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Abstract

Several authors have recently studied the prob-
lem of creating exchangeable models for natu-
ral languages that exhibit word burstiness. Word
burstiness means that a word that has appeared
once in a text should be more likely to ap-
pear again than it was to appear in the first
place. In this article the different existing meth-
ods are compared theoretically through a unify-
ing framework. New models that do not sat-
isfy the exchangeability assumption but whose
probability revisions only depend on the word
counts of what has previously appeared, are in-
troduced within this framework. We will refer
to these models as two-stage conditional pres-
ence/abundance models since they, just like some
recently introduced models for the abundance
of rare species in ecology, seperate the issue
of presence from the issue of abundance when
present. We will see that the widely used TF-IDF
heuristic for information retrieval follows natu-
rally from these models by calculating a cross-
entropy. We will also discuss a connection be-
tween TF-IDF and file formats that seperate pres-
ence from abundance given presence.

1 Introduction

1.1 Review and Discussion of background litteraure

It is well known that a word that has been used once in
a text has an increased probability of appearing again ac-
cording to a power-law distribution. A discrete probability
distribution is a power-law distribution ifP (X≥x)

Cx−α → 1 as
x → ∞ whereα > 0. Already in 1932, Zipf noticed
that word frequencies in natural languages are roughly in-
versely proportional to their rank in the frequency table
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and, therefore follows a power-law distribution [20]. It has
since been discovered that there are many natural and man
made quantities that follow power-law distributions [15].
Some examples are citations of scientific papers, copies of
books sold, magnitudes of earthquakes, intensity of solar
flares, wealth of richest Americans, frequencies of family
names in the US and populations of cities. It is important to
notice that the probabilities that follow power-laws are of-
ten conditional probabilities, e.g. given that an earth quake
with a magnitude of at least 3.8 has occured, its magnitude
is power-law distributed with exponent 3; given that there
is a city with at least 40000 people in a particular square
in a grid drawn on a US map, its population is power-
law distributed with exponent 2.3; and given that a certain
word has appeared in a text, its frequency follows a power-
law with exponent 2.2. Because of this conditioning, it is
logical to consider two-stage conditional models where we
seperately model the probability that something will occur
and what happens when something does occur. A two-stage
conditional model has recently been used [5] by Cunning-
ham and Lindenmayer to model the abundance of a rare
species of Possum in Australia by separating the issue of
presence from the issue of abundance when present.

In the context of language models, the power-law property
was called ”word burstiness” in a recent paper by Madsen
et. al. [11] who used Polya urn models to model it. In a
Polya urn document model, every document is started with
an urn with a specified number of balls of different colors
where every color represents a word type, i.e. an item in
the vocabulary. When a ball is drawn, we note its color
and then we put it back together with an additional ball of
the same color. Polya urn models have power-law behavior
with exponent 2 and are, therefore, natural candidates for
modeling word burstiness.

Polya urn models and their variations have been used for
many other purposes, e.g. combat modeling [14] and mod-
eling of markets, which are developing toward monopoly
[2]. The parameters estimated for Polya urns are the initial
number of balls of the different colors in the urn. Frac-
tional numbers of balls are allowed and typically the pa-



rameters associated with modeling text are much smaller
than one. This is due to the fact that most words occur in a
very small fraction of all documents but can be quite abun-
dant when they are present. Similarly, some rare animal or
plant species can be hard to find but when you find them
it is not unlikely that you find many individuals around the
same site. Consider a situation where we initially have a
small number of red balls, e.g.0.005. If we draw a red
ball, then the total number of red balls is increased by one
and becomes1.005 ≈ 1. If we instead had started with
twice as many red balls, i.e.0.01, we would have ended
up with 1.01 ≈ 1. Therefore, the probability of a red ball
being drawn again has very little to do with the probabil-
ity of its appearance in the first place. This is consistent
with the empirical study by Church [4] of the appearance
of the word ”Noriega”, and some other words, in the Brown
corpus. He discovered that the probability of that word to
appear at least twice was closer top/2 than top2 if p is
the probability that it will appear at least once. He con-
cluded that ”The first mention of a word obviously depends
on frequency, but surprisingly, the second does not”. This
is clearly indicating that it would be a good idea to use a
two-stage conditional model that separates presence from
abundance given presence.

