is derived from the empirical
Rademacher version of the general Rademacher bound
of Theorem 8 to the sampling over functions so that
it holds with probability at least 1 − δ/2. The first
two terms come from applying the triangle inequality
to the empirical error term

Êf [`(Ep[f ],Ep̂[f ])] ≤ Êf [`(Ep[f ], Êx[f ])]

+Êf [`(Ep̂[f ], Êx[f ])]

and bounding the first term using Hoeffding’s inequal-
ity applied to ensure the inequality holds with prob-
ability 1 − δ/2. The third term is the bound on the
empirical Rademacher complexity given in Lemma 13.
Hence the result follows. ¤
The form of the bound in Theorem 15 motivates the
optimisations implemented in our algorithmic strat-
egy. We see that the bound on the norm of the weight
vector in the feature space appears and so this is in-
troduced into the objective. Furthermore the second
term corresponds to the amount by which the con-
straints fail to be satisfied. This term is realised by
introducing slack variables that measure the slack in
the constraints and the sum of the slack variables is
incorporated into the objective controlled by a regu-
larisation parameter D. The final form of the optimi-
sation that minimises the bound of Theorem 15 is as
follows:

minα,ξ

∑mx

i,j=1 αiαjκ(xi,xj) + D
∑mf

j=1 ξj

subj to
∑mx

i=1 αi = 1
`
(∑mx

i=1 αi

∫
X κ(xi,x)fj(x)dx, 1

mx

∑mx

i=1 fj(xi)
)
≤ ξj

and ξj ≥ 0 for j = 1, . . . , mf ,
αi ≥ 0 for i = 1, . . . ,mx.

(12)
Note that if the number of constraints mf = 0 we ar-
rive at the smallest enclosing hypershere or one class
SVM problem (see [8] for details). In the experi-
ments described below we will vary mf to interpolate
between this case and the more stringent fitting im-
plied by larger mf . The one class SVM can also be

regularised by using the box constraint on the dual
variables by placing an upper bound αi ≤ 1/(νmx).
Further regularisation can be obtained by using an ε-
insensitive loss function for `, where ε provides a fur-
ther trade-off between under and overfitting.

5 Experimental Results

We present two experiments that aim to verify the
main insights highlighted at the end of the previous
section.
The first interpolates between the framework intro-
duced by Mukherjee and Vapnik [10, 6] and the one
class Support Vector Machine [7]. We can view the
latter as performing novelty detection, but if used with
a normalised Gaussian kernel it also determines a pdf.
The former takes this approach but adds constraints
corresponding to minimising the empirical L1-loss for
the full Touchstone class FS defined in Example 2.
In other words it does not pick a sample of functions
from FS but rather includes all of the functions. We
perform a series of experiments plotting the average
error as we take smaller samples from FS finishing
with the one class SVM that corresponds to adding no
constraints.
The 2-dimensional data used in the experiment is
generated artificially as a mixture of two Gaussians
p(x) = 0.5N(ν1, σ

2
1) + 0.5N(ν2, σ

2
2).

Figure 1 shows the plot of the L2 error as a function
of the number of constraints included in the optimi-
sation. Observe that as predicted by the theory the
error falls very fast as the first few constraints are in-
cluded and then levels out to decrease only relatively
slowly as larger numbers of constraints are added. We
used the version without slack variables for the experi-
ments reported here, but included an ε-insensitive loss
function:

minα

∑mx

i,j=1 αiαjκ(xi,xj)
subject to

|Eqα [fj ]− Êx[fj ]| ≤ ε for j = 1, . . . ,mf ,∑mx

i=1 αi = 1, αi ≥ 0 for i = 1, . . . ,mx,
(13)

where

Eqα [fj ] =
mx∑

i=1

αi

∫

X
κ(xi,x)fj(x)dx

=
mx∑

i=1

αi

n∏

k=1

(
1−Q

(
xk,j − xk,i

σ

))
,(14)

Q(x) =
1√
2π

∫ ∞

x

exp(−t2)dt,



and

Êx[fj ] =
1

mx

mx∑

i=1

fj(xi) =
1

mx

mx∑

i=1

n∏

k=1

θ(xk,j − xk,i),

(15)
with θ(x) = 1 if x > 0 and θ(x) = 0 if x ≤ 0.
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Figure 1: Plot of L2 error over the Touchstone class of
Example 2 as a function of the size of mf

The first experiment verifies that the approach works
for the simple case that inspired the analysis. We now
consider a higher (10) dimensional example with an
uncountably infinite Touchstone class in order to verify
how the approach scales to more complex cases. Using
orthants to the left of data points does not make sense
in high dimensional spaces as these become an expo-
nentially small proportion of the space, so the Touch-
stone class is now chosen to be the set of all halfspaces
with their closest point to the origin generated by an
isotropic Gaussian centred at the origin. Hence, in the
second example

Eqα [fj ] =
mx∑

i=1

αi

∫

X
κ(xi,x)fj(x)dx

=
mx∑

i=1

αi

(
1−Q

(
x′iwj/‖wj‖ − ‖wj‖

σ

))
,

(16)

and

Ês[fj ] =
1

mx

mx∑

i=1

fj(xi)

=
1

mx

mx∑

i=1

θ

(
x′iwj/‖wj‖ − ‖wj‖

σ

)
.(17)

The data distribution is generated by a 10 dimensional
mixture of two Gaussian with centers (0, . . . , 0) and
(1, 2, 0, . . . , 0) and σ = 1.

Figure 2 shows the training (blue unbroken) and test
(red dashed) L2 error as a function of the number of
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Figure 2: The average training (blue unbroken) and
test (red dashed) L2 error as a function of the number
of constraints (size of the sample mf ) – sample size
mx = 100

introduced constraints. Again x = 0 corresponds to
the one class SVM and as predicted by the theoretical
analysis, very rapid falls are observed in the average
loss as a relatively small number of constraints are
added. The test error tracks the training error very
tightly indicating that overfitting has not occurred for
this sample size mx = 100. Figure 3 shows the same
two plots for a smaller sample size mx = 50. Here
we can observe a divergence between training and test
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Figure 3: The average training (blue unbroken) and
test (red dashed) L2 error as a function of the number
of constraints (size of the sample mf ) – sample size
mx = 50

error for small numbers of constraints indicating that



some overfitting has occurred in this regime.
Finally, in Figure 4 we see a similar plot with mx =
500. Here the learning effect of just a small number of
constraints is particularly evident.
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Figure 4: The average training (blue unbroken) and
test (red dashed) L2 error as a function of the number
of constraints (size of the sample mf ) – sample size
mx = 500

6 Conclusions

The preliminary experiments verify the main thrust of
the analysis, namely that a relatively small number of
constraints allows the pdf to ‘learn’ the best fit. This
is in line with the predictions made by the theoretical
framework developed in the earlier sections.
We believe that the approach has many potential ap-
plications. For example the example used for the sec-
ond experiment could use unlabelled data to get a good
estimate of the probabilities between two parallel hy-
perplanes. This could then be used to guide a semi-
supervised classification algorithm that attempted to
separate the small amount of labelled data with a wide
slab with low probability, this being the equivalent of
a large margin for a fully labelled dataset.
The more ambitious aim is to use the approach to inte-
grate into a single analysis the learning of a density and
inference of probabilities from that density. By learn-
ing the density with a suitably parameterised model
with constraints ensuring a good fit for the marginals
of interest, we can expect algorithms for approximate
inference that can be implemented efficiently over the
model to give good estimates with appropriate bounds
on their accuracy.
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