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Abstract

Efforts have been directed at obtaining flexi-
ble learning procedures that optimally adapt
to various possible characteristics of the data
generating mechanism. A question that ad-
dresses the issue of how far one can go in this
direction is: Given a regression procedure,
however sophisticated it is, how many regres-
sion functions are estimated accurately? In
this work, for a given sequence of prescribed
estimation accuracy (in sample size), we give
an upper bound (in terms of metric entropy)
on the number of regression functions for
which the accuracy is achieved. Interesting
consequences on adaptive and sparse estima-
tions are also given.

1 Introduction

Powerful regression procedures have been proposed
and certainly more will come to deal with challeng-
ing issues such as the curse of dimensionality. A main
spirit in modern regression learning is to construct sta-
tistical procedures that intelligently learn and adapt to
the real characteristics of the data. The hope is that
such a learning procedure is highly flexible to work
well for various scenarios. Universally consistent esti-
mators have been found (e.g., Stone (1977) and De-
vroye and Wagner (1980)). However, the convergence
of such an estimator to the true regression function can
be arbitrarily slow (see, e.g., Devroye (1982)). In con-
trast to consistency, minimax risks are often consid-
ered for better describing the performance of an esti-
mator for target functions with certain characteristics
(e.g., monotonicity or smoothness). Such characteris-
tics usually determine how fast the minimax risk con-
verges to zero. For example, the smoother the func-
tion to be estimated is, the faster the minimax risk
converges (see, e.g., Ibragimov and Hasminskii (1977),

Bretagnolle and Huber (1979), Stone (1982)). More
generally, relationship between the minimax rate of
convergence and the largeness of the function class as
measured in terms of metric entropy is now well under-
stood under familiar loss functions (e.g., Birgé (1986),
Yatracos (1988) and Yang and Barron (1999)).

Since early original work of Efromovich and Pinsker
(1984), adaptive function estimation has received con-
siderable attention (see, e.g., Donoho and Johnstone
(1998) and Barron, Birgé and Massart (1999) for some
references). The main goal is to have a learning pro-
cedure that automatically adapt to various possible
characteristics of interest (e.g., smoothness degree of
the function or interaction order of the predictors) in
terms of minimax rate of convergence.

Clearly adaptation is a desirable property for function
estimation. If possible, one would wish to use a su-
per adaptive procedure that can intelligently utilize
the information in the data to produce most accurate
estimators suitable for as many situations as possi-
ble. A natural question then is: how adaptive can
any procedure be? This motivates the study of the
problem that for a given regression leaning procedure,
how many functions are estimated well. Kerkyachar-
ian and Picard (e.g., 2002) answered this question for
certain types of well-known nonparametric procedures
(e.g., wavelet thresholding and smoothing with local-
ized bandwidth selection). In this paper, we deal with
an arbitrarily sophisticated procedure and show that
the set of regression functions that can be well esti-
mated is fundamentally limited in size.

The rest of the paper is organized as follows. In Section
2, we recall a result that for a given class of probability
density functions, a good news in estimation directly
forecasts a bad news. In Section 3, we present the main
result that no estimator can converge fast for many
underlying functions. In Section 4, we give a negative
consequence of the main result on adaptive function
estimation. In Section 5, we show that in some sense,
every regression procedure is essentially no better than



a method based on a certain sparse approximation.

2 Lower bounding minimax risk
through upper bounds

In this section, we provide a preliminary result, which
will be used for deriving the main results. Let X1,
X2, ..., Xn be i.i.d. observations with probability den-
sity function p(x), x ∈ X with respect to a σ-finite
measure µ. Here the space X is general and could be
any dimensional. One needs to estimate the unknown
density p based on the data.

The Kullback-Leibler (K-L) divergence between two
densities p and q is defined as D(p ‖ q) =∫

p log (p/q) dµ. Let d be a distance (metric) between
densities. Examples are Hellinger distance dH(p, q) =(∫ (√

p−√
q
)2

dµ
)1/2

and the L2 distance ‖ p− q ‖=(∫
(p− q)2 dµ

)1/2

. The loss d2(p, p̂) will be considered
for density estimation in this section.