A problem with using Polya urns for text modeling is the
computational cost for performing maximum likelihood es-
timation. Elkan [6] introduced a probability distribution
he denoted the Exponential family Dirichlet Compound
Multinomial (EDCM), which he has later used for docu-
ment clustering [7]. This distribution is an approximation
of a Polya urn. Furthermore the EDCM is a member of the
exponential family and parameter estimation can be per-
formed efficiently.

Goldwater et. al. [9] invented a method for constructing
power-law distributions. It consists of two parts, one part
called a generator and another called an adaptor. A se-
quence that does not exhibit burstiness is first drawn from
the generator after which the adaptor creates a power-law
distribution based on that sequence. Pitman-Yor processes
were used as adaptors and a multinomial as a generator.
The adaptor/generator framework will be reviewed in more
detail later in this article but we would like to point out
already here that the choice of a multinomial generator is
what distinguishes the models used by Goldwater et. al.
from models that separate presence from abundance given
presence. A sequence drawn from a multinomial can con-
tain the same word several times. If we replace the genera-
tor with a sampling without replacement scheme the result
will be a model that separates presence from abundance
given presence. We have, therefore, realized that the adap-
tor/generator framework is general enough to serve as a
unifying framework for many distributions including two-
stage conditional presence/abundance models. Goldwater
et. al found that the best performing models for the ap-

plication of morphology is the case when the Pitman-Yor
process is close to a Chinese Restaurant Process (CRP).

1.2 Contributions of this article

In this article, we will prove that using a CRP adaptor and a
multinomial generator results exactly in a Polya urn model.
We will also show that the EDCM, as a probability distri-
bution on count vectors (according to Elkan’s definition),
can be defined by using a CRP adaptor but with a generator
that provides sequences of unique word types. We have dis-
covered that the EDCM is equivalent to a two-stage condi-
tional presence/abundance model. We will also define two
new two-stage conditional presence/abundance models. In
one of them, a CRP adaptor and a sampling without re-
placement scheme generator will be used. In the other, the
CRP adaptor will be replaced by a generalized Polya urn
of the kind defined by Chung et. al. [3] combined with a
sampling without replacement generator. The generalized
Polya urn depends on a parameterλ ∈ [0, 1) represent-
ing the probability that the next word in the sequence will
be of a type that has so far not been present. The general-
ized Polya urn follows a power-law with exponent1+ 1

1−λ .
Since it is known that word frequencies follow a power-law
with exponent slightly larger than two, this is an interesting
alternative to the CRP as an abundance distribution. Max-
imum likelihood estimation ofλ gives us a nice formula
for estimating the power-law exponent for a particular cor-
pus. The generalized Polya urn is not exchangeable, i.e.
the probability of a sequence depends on the order. This
means that if we want to calculate word count probabili-
ties, the probabilities of all the ways that a particular count
vector could have arisen must be added up. However, there
is a weaker property than exchangeability that holds and
that is the Commutativity Principle, named so by Wagner
[19]. This says that when we are revising probabilities in
the light of new evidence, the order of the evidence we have
seen so far should not change the result, i.e. the probability
revisions should commute. This concept has been studied
extensively in the Philosophy of Science and in particular
by people who are trying to understand the Bayesian con-
cepts of subjective probability and belief. Bayesians usu-
ally define their models by choosing priors, which result in
exchangeable models. However, if our aim is to measure
the relative abundance of the various types in the context
of the document in question, then the Commutativity Prin-
ciple is exactly the condition required for representing the
word sequence by a count vector.

