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Abstract

Kernel methods implicitly map data points
from the input space to some feature space
where even relatively simple algorithms such
as linear methods can deliver very impressive
performance. Of crucial importance though
is the choice of the kernel function, which
determines the mapping between the input
space and the feature space. The past few
years have seen many efforts in learning ei-
ther the kernel function or the kernel matrix.
In this paper, we study the problem of learn-
ing the kernel hyperparameter in the context
of the kernelized LASSO regression model.
Specifically, we propose a solution path algo-
rithm with respect to the hyperparameter of
the kernel function. As the kernel hyperpa-
rameter changes its value, the solution path
can be traced exactly without having to train
the model multiple times. As a result, the
optimal solution can be identified efficiently.
Some simulation results will be presented to
demonstrate the effectiveness of our proposed
kernel path algorithm.

1 Introduction

Kernel methods (Schölkopf & Smola, 2002; Müller
et al., 2001) have demonstrated great successes in solv-
ing many machine learning and pattern recognition
problems. These methods implicitly map data points
from the input space to some feature space where typ-
ically a linear method is applied. The implicit feature
mapping is determined by a kernel function, which al-
lows the inner product between two points in the fea-
ture space to be computed without having to know the
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explicit mapping from the input space to the feature
space. Rather, it is simply a function of two points in
the input space.

For a kernel method to perform well, the kernel func-
tion often plays a very crucial role. Rather than choos-
ing the kernel function and setting its hyperparame-
ters manually, many attempts have been made over
the past few years to automate this process, at least
partially. These methods can generally be catego-
rized into two major approaches based on either ker-
nel function learning or kernel matrix learning. The
kernel function learning approach ranges from learn-
ing the hyperparameters of some prespecified kernel
function to learning a kernel function within a class
of possible kernel functions. The method of hyper-
kernels (Ong et al., 2005) belongs to the latter ex-
treme which is more general than the former extreme.
However, the number of hyperparameters that need to
be learned is so large that it is not very practical for
many real-world applications. Instead of learning the
kernel function itself, the second approach bypasses
it by learning the kernel matrix defined only for a
given set of data points. A number of kernel matrix
learning methods have been proposed, e.g., (Cristian-
ini et al., 2002; Lanckriet et al., 2004; Zhang et al.,
2006). However, many of these methods are based on
the transductive learning setting, making it nontrivial
to achieve out-of-sample extension. Moreover, many
of these methods are formulated as semidefinite pro-
gramming (SDP) problems. Despite their convexity,
they incur high computational cost especially when the
data set is large.

Our paper adopts the kernel function learning ap-
proach. However, unlike the method of hyperkernels,
we seek to learn the optimal hyperparameter value for
a prespecified kernel function. The traditional ap-
proach to this model selection problem is to apply
methods like cross validation to determine the best
choice among a number of prespecified hyperparame-
ter values. Extensive exploration such as performing



line search for one hyperparameter or grid search for
two hyperparameters is usually used. However, this re-
quires training the model multiple times with different
hyperparameter values and hence is computationally
prohibitive especially when the number of candidate
values is very large.

More recently, a novel approach has emerged that
seeks to explore the entire solution path for all regular-
ization parameter values without having to train the
model multiple times. Efron et al. (2004) developed
the least angle regression (LARS) algorithm which fits
the coefficient path for the linear least square regres-
sion problem regularized with the L1 norm. An im-
portant finding is that the coefficient path is piecewise
linear and hence it is efficient to explore the entire so-
lution path by monitoring the breakpoints only. Zhu
et al. (2003) proposed an algorithm to compute the en-
tire regularization path for the L1-norm support vector
classification (SVC) and Hastie et al. (2004) proposed
one for the standard L2-norm SVC. They are again
based on the property that the regularization paths
are piecewise linear. More generally, Rosset and Zhu
(2003) showed that any model with an L1 regulariza-
tion and a quadratic, piecewise quadratic, piecewise
linear, or linear loss function has a piecewise linear co-
efficient path and hence the entire solution path can
be computed efficiently. For general loss functions and
regularization constraints, the solution paths are typ-
ically not piecewise linear. Bach et al. (2005) ex-
plored a nonlinear regularization path for multiple ker-
nel learning regularized with a block L1-norm. Rosset
(2004) proposed a general path following algorithm to
approximate the original regularization path for such
cases. Besides for the regularization parameter, our
recent work (Wang et al., 2006) shows that this ap-
proach can also be used for exploring the solution path
for some other hyperparameter.