Let F be a class of density functions. Then the mini-
max risk for estimating a density in F at sample size
n under the d2 loss is defined as

R(F ; d;n) = inf
p̂

sup
p∈F

Ed2(p, p̂),

where the infimum is taken over all density estimators.

Metric entropy is a fundamental concept describing
massiveness of a set (see, Kolmogorov and Tihomirov
(1959) or Lorentz et al (1996, Chapter 15)). A set
N is said to be an ε-packing set in F if N ⊂ F and
any two distinct members in N are more than ε apart
under the metric d. The packing ε-entropy of the set
F under the metric d, denoted by M(ε;F), is then
defined to be the logarithm of the size of the largest
ε-packing set in F .

The result below is essentially in Yang and Barron
(1999) (not formally given there but contained in the
proofs).

Theorem 1: For a sequence of estimators p̂k based
on X1, ...Xk, 1 ≤ k ≤ n, if supp∈F ED(p ‖ p̂k) ≤ b2

k,
then for the minimax risk, we have

R(F ; d;n) ≥
σ2

n,d

8
,

where σ2
n,d is chosen such that

M(σn,d;F) =

⌈
2

(
n−1∑
i=0

b2
i + log 2

)⌉
.

3 How many regression functions can
be served well by any given
regression procedure?

We now show that the collection of functions that have
small risks by any given estimation procedure is fun-
damentally limited in size. We study the problem in a
nonparametric regression setting for convenience, but
similar results can be obtained for density estimation
as well.

Consider the regression model

Yi = f(Xi) + εi, i = 1, ...n,

where (Xi, Yi)n
i=1 are i.i.d. copies from the joint distri-

bution of (X, Y ) with Y = f(X)+ ε. The explanatory
variable X (could be any dimensional) has a distribu-
tion PX and the random error ε is assumed to have
a normal distribution with mean zero and variance
σ2 > 0. One needs to estimate the regression func-
tion f based on the data Zn = (Xi, Yi)n

i=1. Since our
main interest in this work is on the negative side (limit
of estimation), unless stated otherwise, σ2 is assumed
to be known and then taken to be 1 without loss of
generality. When σ2 is unknown, the problem of es-
timating f certainly can not be easier. For the same
reason, we assume PX is known in this paper unless
stated otherwise.

Let δ be a regression estimation procedure producing
estimator f̂i(x) = f̂i(x;Zi) at each sample size i ≥
1. Let ‖ · ‖ denote the L2 norm with respect to the

distribution of X, i.e., ‖g‖ =
√∫

g2(x)PX(dx). Let

R (f ;n; δ) = E‖f − f̂n‖2

denote the risk of the procedure δ at the sample size
n under the squared L2 loss. For a class of regres-
sion functions F , let R(F ;n) = inf f̂ supf∈F E‖f− f̂‖2

denote its minimax risk.

Fix a regression procedure δ. Let b2
n be a non-

increasing sequence with b2
n → 0 as n → ∞. Assume

that the true regression function has the L2 norm
bounded by a known constant A > 0. Consider the
class of regression function F({b2

n}; δ):

{f :‖ f ‖≤ A and R (f ;n; δ) ≤ b2
n for all n ≥ 1}. (1)

It is the collection of the regression functions for which
the estimation procedure δ achieves the given accuracy
b2
n at each sample size n. Ideally, one wants this class

to be as large as possible.