To measure this relative abundance is essential for ranking
documents in the field of information retrieval and in the
ecological context, it is essential for monitoring rare and
potentially endangered species. In this article, we will use
the introduced models to provide a theoretical foundation
for the Term Frequence-Inverse Document Frequency (TF-
IDF) heuristic [18]. This heuristic states that if we want to



rank documents according to how well they match a col-
lection of distinct key wordsw1, ..., wk, we should rank a
documentd̃ according to the size of the expression

k∑
i=1

nwi

n
(d̃) log

|D|∑
d I(nwi(d)) ≥ 1)

whereI is the indicator function ,nw(d) is the number of
times that the word typew appeared in documentd and
n is the total number of word tokens ind. When Robert-
son [16] was reviewing various existing attempts to create a
theoretical foundation for the practically so succesfull TF-
IDF heuristic, he pointed out that a complication with using
modeling and information theoretic approaches to motivate
IDF relevance weighting is defining document probabilities
based on word type presence probabilities. Furthermore,
Robertson also discussed the non-triviality of motivating
the TF part. The two-stage conditional presence/abundance
approach takes care of the first problem, while we deal with
the second one by focusing on the probabilities resulting
from the total revisions caused by the word counts. Our
approach enables us to formulate a simple derivation of the
TF-IDF heuristic. In addition, our approach can also be
connected to file formats for lossless compression of word
count data.

In this context, it should be mentioned that Elkan [7]
proved that if we use a Fisher kernel as a similarity measure
between Polya urn distributions for the purpose of topic
classification, the resulting measure is approximately equal
to a variation of TF-IDF often used for this purpose.

1.3 Outline

Section two reviews existing word burstiness models and
introduce new models within a unifying framework. Sec-
tion three describes how to estimate the parameters of the
new models. Section four shows how to derive the TF-IDF
heuristic from one of those models and section five discuss
how our modeling assumptions link TF-IDF to file formats
that compress word count vectors. Section six contains a
summary and future plans.

2 Word burstiness models

In this section we will review the models we want to com-
pare and prove that they can all be expressed through the
adaptor/generator framework [9]. We will also introduce a
new model within this framework. First we will, however,
discuss the basic assumption imposed.

2.1 Exchangeability and the Commutativy Principle

There are several application areas of language model-
ing including information retrieval and topic classification,
where the most common words of the language in question

are removed before an algorithm is used. These words are
often called the stop words. They are words like ”and”
and ”the” with little content. The data is then typically
compressed by representing the documents by their word
counts. This is a reason for using distributions satisfying
the exchangeability condition, i.e. the condition that re-
quires that the probability of a sequence does not depend on
the order which is sufficient for motivating such compres-
sion. It is, however, not necessary if we are only interested
in the resulting probability revisions. In ecology, we would
be interested in calculating the abundance, or relative abun-
dance, we believe that a species has at a certain site. This
would be more important than calculating the probability
that we would see what we have seen. With that aim, the
Commutativity Principle [19], which is implied by, but not
equivalent to exchangebility, is the necessary assumption
for motivating the representation of a sequence of observa-
tions by a count vector. In formal mathematics the Com-
mutativity Principle holds if and only if

P (XN+1|X1, ..., XN ) = P (XN+1|Xπ(1), ..., Xπ(N))

holds for any permutationπ. The new two-stage condi-
tional presence/abundance models will satisfy the Commu-
tativity Principle but not the exchangeability assumption.

2.2 The Polya urn as a CRP augmented with labels
sampled with replacement

As mentioned in the background, in a Polya urn document
model, we start every document with an urn with a speci-
fied number of balls of different colors where each color
represents a word type, i.e. an item in the vocabulary.
When we draw a ball, we write down the word that cor-
responds to its color and then we put it back together with
an additional ball of the same color. Thus if we started with
βw balls of the colorw and we have so far drawnnw balls
of color w, the probability that the next color isw is equal
to

nw + βw

n + β

whereβ =
∑

w βw andn =
∑

w nw.
The Chinese Restaurant Process (CRP) is often described
as follows: Suppose that we have a restaurant with an in-
finite number of tables, each of infinite size. Let the first
customer sit at table number one. Then, when the second
customer arrives, he or she sits down at the same table with
probability 1

1+β and at table number two with probability
β

1+β whereβ > 0. Suppose that the firstn customers have
sat down atm different tables andnk are sitting at table
numberk. We then decide that the next customer will sit
down at tablek with probability nk

n+β if 1 ≤ k ≤ m and at

table numberm + 1 with probability β
n+β . This scheme is

called the CRP and as a probability distribution on alloca-
tions of customers to tables, it is exchangeable.