In this paper, we propose a novel method that traces
the entire solution path for the kernel hyperparameter
of a kernel-based nonlinear regression method, called
kernelized LASSO (kLASSO) (Roth, 2004). Since the
kernel hyperparameter is embedded into each entry
of the kernel matrix, the next breakpoint cannot be
computed beforehand. Moreover, the path is no longer
piecewise linear. Nevertheless, our method provides
an efficient algorithm that can still calculate the next
optimal solution exactly as the kernel hyperparameter
value changes. Hence, we can trace the kernel path
exactly instead of using the approximation technique
of (Rosset, 2004). Moreover, the algorithm is a general
approach that can be used for many different kernel
functions.

The rest of this paper is organized as follows. In Sec-
tion 2, we review the kLASSO model and briefly dis-

cuss the regularization path algorithm. In Section 3,
we derive the updating equation for the optimal so-
lution with respect to the kernel hyperparameter and
present the kernel path algorithm. More discussions of
the kernel path algorithm are given in Section 4 and
some experimental results are presented in Section 5.
Finally, Section 6 concludes the paper.

2 Kernelized LASSO

In a typical regression problem, we are given a train-
ing set of independent and identically distributed (iid)
data pairs {(xi, yi)}n

i=1 ⊂ Rd × R, where xi and yi

are the input and output, respectively, of the ith pair.
A special form of regression called LASSO regression
was proposed by Tibshirani (1996), where the acronym
LASSO stands for least absolute shrinkage and se-
lection operator. LASSO regularizes ordinary least
square regression with an L1 regularizer. It is an ef-
fective linear regression technique for feature selection.
It can lead to sparse solutions by shrinking the coeffi-
cients of the irrelevant or redundant features to zero.
Theoretical analysis (Ng, 2004) shows that LASSO is
particularly effective when there exist many irrelevant
features but only very few training examples.

2.1 Model Formulation

The kernelized LASSO (kLASSO) (Roth, 2004) uses
D = {K(x,x1), ..., K(x,xn)} as a dictionary of ba-
sis functions to extend LASSO for nonlinear regres-
sion, where Kγ(xi,xj) is the kernel function defined
on Rd × Rd and γ is some kernel hyperparameter in
the kernel function. Thus, a representation of the re-
gression function f admits the following form:

f(x) =
n∑

i=1

βiKγ(xi,x) + β0. (1)

where β = (βi)n
i=1 and β0 are the coefficients of the

regression function. Let y = (yi)n
i=1 denote the out-

put vector and K = [K(xi,xj)]ni,j=1 the kernel matrix.
The regularized empirical loss Lk that kLASSO aims
to minimize is given by

Lk(β, β0) =
1
2
‖y −Kβ − β01‖22 + λ‖β‖1, (2)

where 1 is a vector of ones, ‖ · ‖2 denotes the L2 norm
of a vector, ‖ · ‖1 denotes the L1 norm of a vector,
and λ is a regularization parameter. Note that f(x)
is expressed as an expansion in terms of only a subset
of the data points for which βi is nonzero. Since L1

norm is used, f(x) tends to give a sparse representa-
tion. There are two hyperparameters, i.e., γ and λ, in
kLASSO.