As is mentioned in the introduction, it is well-known
that one can not demand any universal convergence
rate, i.e., for any given sequence b2

n ↓ 0, for every



estimation procedure δ, there exists at least one re-
gression function f such that R (f ;n; δ) ≥ b2

n for each
n ≥ 1 (see, e.g., Devroye (1982)). Thus one knows
that F({b2

n}; δ) can not be the class of all possible re-
gression functions. But it is still unclear, however, how
much smaller F({b2

n}; δ) is compared to the class of all
regression functions. We will provide an upper order of
the largeness of F({b2

n}; δ) in terms of metric entropy.
The order can also be achieved by familiar regression
procedures for smoothness function classes. Thus the
largeness bound (order) that we will give can not be
improved in general.

The problem of upper bounding the metric entropy
of F({b2

n}; δ) is closely related to the problem of lower
bounding the minimax risk of a general class of regres-
sion functions. Intuitively if F({b2

n}; δ) is too large,
then the rate of convergence b2

n can not be achieved
uniformly. However, it seems that no general lower
bounds in the literature have direct implications on
the size of F({b2

n}; δ). In particular, it is not feasi-
ble to apply hyper-cube methods (often used in deriv-
ing minimax lower bounds) because little can be said
about the structure and local properties of the class
F({b2

n}; δ) since no specific conditions are put on δ.
Theorem 1 in the previous section is handy for upper
bounding the metric entropy of F({b2

n}; δ).

Note that in the definition of F({b2
n}; δ), the risk

bounds are required to hold for each sample size. One
might wonder why not consider one sample size at
a time. Actually, if one modifies the definition of
F({b2

n}; δ) this way, i.e., define Fn(b2
n; δ) = {f :‖ f ‖≤

A and R (f ;n; δ) ≤ b2
n}, then no general nontrivial

bound is possible as seen from the following simple
example.

Example 1: Consider the procedure δ that produces
the trivial estimator f̂i(x) ≡ 0 for all sample sizes. For
any ε > 0, the minimax risk of the class F = {f :‖
f ‖2≤ ε} is obviously no bigger than ε by using δ, but
the metric entropy of F is always ∞. This indicates
that it is impossible to have a non-trivial upper bound
on the metric entropy of the class of functions that δ
serves well at a given sample size.

Let b2
0 = A2 + 2 log 2 and define Bk =

∑k
i=0 b2

i for
k ≥ 1 and B0 = b2

0.

Theorem 2: Take b2
n = Cn−γ for some constant C >

0 and 0 < γ ≤ 1. When γ < 1, for every regression
procedure δ, for ε ≤ 3C1/2, we must have

M
(
ε;F({b2

n}; δ)
)
≤ C

′
(

1
ε

) 2(1−γ)
γ

,

where C
′

is a constant depending only on γ, C and
A. When γ = 1, for every regression procedure δ, for

ε ≤ 3C1/2, we have

M
(
ε;F({b2

n}; δ)
)
≤ C

′′
log
(

1
ε

)
for some constant C

′′
depending only on A and C. For

a general sequence {b2
n}, we have

M
(
3bk;F({b2

n}; δ)
)
≤ dBk−1e for all k ≥ 1.

Remarks:

1. The normality assumption on the errors is not es-
sential. A similar result holds if the regression function
is bounded in a known range [−A,A] and the error dis-
tribution satisfies a mild condition as used for Theorem
1 in Yang (2001).

2. The dependence of C
′
or C

′′
on γ, C and A is given

in the proof of the theorem below.

3. For certain specific procedures (such as wavelet
shrinkage), Kerkyacharian and Picard (2002) success-
fully characterized the set F({b2

n}; δ).

Proof: For a function g, let pg(x, y) =
1√
2π

e−
1
2 (y−g(x))2 denote the joint density of (X, Y )

with respect to the product measure of PX and
Lebesgue measure when the regression function is g. It
can be easily verified that the K-L divergence between
two such densities satisfies D(pf ‖ pg) = 1

2 ‖ f − g ‖2 .

Let f̃k, k ≥ 1 be the estimators of f by the procedure
δ at each sample size respectively. Let f̃0(x) ≡ 0 and
then E ‖ f − f̃0 ‖2≤ A2 by assumption. Let

qn(zn) = p
f̃0

(x1, y1) · pf̃1
(x2, y2) · · · ·pf̃n−1

(xn, yn).