The CRP gives us a seating arrangement, which can be rep-
resented as a sequence of numberst1, t2, ..., tn wheretk for
1 ≤ k ≤ n is the number of the table that thekth customer
sits down at. If we want to use the CRP for modeling text,
we have to attach labels, i.e. word types, to the tables. A
type is an item in a vocabulary, while an occurrence of a
word in a document is called a token. If we attach a word
type to every table, the seating arrangement is transformed
into a document, and each customer represents a word to-
ken. The following table explains the relationship between
the different analogies that are being used:

Polya urn CRP Language Ecology
Ball Customer Word token Individual

Color Label of Table Word type Species

The distribution that we draw the seating arrangement
from, Goldwater et. al. [9] referred to as theadaptor
and the distributions which we draw the labels from was
called thegenerator. The generator decides the word types
that will appear in the document and the order of their
first appearance, and the adaptor decides how many times
each word type will appear. Goldwater et. al. [9] used a
multinomial as a generator resulting in a combined adaptor-
generator model that is exchangeable. We will here prove
that if we use a multinomial generator and a CRP adaptor
we have exactly a Polya urn. It can be viewed as a way of
expressing the well known equivalence between the CRP
and a Polya urn [1].

Theorem 1. Suppose that we use a CRP with parameter
β > 0 as an adaptor and a multinomial with parameters
pw as a generator. Furthermore, suppose that we so far
have seen the wordw, nw times and we have in total seen
n words. Then the probability that the next word isw is
equal to

nw + βpw

n + β
(1)

which is the probability that a Polya urn with parameters
βw = βpw would assign to the event.

Proof. The wordw can be drawn in two different ways.
We will use the restaurant analogy to describe the two. Ei-
ther the new customer sits down at one of the already oc-
cupied tables with labelw, which has probabilitynw

n+β , or
the new customer sits down at a previously unoccupied ta-
ble labeledw. The latter option has probabilityβ

n+β pw. If

we letβw = βpw, the sum of the two equalsnw+βw

n+β .

2.3 New model A:The CRP augmented with labels
sampled without replacement

In the model described in the previous section, several ta-
bles can have the same label. An alternative would be to
sample without replacement. That is we start with an urn
with pw balls of typew where

∑
w pw = 1. When a ball

has been drawn, we remove all balls of that type from the
urn. Then we will have unique labels for all the tables. This
model is not exchangeable but the probabilities for what we
will see next only depends on the counts of what we have
seen so far and, therefore, the model satisfies the Commu-
tativity Principle. We will from now on make extensive
use of the gamma functionΓ(z) =

∫∞
0

tz−1e−tdt, z ≥ 0,
which has the properties thatΓ(z + 1) = zΓ(z) and
Γ(n + 1) = n! for integersn.

Theorem 2. For the distribution defined above with CRP
parameterβ > 0, the probability of a specific sequence of
n words where we have seen exactly them ≤ n different
word typesw1, ..., wm, appearing for the first time in that
order and where the word typewj has been seen exactly
nwj times is

βm−1

(β − βw1) · ... · (β − (βw1 + ... + βwm−1))
· Γ(β)
Γ(β + n)

·

·
m∏

j=1

βwj
(nwj

− 1)! (2)

whereβw = pwβ and pw is the initial probability of the
wordw.

To prove the theorem we need the following well known
result, see e.g. [1].

Lemma 1. The probability that a CRP with parameterβ
generates a specific seating arrangement forn customers
seated atm tables wherenk customers are sitting at table
k is

βm Γ(β)
Γ(β + n)

m∏
k=1

(nk − 1)!.