Taking the first derivative of Lk in (2) with respect to
β0 and setting it to zero, we get

β0 = (y −Kβ)T 1/n. (3)

Hence the optimal β0 can be calculated directly from
β. On the other hand, Lk is not differentiable with
respect to β since the L1 norm is used. This calls for
a special method to overcome the problem. Following
Rosset and Zhu (2003), we represent β = β+ − β−,
where β+ = (β+

i )n
i=1 and β− = (β−i )n

i=1 with the con-
straints β+

i , β−i ≥ 0 for i = 1, . . . , n. The regularized
optimization problem can thus be rewritten as

min
β+

,β−
1
2

∥∥y −K(β+ − β−)− β01
∥∥2

2

+λ
n∑

i=1

(β+
i + β−i ) (4)

subject to β+
i , β−i ≥ 0 i = 1, . . . , n. (5)

Introducing Lagrange multipliers µ+ = (µ+
i ) and

µ− = (µ−i ) (i = 1, . . . , n) for the inequality con-
straints, the Lagrangian dual function can be ex-
pressed as

Ld =
1
2

∥∥y −K(β+ − β−)− β01
∥∥2

2
(6)

+λ
n∑

i=1

(β+
i + β−i )−

n∑

i=1

µ+
i β+

i −
n∑

i=1

µ−i β−i .(7)

Since Ld is differentiable with respect to both β+ and
β−, we can state the optimality conditions as:

∂Ld

∂β+
i

=
(−K(y −K(β+ − β−)− β01)

)
i
+ λ− µ+

i = 0(8)

∂Ld

∂β−i
=

(
K(y −K(β+ − β−)− β01)

)
i
+ λ− µ−i = 0. (9)

From the KKT conditions, we have

µ+
i β+

i = 0, µ+
i ≥ 0, (10)

µ−i β−i = 0, µ−i ≥ 0. (11)

Based on the conditions (8)–(11) above, we know that,
for any fixed hyperparameter values, the optimal solu-
tion should have the following properties:

• If λ > 0:

– β̂+
i > 0 ⇒

(
K(y −K(β̂

+ − β̂
−

)− β̂01)
)

i
=

λ, β−i = 0

– β̂−i > 0 ⇒
(
K(y −K(β̂

+ − β̂
−

)− β̂01)
)

i
=

−λ, β̂+
i = 0

– β̂+
i = 0, β̂−i = 0 ⇒ −λ ≤(
K(y −K(β̂

+ − β̂
−

)− β̂01)
)

i
≤ λ

• If λ = 0:

– K(y −Kβ̂ − β̂01) = 0 (non-regularized so-
lution)

Let g = (gi)n
i=1 be an n-dimensional vector such that

g = K(y−Kβ−β01). For those nonzero coefficients β̂i

at the optimal solution, their corresponding elements
gi are equal to λ or −λ, whose sign is determined by
the sign of the coefficient. Thus, we have a set of active
points, denoted as A = {i ∈ {1, ..., n} : β̂i 6= 0}, such
that

i ∈ A ⇒ gi = sgn(β̂i)λ (12)
i /∈ A ⇒ |gi| < λ. (13)

As the value of a hyperparameter changes, the direc-
tion along which β̂ moves should also satisfy conditions
(12) and (13). Based on these properties, we can derive
either the regularization path algorithm or the kernel
path algorithm for kLASSO.

2.2 Regularization Path Algorithm

We first briefly review the regularization path algo-
rithm for kLASSO. The initialization of the λ-path is
quite straightforward. When λ tends to infinity ini-
tially, the optimal solution corresponds to β = 0 and
β0 = yT 1/n. Thus g = K(y − β01). At this moment,
the active set A is empty and hence condition (13)
holds for all elements in g. More accurately, we have
|gi| < λ ∀i. Thus, the regression function value is β0

for any input and hence it is flat. As λ decreases, all
elements in β will remain to be zero until λ reaches
a certain value when one data point has its |gi| value
equal to λ. This data point is then added to A.

As λ further decreases, the coefficient βA = (βi) ∀i ∈
A will coordinate accordingly to ensure that |gi| =
λ ∀i ∈ A. Generally, the updating direction of the

optimal solution ∂
ˆβ

∂λ can be calculated directly from
condition (12) when A is fixed. However, as λ de-
creases, some data points may join A while some other
data points in A may leave it. When A changes, the
updating direction has to be re-calculated. The regu-
larization algorithm monitors the breakpoint at which
A changes and calculates a new updating direction for
the next solution. For a kLASSO solution with a cer-
tain λ value, the next λ breakpoint can be computed
before the regularization path extends to this point.
Since the path proceeds linearly along the given di-
rection, any solution between two breakpoints can be
computed directly.