It is a probability density function in zn with respect
to the n-fold product measure of the distribution of X
and Lebesgue measure. Then as in the proof of Lemma
2,

D(pn
f ‖ qn) =

n∑
i=1

ED(pf ‖ p
f̃i−1

) =
1
2

n∑
i=1

E ‖ f−f̃i−1 ‖2 .

It follows that for f ∈ F({b2
n}; δ), we have D(pn

f ‖
qn) ≤ 1

2

(
A2 +

∑n−1
i=1 b2

i

)
. Let F denote F({b2

n}; δ) for
convenience. Choose εn such that

M(εn;F) =

⌈
2

(
1
2

(
A2 +

n−1∑
i=1

b2
i

)
+ log 2

)⌉
= dBn−1e .

Then by Lemma 1, we have

inf
f̂

sup
f∈F

E ‖ f − f̂ ‖2≥ ε2n
8

.



By definition of F({b2
n}; δ), we have supf∈F E ‖ f −

f̃n ‖2≤ b2
n, and thus the minimax risk of F satisfies

inf
f̂

sup
f∈F

E ‖ f − f̂ ‖2≤ b2
n. (2)

From above, if M (3bn;F) > dBn−1e, then 3bn ≤ εn

and

inf
f̂

sup
f∈F

E ‖ f − f̂ ‖2≥ (3bn)2

8
> b2

n,

which would contradict with (2). Thus we must have

M (3bn;F) ≤ dBn−1e.

For the case b2
n = Cn−γ for some 0 < γ < 1,

Bn ≤ A2 + 2 log 2 + Cn1−γ

1−γ . For any 0 < ε ≤ 3C1/2,

there exists nε ≥ 1 such that 3C1/2(nε + 1)−γ/2 < ε ≤

3C1/2n
−γ/2
ε . Then

(
3C1/2

ε

)2/γ

−1 < nε ≤
(

3C1/2

ε

)2/γ

.

It follows from these inequalities that when 0 < ε ≤
3C1/2, M (ε;F) is upper bounded by

M
(
3C1/2(nε + 1)−γ/2;F

)
≤ Bnε + 1

≤ A2 + 2 log 2 + 1 +
Cn1−γ

ε

1− γ

≤ A2 + 2 log 2 + 1 +
32(1−γ)/γC1/γ

1− γ

(
1
ε

) 2(1−γ)
γ

.

Thus

M (ε;F) ≤ C
′
(

1
ε

) 2(1−γ)
γ

,

where C
′
is a constant depending only on γ, C and A.

For the case b2
n = Cn−1,

Bn = A2 + 2 log 2 + C

n−1∑
i=1

i−1

≤ A2 + 2 log 2 + C (1 + log(n− 1)) .

Similarly as the case when 0 < γ < 1, we have for
0 < ε ≤ 3C1/2, M (ε;F) is no larger than

A2 + 2 log 2 + 1 + C

(
1 + log

(
3C1/2

ε

)2
)

≤ A2 + 2 log 2 + 1

+C
(
1 + 2 log

(
3C1/2

))
+ 2C log

(
1
ε

)
. (3)

Thus M (ε;F) ≤ C
′′

log
(

1
ε

)
for some C

′′
depending

only on C and A. This completes the proof of Theorem
2.

It is well-known that for smoothness function classes
(e.g., Sobolev or Besov), the minimax rate of conver-
gence is usually determined by a certain smoothness

parameter α (e.g., the number of derivatives that the
unknown regression function is assumed to have) with
the rate n−2α/(2α+d), where d is the dimension of the
function being estimated. The metric entropy order of
such a class is typically (1/ε)d/α as ε → 0. Note that
for γ = 2α/(2α + d), 2 (1− γ) /γ = d/α and accord-
ingly the entropy upper bound given in Theorem 2 for
F({b2

n}; δ) is of order (1/ε)d/α
. Notice that this or-

der matches the metric entropy of smoothness classes
with convergence rates n−2α/(2α+d). As is well-known,
the convergence rate 1/n corresponds to parametric
classes and they usually have metric entropies of order
log (1/ε) , which is the order given in Theorem 2 for
γ = 1. Thus in terms of order, the upper bounds in
Theorem 2 can not be generally improved.