We can now present a proof of Theorem 2.

Proof. The probability of drawing the word types
w1, w2, ..., wm from the urn of labels without replacement
in that order is

βw1 · ... · βwm

β(β − βw1) · ... · (β − (βw1 + ... + βwm−1))
.

If we have chosen a sequence of labels and a seating ar-
rangement, we can permute both without changing the
word-counts but we would always change the order of the
first appearances. Therefore, the probability we seek is the
product of the latest expression and the expression from
Lemma 1. This yields the result in the theorem.

2.4 Approximating the Polya urn, the EDCM

A Polya urn with parametersβw assigns probability

Γ(β)
Γ(β + n)

∏
w

Γ(nw + βw)
Γ(βw)



to a document of lengthn where the wordw has appeared
nw times. Elkan [6] tried to get around the problem that
it is very difficult to maximize this expression. He used
the approximationΓ(x+α)

Γ(α) ≈ Γ(x)α for small α and be-
cause the parameters resulting from MLE on a Polya urn
on a corpus of documents are in general very small, much
smaller than one, he discovered that the parameters we get
when optimizing the approximate expression are close to
optimal for the original expression. The expression Elkan
maximized was

Γ(β)
Γ(β + n)

∏
w:nw≥1

βw(nw − 1)!, (3)

except that he worked with distributions on count vectors,
i.e. he had an extra factor which equalednQ

w nw! , the num-
ber of documents with that count vector. Elkan proved that
this is a much simpler optimization problem. By requiring
that all partial derivatives should be zero, he arrived at the
equations

βw =
∑

d I(nw(d) ≥ 1)∑
d(Ψ(β + n(d))−Ψ(β))

(4)

whereΨ(x) = d
dx log(Γ(x)), nw(d) is the number of times

the wordw has appeared in a documentd andn(d) is the
number of words in documentd. The right hand side de-
pends onβ =

∑
βw and, therefore, the parameters can not

be directly computed. However, if the right and left sides of
the equations are summed up, we end up with an equation
whereβ is the only unknown variable and, can therefore,
be solved efficiently numerically. When we haveβ we can
calculate theβw parameters by using Expression 4.

The Expression 3 above does not directly define a probabil-
ity distribution since it is not normalized. Elkan, however,
points out that the corresponding normalized probability
distribution on word count vectors is a probability distri-
bution in the exponential family with interesting properties
for modeling text. He also managed to succesfully use Ex-
pression 3 for clustering documents [7]. Instead of trying
to calculate that probability directly, we define a probabil-
ity distribution on subsets of the vocabulary of a specific
sizem, by letting the probability for a set consisting of the
typesw1, ..., wm be proportional toβw1βw2 ·...·βwm

where
we have defined a parameterβw > 0 for every wordw in
the vocabulary. The probability of the set{w1, ..., wm} of
m different word types from a vocabulary ofM word types
is then equal to

βw1βw2 · ... · βwm

Pm(β1, β2, ..., βM )
(5)

wherePm is the mth elementary symmetric polynomial
with M variables

Pm(β1, ..., βM ) =
∑

1≤i1<...<im≤M

βi1 · ... · βim .

We will define a probability distribution on documents
by first sampling a seating arrangement from a Chinese
Restaurant Process. We then know how many word types
will appear in the document, e.g.m, and the document is,
at this stage, defined as a sequence of numbers between1
andm. We have, however, not decided which word types
in our vocabulary correspond to those numbers but this can
be done using the distribution that we just defined.

Theorem 3. For the distribution defined above, the proba-
bility of a document where wordw has appearednw times
given that the document is of lengthn is

βm

m!Pm(β1, ..., βM )
Γ(β)

Γ(β + n)

∏
w:nw≥1

βw(nw − 1)!.

Proof. The probability of a specific seating arrangement
and a specific sequence of word types is the product of the
expression from Lemma 1 and1m! times the expression 5.
The 1

m! is due to the fact that Expression 5 is a set probabil-
ity and that the set can be ordered inm! different ways.