3 Kernel Path Algorithm

Let γ be the hyperparameter in the kernel function
Kγ(xi,xj). The kernel matrix Kγ varies as γ changes.
The principle underlying the update of solution in the
kernel path is the same as that for the regularization
path, i.e., the updating direction of the optimal solu-

tion ∂
ˆβ

∂γ should also satisfy conditions (12) and (13).
Let us consider the period between the lth event (with
γ = γl) and the (l + 1)th event (with γ = γl+1).
The active set A remains unchanged during this pe-
riod with no point joining or leaving the set. Sup-
poseAl contains m indices which can be represented as
an m-tuple (Al(1), ...,Al(m)) such that Al(i) < Al(j)
for i < j. Let (βl, βl

0) and Al denote the optimal
solution and the active set, respectively, right after
the lth event has occurred. For any γ value with
γl+1 < γ < γl, the new solution (β, β0) should sat-
isfy

−β0 + (y −Kγβ)T 1/n = 0 (14)
(Kγ(y −Kγβ − β01))Al = sgn(βl

Al)λ. (15)

Let ki be the ith column of the kernel matrix K. Then
KAl = [kAl(1), ...,kAl(m)] is an n × m matrix and
HAl = KT

AlKAl is an m × m matrix. Since the co-
efficients for points outside A are zero, equations (14)
and (15) can be simplified to

β0 + (Kγ
AlβAl)T 1/n = yT 1/n (16)

β0(K
γ
Al)T 1 + Hγ

AlβAl = (Kγ
Al)T y − sgn(βl

Al)λ.(17)

As the objective is to obtain a new solution (β, β0)
from (βl, βl

0), we transform equation (16) to

(β0 − βl
0) + (Kγ

Al(βAl − βl
Al))T 1/n =

−βl
0 − (Kγ

Alβ
l
Al)T 1/n + yT 1/n (18)

and equation (17) to

(β0 − βl
0)(K

γ
Al)T 1 + Hγ

Al(βAl − βl
Al) =

−βl
0(K

γ
Al)T 1−Hγ

Alβ
l
A + (Kγ

Al)T y − sgn(βl
Al)λ.(19)

Hence, (18) and (19) constitute m+1 linear equations.
We define the following variables:

∆a =
[

β0 − βl
0

βAl − βl
Al

]
, A =

[
1 1T Kγ

Al/n
(Kγ

Al)T 1 Hγ
Al

]
,

ba =
[ −βl

0 − (Kγ
Alβ

l
Al)T 1/n + yT 1/n

−βl
0(K

γ
Al)T 1−Hγ

Alβ
l
A + (Kγ

Al)T y − sgn(βl
Al)λ

]
.

Then the m + 1 linear equations above can be repre-
sented in matrix form as

A∆a = ba (20)

If A is of full rank, then A−1 exists and we have
[

β0

βAl

]
=

[
βl

0

βl
Al

]
+

[
c0

c

]
, (21)

where
[

c0

c

]
= ca = A−1ba. As a result, equa-

tion (21) gives the updating formula for the new solu-
tion. Unlike most solution path algorithms in which
the path is piecewise linear, the solution (β, β0) in the
kernel path does not proceed linearly in γ. Despite
this seemingly undesirable property, it is interesting
to note that the new solution can still be calculated
exactly. The updating direction ca depends only on
the new kernel value γ and the old solution (βl, β0),
but does not depend on the old kernel value γl.

From equation (21), we can update the coefficients of
the points in A while other coefficients remain zero.
As γ changes, the algorithm needs to monitor the oc-
currence of any of the following events:

• One of the βA(i) for i = 1, . . . , m reaches 0;

• A point i /∈ A joins A, i.e., |gi| = λ.

By monitoring the occurrence of these events, we com-
pute the largest γ < γl for which an event occurs. This
γ value is a breakpoint and is denoted as γl+1. We then
update A and continue until the algorithm terminates.