From Theorem 2, no matter how sophisticatedly a re-
gression procedure is constructed, it can converge fast
for only a limited set of regression functions.

Barron and Hengartner (1998) study super-efficiency
in density estimation for both parametric and non-
parametric classes. For a nonparametric class of den-
sities, they show that for any given estimation pro-
cedure, the set of densities for which the procedure
converges faster than the minimax rate of the class is
asymptotically negligible compared to the whole class
in terms of metric entropy order. The metric entropy
bound in Theorem 2 can also be used to readily derive
such a result for the regression problem.

4 Implications on adaptive estimation

The non-asymptotic nature of the upper bound in The-
orem 2 is helpful to draw some conclusions on limita-
tions of adaptive estimation.

Traditionally, adaptive estimation addresses the objec-
tive of achieving the minimax risk (often rate of con-
vergence) over smoothness function classes with the
smoothness parameter unknown. As mentioned ear-
lier, different values of the smoothness parameter are
usually associated with different rates of convergence.
The function classes have different sizes (in terms of
metric entropy) and are usually nested. Yang (2000ab,
2001) shows that adaptive rate of convergence can be
obtained for a general countable collection of function
classes. The function classes are allowed to be com-
pletely different, which may be desirable when very
distinct scenarios are explored in situations such as
high-dimensional estimation.

Let F1,F2... be a countable collection of regression
classes. Assume that the regression functions in the
classes are uniformly bounded between −A and A for
some A > 0, and the variance parameter σ2 is upper
bounded by a known constant σ2. Let {πj , j ≥ 1} be



positive numbers satisfying
∑∞

j=1 πj = 1. Yang (2001)
shows that one can construct an adaptive estimator f̂∗n
such that for each j ≥ 1,

sup
f∈Fj

E ‖ f−f̂∗n ‖2≤ C

(
1
n

log
1
πj

+
1
n

+ R(Fj ; bn/2c)
)

,

(4)
where the constant C depends only on A and σ.

For a typical parametric or nonparametric function
class, the minimax risk sequence is rate-regular in the
sense that R(Fj ; bn/2c) and R(Fj ;n) converge at the
same order. If the regression function classes Fj are
all rate-regular, then from (4), since for each fixed j,
1
n log 1

πj
+ 1

n does not change the rate of R(Fj ;n), we
conclude that the minimax rate of convergence is au-
tomatically achieved for every class Fj . This is called
minimax-rate adaptation.

This notion of adaptation addresses the asymptotic
performance for each class as n → ∞. However, for
each fixed n, since for a countable collection of classes,
πj necessarily goes to zero and accordingly 1

n log 1
πj
→

∞ as j →∞. Thus the penalty term 1
n log 1

πj
in (4) is

large except for a few classes with high prior weights.
A question then is: Can one construct a better adap-
tive method such that for a constant C,

sup
f∈Fj

E ‖ f − f̂∗ ‖2≤ CR(Fj ; bn/2c)

for all j ≥ 1 and n ≥ 1? If so, the adaptive estima-
tor achieves the minimax risk up to a constant factor
uniformly over both the classes and the sample sizes.
Based on the known fact that no uniform rate of con-
vergence is possible, it seems intuitively clear that the
objective is simply too ambitious to achieve in general.
We give a formal result below using the metric entropy
bound in the previous section.

Corollary 1: There exist a collection of uniformly
bounded classes of regression functions {Fj , j ≥ 1} and
a constant B > 0 such that for any regression proce-
dure δ∗, we have that for each λ > 1, there can be at
most eBλ many classes for which

supf∈Fj
R (f ;n; δ∗)

R(Fj ;n)
≤ λ for all n ≥ 1.