This expression defines the exchangeable normalization
called the EDCM by Elkan [6]. The first factor

βm

Pm(β1,...,βM ) represents the needed normalization for Ex-
pression 3. Unfortunately, the denominator is expensive to
compute. Note that if we would remove the requirement
on the order of the indicesi1, ..., im from the definition of
Pm, and only keep the requirement that they are different,
then every term would appearm! times. Furthermore, if we
would include additional terms by also removing the con-
dition that the indices should be different, we would end
up with a sum that is equal toβm. From this follows that
m!Pm(β1, ..., βm) < βm and that the normalizing constant
is larger than one.

2.5 New model B: A Generalized Polya urn
augmented with labels sampled without
replacement

The next new model we will consider is using a generalized
Polya urn as an adaptor instead of the CRP. There are sev-
eral different generalizations of the Polya urn scheme and
we will here use the one by Chung et. al. [3]. This scheme
depends on a choice ofλ ∈ [0, 1] andγ ≥ 0. Given that
we at the current stage haveak > 0 balls of colork in the
urn, the probability that the next one will be of colork is

(1−λ) aγ
kP

k aγ
k

and the probability that a ball of a previously

unseen color will appear isλ. If we choseγ = 1 andλ < 1,
as we will always do in this article, we get a power-law dis-
tribution with exponent1 + 1

1−λ . γ > 1 leads to conver-
gence to a situation where one colour has probability one,
i.e. monopoly in the language of economists.γ < 1 leads
to convergence towards uniformity. Growth rate increases
with size forγ > 1 and decreaes with size forγ < 1, see
the article by Chung at. al. [3]. If we letγ = 1, the main



difference to the CRP is that the probability that the cus-
tomer in question will sit down at the next table that none
of the customers in the sequence of observations has so far
used is alwaysλ. When we use the generalized Polya urn
as an abundance distribution, i.e. adaptor, we will, as we
do with the CRP, start with an empty restaurant and let the
first customer sit down at the first table and draw a label
from the generator.

Lemma 2. A generalized Polya urn withγ = 1 and pa-
rameterλ andak, assigns probability

λm−1(1− λ)n−m

(n− 1)!

m∏
k=1

(nk − 1)!xk

to a seating arrangement withn customers occupyingm
tables and the first customer to sit at tablek was customer
numberxk.

Proof. It has happened exactlym−1 times that a customer,
excluding the first, has chosen a previously unoccupied ta-
ble, and exactlyn − m customers have sat down at an al-
ready occupied table. The probability that customer num-
ber xk will sit down at the next empty table is alwaysλ
which can also be written asλxk

xk
, and the probability that

customer̃n will sit down at table numberk if it is already
occupied bỹnk customers is(1− λ) ñk

ñ . The expression in
the lemma is the product of all of those probabilities.

Suppose that we draw our labels from an urn with initial
probabilitypw for w, and that we have so far drawnn word
tokens andnw of those are of the word typew, then if
nw̃ = 0 the probability forw̃ is λ pw̃

1−pw1−...−pwm
where

w1, ..., wm are the word types that have appeared so far.
Otherwise the probability is(1− λ)nw̃+aw̃

n+a .

Theorem 4. A generalized Polya urn withγ = 1 and pa-
rameterλ augmented with labels drawn without replace-
ment from an urn, where word typew has initial probability
pw, assigns probability

λm−1(1− λ)n−m

(n− 1)!
∏m−1

i=1 (1−
∑i

j=1 pwj
)

m∏
k=1

(nwk
− 1)!pwk

xk

to a document withn word tokens of them+ different types
w1, ..., wm, indexed in the order of appearance,nw of the
word tokens are of typew and the first word token of type
wk was word numberxk.

3 Performing Maximum Likelihood
Estimation

We will now turn to the problem of parameter estimation
for our two new models. Since the data model is com-
plete for both models, the information that is extracted from
every documentd in the training data is the word types
present in the document and the number of typesm(d) and
tokensn(d) it contains.