For those solution path algorithms in which the path is
piecewise linear with respect to a hyperparameter, the
breakpoint at which the next event occurs can be cal-
culated in advance before actually reaching it. How-
ever, the value of the kernel hyperparameter is im-
plicitly embedded into the pairwise distance between
points. As a result, we need to specify a γ value in
advance to compute the next solution and then check
whether the next event has occurred or not. Suppose
we are given the optimal solution when γ = γl. We
propose here an efficient algorithm for estimating the
next breakpoint, i.e., γl+1, at which the next event will
occur. Table 1 shows the pseudocode for the kernel
path algorithm. The user has to provide a decay rate
θ ∈ (0, 1) in advance. At each iteration, γ is decreased
through multiplying it by θ. If the next event has not
occurred, we continue to multiply γ by θ. Otherwise
the decay rate is set to θ1/2. The above steps are re-
peated until the decay rate becomes less than (1− ε),
where ε is some error tolerance specified by the user
in advance. Hence, we can estimate the breakpoint
γ such that γl+1(1 − ε) ≤ γ ≤ γl+1. Note that this
algorithm only describes the kernel path algorithm in
the decreasing direction. In general, γ can either in-
crease or decrease. The kernel path algorithm for the
increasing direction is very similar and hence omitted



here due to space limitation. Figure 1 shows part of
the coefficient paths during the execution of the kernel
path algorithm when the regularization parameter is
fixed.

Table 1: Kernel path algorithm for the decreasing di-
rection.

Input: β̂, β̂0, γ0 (initial solution for γ)
θ, ε, γmin (decay rate, error tolerance,
and γ limit)

1. set t = 0; set β0 = β̂, β0
0 = β̂0;

2. while (γ > γmin)
3. set r = θ;
4. while (r < 1− ε)
5. γ = γt r;
6. use (21) to compute

(
β(γ), β0(γ)

)
;

7. if
(
β(γ), β0(γ)

)
is the valid solution

8. βt+1 = β(γ); βt+1
0 = β0(γ);

9. γt+1 = γ; t = t + 1;
10. else r = r1/2;
11. endif
12. end-while
13. update A;
14. end-while;

Output: a sequence of solutions (β(γ), β0(γ))
with γmin < γ < γ0
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Figure 1: An example of the coefficient paths in
kLASSO. The RBF kernel hyperparameter increases
from 0.16 to 0.5 when λ is fixed at 0.1. The vertical
lines indicate the breakpoints in the coefficient β(γ)
paths.

We assume on average that the ratio of the γ values
(γt+1/γt) at two consecutive events is π. Thus, the al-
gorithm needs (logθ π + log2(log1−ε θ)) iterations from
γt to γt+1. The choice of θ is a tradeoff between logθ π
and log2(log1−ε θ), and the choice of ε represents a
tradeoff between computational complexity and accu-
racy. Figure 2 shows the number of iterations needed

as a function of the decay rate θ. Three average ra-
tios, π = 0.85, 0.9 and 0.95, are considered and the
error tolerance ε is set to 10−6. If θ is chosen to be
not very close to 1, then the number of iterations does
not change much. Thus, we set θ = 0.95 and ε = 10−6

in our experiment, and the algorithm always takes less
than 20 iterations to reach the next breakpoint. In
the 7th step, the algorithm checks whether the new
solution is valid or not. A naive way would be to scan
through the entire training set to validate the move.
However, this approach is too slow involving a lot of
unnecessary computation. A feasible alternative for
larger datasets is to keep track of only a limited set
of marginal points, i.e., M = {i ∈ A | − ξ1 < βi <
ξ1} ∪ {i /∈ A | −ξ2 < |gi|−λ < ξ2} for small ξ1 and ξ2,
and then discard all other points. The marginal points
are those that are likely to join or leave the active set.
Keeping track of only these points between two con-
secutive events makes the algorithm significantly more
efficient. Every time after an event occurs, the set of
marginal points will be updated accordingly.
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Figure 2: Number of iterations logθ π + log2(log1−ε θ)
vs. decay rate θ. Three different π values (0.85, 0.9,
0.95) are considered and the error tolerance ε is set to
10−6.