Remark: With a similar argument, it can be shown
that if one is willing to loose a logarithmic factor log n
in risk for each n ≥ 1, then in general one can achieve
that for not more than nκ many classes for some con-
stant κ > 0.

Proof: Consider that X = (X1, ...) takes values
in X = [0, 1]∞ with independent and uniformly dis-
tributed components. Let G = {g(x) : g(x) = θx,

1 ≤ θ ≤ 2} be a parametric class of functions on [0,1].
Let Fj be the collection of functions that actually de-
pend only on xj and the univariate function belongs
to G. For the parametric family Fj , it is not hard to
show that C1

n ≤ R(Fj ;n) ≤ C2
n for some positive con-

stants C1 and C2. Note that the functions in different
classes are well separated: for f1 ∈ Fj1 and f2 ∈ Fj2

with j1 6= j2, one always has

‖ f1 − f2 ‖≥ 1/6.

As a consequence, the ε-packing sets in different classes
Fj are at least 1/6 away from each other, and accord-
ingly, the packing entropy of ∪j≥1Fj is infinity when
ε is smaller than 1/6. Fix a constant λ > 1. For any
given regression procedure δ∗, consider the classes that
each has risk

sup
f∈Fj

R (f ;n; δ∗) ≤ λC2

n
for all n ≥ 1.

Let Γ be the collection of all such classes. Then we
have

sup
f∈∪j∈ΓFj

R (f ;n; δ∗) ≤ λC2

n
for all n ≥ 1.

Thus ∪j∈ΓFj ⊂ F({λC2
n }; δ∗). It follows from Theorem

2 and (3) that ∪j∈ΓFj has packing entropy bounded
above by 2λC2 log(1/ε) asymptotically as ε → 0. It can
be easily verified that Fj has metric entropy uniformly
lower bounded by C3 log(1/ε) for some constant C3 >
0. Since the classes Fj are well separated, when ε <
1/6, the maximum packing number of ∪j∈ΓFj is the
sum of the maximum packing numbers of the classes.
It follows that the packing entropy of ∪j∈ΓFj is the
packing entropy of G plus the logarithm of the size of
Γ. As a consequence, the logarithm of the size of Γ
is upper bounded by Bλ for a constant B > 0. Thus
|Γ| ≤ eBλ. This completes the proof of Corollary 1.

From Corollary 1, adaptation up to a uniform constant
factor can not be achieved in general except for finitely
many function classes. Note that the result does not
exclude the possibility of adaptation within a constant
factor for particular collections of function classes. See
Barron, Birgé and Massart (1999) for examples of such
adaptation results for some smoothness classes.

5 Sparse approximation and
estimation

In recent years, sparse estimation has attracted an
increasing attention in statistical leaning (for some
theoretical results, see, e.g., Donoho (1993), Barron
(1993), Donoho and Johnstone (1998), Yang and Bar-
ron (1998, 1999), Johnstone (1999) and Barron, Birgé



and Massart (1999)). This is particularly important
for learning a high-dimensional function, especially
when the sample size is small relative to the dimension.
In such a case, one seeks a sparse representation of
the target function, which makes the estimation both
feasible and reliable. It has been shown that sparse
approximation together with suitable statistical meth-
ods lead to better estimation compared to traditional
linear approximation in situations such as orthogonal
wavelet expansion and neural network modeling. In
this section, we show that in some sense (to be made
clear), each regression procedure is essentially no bet-
ter than a method based on sparse approximation.

Let k be an index. For each k, let Φk =
{ϕk,1, ..., ϕk,Lk

} be a collection of Lk linearly inde-
pendent functions. Given k, 1 ≤ m ≤ LK and
I = Ik,m = {i1, ..., im} as a subset of {1, 2, ..., Lk} with
m terms in Φk, consider approximation of a function
f by linear combinations

m∑
l=1

θlϕk,il
, (θ1, ..., θm) ∈ Rm.