3.1 New model A

For every word type that has occurred in a specific doc-
ument, it is always true that exactly one, the first, of the
word tokens of that type was drawn from the generator and
the rest came from the adaptor. We, therefore, have a com-
plete data model. Since we only have types occuring in
a small fraction of the documents, there is very little dif-
ference between parameter estimation for sampling with or
without replacement. Even if we sample with replacement,
we will have very few repetitions. Therefore, if we let the
parameterspw be proportional to

∑
d I(nw(d) ≥ 1), we

will have close to optimal parameters for the generator and
the lemma below provides us with theβ for the adaptor.
If we let βw = βpw we have exactly the parameters from
Equation 4 in section 2.4.

Lemma 3. Suppose that we haveD seating arrangements
and that seating arrangementd consists ofn(d) customers
occupyingm(d) tables. Then theβ maximizing the like-
lihood defined by a CRP with parameterβ, satisfies the
equation

1∑
d(Ψ(β + n(d))−Ψ(β))

=
1
β

∑
d

m(d)

whereΨ as before denotes the digamma functionΨ(x) =
d
dx log(Γ(x)).

Proof. Using the formula from Lemma 3 for the joint like-
lihood of these seating arrangementsL(β), we find that

d

dβ
L(β) =

∑
d

(
d

dβ
log(

Γ(β)
Γ(β + n(d))

) +
1
β

m(d))

=
∑

d

(Ψ(β)−Ψ(β + n(d)) +
1
β

m(d)).

It is now obvious that the equation in the lemma we are
proving is equivalent to the equationddβ L(β) = 0.

3.2 New model B

Since the data model is complete also for Model B we only
need to know how to find the parameters for the two classes
given what have been drawn from them. It is only the adap-
tor that is different from Model A.

Lemma 4. The parameterλ that maximizes the joint like-
lihood, defined by a generalized Polya urn with parameter
λ, of a set of seating arrangements, where seating arrange-
mentd consists ofn(d) customers sitting atm(d) unoccu-
pied tables is

λ =
∑

d(m(d)− 1)∑
d(n(d)− 1)

.

Proof. If we let L(λ) be the likelihood, given some choice
of the valuesxk andnk in Lemma 2 for every documentd,



it follows from the formula in Lemma 2 that

d

dλ
log L(λ) =

∑
d

(
m(d)− 1

λ
− n(d)−m(d)

1− λ
)

regardless of the choices ofxk andnk. From this follows
that d

dλ log L(λ) = 0 if and only if λ =
P

d(m(d−1))P
d(n(d)−1) .

4 Deriving TF-IDF as a cross-entropy

In information retrieval, the aim is to rank documents ac-
cording to how well they match a certain query. A query
Q is a set of distinct word types{w1, ..., wk}. To de-
fine a ranking measure we will, in this article, utilize the
cross-entropy concept that has arisen in rare event simula-
tion. Rare event simulation aims at accurately estimating
very small probabilities. The cross entropyCE(p, q) =∑

w p(w) log 1
q(w) can be interpreted as the average num-

ber of bits needed to identify an event sampled fromp, us-
ing a coding scheme based onq. It is closely related to the
Kullback-Leibler divergence. Letq be the ur-distribution
we begin the sampling of every document with, i.e. for both
of our new models,q(w) would be proportional to the num-
ber of documents thatw is present in. If we letIDF (w) =

|D|P
d I(nw(d)≥1) andN =

∑
w

∑
d I(nw(d) ≥ 1), then

log
1

q(w)
= log

N

|D|
+ log IDF (w).

N
|D| is the average number of word types per document. Let
p(x) be the probabilities resulting from the revision scheme
that defines Model B, applied to the word counts for the
document that we are analyzing.p(w) is, therefore, equal
to (1 − λ)TF (w), whereTF (w) is the frequency ofw in
d, if w is present ind, and miniscule otherwise. It follows
thatCE(p, q) ≈

(1− λ)
∑
w

TF (w)(log
N

|D|
+ log IDF (w)).