Since γ decreases at each iteration, the kernel matrix
also changes accordingly. However, it is not necessary
to re-compute the entire kernel matrix. To update
the solution through equation (21), only the entries
Kγ(xi,xj) for i, j ∈ A need to be computed again.
The cost of inverting an m ×m matrix is O(m3). To
monitor whether a marginal point i ∈ M joins or
leaves the active set, the entries Kγ(xi,xj), i ∈M, j =
1, ..., n need to be re-calculated and the conditions (12)
and (13) are checked. Suppose there are p marginal
points. Then n × p entries in the kernel matrix have
to be updated. This leads to an overall complexity
of O(np + m3) for each iteration. After one event oc-
curs, the algorithm has to calculate the new g with
a complexity of O(n2m). The total number of events
depends on both the range [γmin, γ0] and the λ value



specified by the user. If λ is large, only a small num-
ber of points will join or leave the active set during
the algorithm, and vice versa. From the experiments,
we notice that the number of events is always between
[0.5n, 5n].

4 Discussions

Note that the kernel function used in the algorithm
can be very general. For example, we may use the
polynomial kernel Kc,d(xi,xj) = (〈xi,xj〉+ c)d or the
RBF kernel Kσ(xi,xj) = exp(−‖xi−xj‖2/σ). If there
exist multiple hyperparameters in the kernel function,
the kernel solution path may still be traced in a mul-
tivariate space by updating the solution for one hy-
perparameter while holding the others fixed at each
iteration. A requirement of the kernel path algorithm
is that the matrix A is of full rank, which is equivalent
to requiring that Hγ

Al is of full rank. This requirement
can be satisfied by eliminating identical points and us-
ing the RBF kernel. However, this usually cannot be
achieved by using other kernel functions. Fortunately,
this problem can be alleviated by adding a small posi-
tive constant ν, called the ridge term, to each diagonal
entry of the matrix Hγ

Al , i.e.,

A =
[

1 1T Kγ
Al/n

(Kγ
Al)T 1 Hγ

Al + νI

]
. (22)

This is in fact equivalent to adding an additional L2
regularizer with a small regularization parameter to
the regularized empirical loss Lk. Thus, the vector ba

also needs to be modified as
[ −βl

0 − (Kγ
Alβ

l
Al)T 1/n + yT 1/n

−βl
0(K

γ
Al)T 1− (Hγ

Al + νI)βl
A + (Kγ

Al)T y − sgn(βl
Al)λ

]
.

(23)
With this modification, the kernel path algorithm can
be applied to most kernel functions.

Rosset (2004) proposed a general path following algo-
rithm based on second-order approximation when the
solution path is not piecewise linear. It assumes that
the solution update is not exact. Thus the algorithm
only takes a very small step s in each iteration and
applies a single Newton-Raphson step to approximate
the next solution. Since it does not try to calculate the
breakpoint value, the difference between the estimated
value γ and the real breakpoint value γl is |γ−γl| < s.
As a result, it is infeasible to keep the error tolerance
to be very small. Otherwise, the total number of iter-
ations will become very large. On the contrary, in our
algorithm, if the number of iterations increases, the
error tolerance will decrease exponentially, making it
possible to keep the error tolerance arbitrarily small.

Since the optimal hyperparameter values are data de-
pendent, the user has to choose the hyperparameter

values carefully for different datesets. Generally speak-
ing, there is a region in the hyperparameter space
where the kLASSO model fits the data well. Out-
side this region either overfitting or underfitting is ex-
pected. Figure 3 is a hypothetical illustration of this
generally observed phenomenon. We consider the RBF
kernel K(xi,xj) = exp(−‖xi − xj‖2/σ) here and the
two hyperparameters λ and σ are constrained to be
positive. Given a data set, we assume there is a region
λ = [λ1, λ2] and σ = [σ1, σ2] where the model performs
well. When σ > σ2, the regression function is not flex-
ible enough and it always underfits the data. However,
when σ < σ1, the function is too elastic and is sensi-
tive to most points. As a result, it always overfits the
data. This provides us some heuristics to coordinate
the two solution path algorithms when exploring the
hyperparameter space.

λ1 λ2 λ

σ

σ1

σ2
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UOO
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U: Underfitting

O: Overfitting

F: Proper fitting

0

Figure 3: Performance of the model depends on the
choice of the hyperparameter value.

5 Experiments

The behavior of solution path algorithms can best be
illustrated using video. We have prepared some il-
lustrative examples as video in http://www.cse.ust.
hk/~wanggang/sol_path/klasso.htm.
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Figure 4: Based on three λ-paths with σ = 10, 1, 0.1,
the optimal solution for each path in terms of the MSE
on the validation set is plotted.



We randomly generate a set of 100 data points
{(xi, yi)} with xi drawn uniformly from [−3, 3] and
yi = sin(πxi)/(πxi) + ei, where ei is a Gaussian noise
term with mean zero and standard deviation 0.08. We
randomly partition the data set into a training set of
50 points and a validation set of 50 points. The RBF
kernel is used in our experiments, and hence the kernel
path is traced with respect to σ.

We first consider the λ-path algorithm in kLASSO.
The algorithm terminates when λ is less than 10−4.
Decreasing λ further does not help to further reduce
Lk much but brings more redundant points into the
active set. For each solution path, we compute the
mean squared error (MSE) on the validation set for
every regression function solution along the path. The
solution that minimizes the MSE is then chosen and
the corresponding regression function is plotted in Fig-
ure 4. The optimal regression function overfits the
data when σ = 0.1 but underfits the data when σ = 10.
It fits the data well when σ = 1. Figure 5(a) shows
the MSE curves along the λ-paths for different ker-
nel hyperparameter values. It is apparent that setting
σ = 10 is too large and setting σ = 0.1 is too small
to fit this data set of 50 points. The MSE on the val-
idation set is minimized when an appropriate kernel
parameter, σ = 1, is chosen. In Figure 5(b), we plot
the active set size against λ for different values of σ.
When σ = 0.05, the function is too elastic. The ac-
tive set size generally increases as λ decreases. During
this process, more and more points enter the active set
and then settle down there. The regression function is
thus sensitive to many points, leading to overfitting of
the data. When σ = 5, on the other hand, the active
set size always remains small. Since the function is
not flexible enough, most points are not likely to stay
inside the active set simultaneously. This leads to un-
derfitting of the data. Hence, the active set size is one
indicator of the generalization ability of the function.
Figure 5(c) shows that λ decreases rapidly during the
first few steps of the λ-path algorithm. Afterwards,
the rate of decrease slows down significantly. Thus,
the minimum MSE can be reached quite efficiently af-
ter only a small number of steps in the λ-path algo-
rithm, provided that an appropriate kernel parameter
is specified in advance.

We now consider tracing the kernel path, which is
shifted from an intermediate step of the λ-path algo-
rithm with σ = 10. As λ decreases, we select three
different shifting points, λ = 1, 0.1, 0.01, to launch the
kernel path and the kernel hyperparameter decreases
from 10 to 0.1. The experimental results are shown in
Figure 6. When λ is set to a large value like λ = 1,
the regression function always underfits the data re-
gardless of what the kernel hyperparameter value is.

Thus, the MSE is large during the entire kernel path.
In this case, we notice that only very few points en-
ter the active set and hence the regression function
cannot be represented well. The fact that the active
set size is always small makes the kernel path algo-
rithm terminate after a small number of steps. As
the shifting point is set to λ = 0.1, a good regression
function is found along the kernel path. The MSE is
minimized as σ decreases to 1. However, decreasing σ
further brings more points into the active set, making
the MSE increase due to overfitting. Since more points
are included in the active set, the number of steps re-
quired for the kernel path algorithm also increases. A
good regression function is also found when the kernel
path starts with λ = 0.01. However, the active size
size becomes larger and the kernel path has to pass
through more breakpoints. It indicates that we should
stop exploring the hyperparameter space when the ac-
tive set is already too large, since it costs unnecessary
computation and overfitting is expected.

6 Conclusion

In this paper, we propose a novel method for tracing
exactly the entire kernel path with respect to the ker-
nel hyperparameter of the kLASSO regression model,
even though the path is not piecewise linear. Due to
the sparseness property of the L1 regularizer in the
regression function, the entire solution path can be
traced very efficiently. Our method thus provides an
attractive approach to the learning of the kernel pa-
rameter without having to train the model multiple
times.
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