Given a queryQ, we can define a matching measure
MD(d,Q) for how welld matches the queryQ in the con-
text of corpusD by instead definingp by only taking into
account the information about how many times every word
in the query has appeared in the document and the total
number of words in the document. Using revision scheme
B, the result will actually only depend on the frequency of
the words in the query and not on the length of the docu-
ment. If we letMD(d, Q) be proportional (with 1

1−λ as the
proportionality constant) toCE(p, q) with the p resulting
from those revisions, it follows thatMD(d, Q) ≈∑

w∈Q

TF (w)(log
N

|D|
+ log IDF (w)). (6)

This is a variation of the TF-IDF heuristic where
TD log IDF has been replaced byTD(C + log IDF ).

For C > 0 we have a measure that is based on a more
moderate term (i.e. word type) weighting than the original
measure, which corresponds toC = 0. If you are creating a
search engine, you might be interested in choosingC from
the preferences of a test group of users instead of by the
formula above. The formula above depends on how many
words you have chosen to exclude to begin with. If you
would choose to also exclude all words that are not in the
query, you would end up with a smallC. Thus, we actually
have a foundation for choosing almost anyC > 0. The
original TF-IDF, which corresponds toC = 0, has been re-
ported to be more prone to ranking a document containing
k−1 out ofk query words above documents containing all
of them than is preferred by search engine users. This is
called non-coordination. The level of non-coordination for
the measure presented here will be decreasing with increas-
ing C. Many of the variations of TF-IDF in use contain a
moderating constant of some sort to improve the coordina-
tion level [10].

The main idea of this section is to base a coding scheme
on the ur-distributionq. All the discussed two-stage condi-
tional models give us the same approximately optimalq.
Instead of thep used above, we could plug in the doc-
ument’s word fequency vector but with zeros instead of
the coefficients corresponding to words that are not in the
query.CE(p, q) would then equal Expression 6. This can
be interpreted as the number of bits needed to store the rel-
evant part of the frequency vector.

5 TF-IDF compression of word count data

Cross entropy has been proven useful for estimation of
probabilities for rare events, andCE(p, q) can be inter-
preted as the average number of bits needed to idenify an
event sampled fromp, using a coding scheme based onq.
This is related to the close connection between statistical
modeling and compression techniques. If we want to store
a collection of word count vectors in a compressed format,
the first thing that we should do is to store every vector as
a set of pairs(wi, ni), where we have discarded the pairs
corresponding to word types that have not occured. The
next step is to find one coding scheme for the word types,
based on their probability of being present in a document,
and one coding scheme for the numbers representing the
counts. Using document frequency for the first part and
a power-law with exponent2 for the second are natural
choices. In this article, TF-IDF has been explained by im-
plementing the two ideas of separating presence from abun-
dance when present and that word counts are power-law
distributed. Thus, it is reasonable to use the name TF-IDF
compression for the resulting file format. However, in con-
trast to the models introduced in this article, the described
file format does not incorporate a model for the number of
present word types.



6 Summary and future plans

We argue that when word counts are modeled, the issue of
presence should be separated from the issue of abundance
given presence. For the latter issue word burstiness, i.e.
the power-law behavior of word tokens, should be taken
into account. We use the adaptor/generator framework in-
troduced by Goldwater et. al as a unifying framework for
word burstiness models and we present new two-stage con-
ditional presence/abundance models within it. We use the
separation of presence from abundance given presence to
derive the TF-IDF heuristic for information retrieval and
we also use this separation to provide a connection between
TF-IDF and file formats that compress word count vectors.
The author believes that there are many opportunities for
using NLP techniques for biodiversity information analysis
and management, in particular for multiple species inven-
tories and monitoring [12]. Models like Latent Dirichlet
Allocation that take co-occurences into account could turn
out to be useful.

Future plans also involve topic classification and deriving
new and/or existing variations of TF-IDF by using gener-
alized entropy and Bregman divergences together with the
introduced models.
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