When m is small compared to Lk, the terms used in
the linear combination is a sparse subset of Φk. The
sparsity in fact is the key for improved accuracy in es-
timation compared to traditional linear approximation
using all Lk terms when f has certain sparsity charac-
teristics. We call such approximation that allows the
use of sparse linear combinations sparse approxima-
tion. In general, the choices of approximation systems
{Φk} are also allowed to depend on the sample size.

For estimating a regression function f based on the
data (Xi, Yi)n

i=1, one can use sparse subset models cor-
responding to sparse approximation. For each choice
of (k, m, I), one fits the model

Yi =
m∑

l=1

θlϕk,il
(Xi) + εi, 1 ≤ i ≤ n

based on the observations. The use of sparse sub-
sets can be advantageous in terms of estimation ac-
curacy when a small number of terms can provide a
good approximation of f , since using a sparse sub-
set avoids large variability that arises when all the Lk

coefficients are estimated. Since one does not know
which subset provides a good approximation, one may
select a model according to a certain appropriate crite-
rion. For convergence rate results on model selection
for nonparametric regression, see, e.g., Yang (1999),
Lugosi and Nobel (1999), Barron, Birgé and Massart
(1999), and Wegkamp (2003). Alternatively to select-
ing a single model, one can also average the sparse
subset models. Proper averagings have been demon-
strated to lead to reduced model uncertainty (e.g.,

Hoeting, et al (1999)), increased stability of the esti-
mator (Breiman (1996)) and improved estimation ac-
curacy in risk (Yang (2001)) from different angles.

In this section, we assume that PX is dominated by a
known probability measure µ with a density function
pX(x), which is uniformly bounded above and below
(away from zero). We assume σ2 is upper bounded by
a known constant σ2 < ∞.

Theorem 3: For any given regression procedure δ,
there exists a procedure δ̃ based on sparse approx-
imation (with a proper model averaging) such that
for every regression function f with ‖ f ‖∞< ∞, if
R(f ; δ;n) ≤ Cn−γ under σ2 = σ2 for all n for some
constant C > 0 and 0 < γ < 1, then R(f ; δ̃;n) ≤ C̃n−γ

holds under σ2 ≤ σ2 for all n for some constant C̃ > 0;
if R(f ; δ;n) ≤ Cn−1 under σ2 = σ2 for all n for some
constant C > 0, then R(f ; δ̃;n) ≤ C̃n−1 log n holds
under σ2 ≤ σ2 for some constant C̃ > 0.

Remarks:

1. The sparse approximation systems constructed in
the theorem depend on the procedure δ.

2. The assumption on PX is needed so that the pro-
cedure δ̃ can be constructed (in theory) based on δ.

3. If there exists an estimator of σ2 converging at rate
1/n under the square error, then the condition that σ2

is upper bounded by a known constant σ2 < ∞ is not
needed.

The theorem says that as far as polynomial rates of
convergence are concerned, under the squared L2 loss,
theoretically speaking, estimation based on a certain
sparse approximation together with model averaging
can do as well as any given regression procedure (but
loosing a logarithmic factor for the parametric rate of
convergence).

Proof of Theorem 3: We first assume that PX is
known. Without loss of generality, assume σ2 = 1.
For a given regression procedure δ, for each C and
0 < γ ≤ 1, from Section 3, the set F({b2

n}; δ) of regres-
sion functions as defined in (1) with b2

n = Cn−γ has

metric entropy bounded above by order
(

1
ε

) 2(1−γ)
γ when

0 < γ < 1 and by order log(1/ε) when γ = 1. Note that
when PX is known and σ2 = 1, the set F({b2

n}; δ) can
be identified (theoretically speaking). We now denote
F({b2

n}; δ) by F(A; {b2
n}; δ) in this section since differ-

ent values will be considered for A. For 0 < γ < 1,
with εn = C1/2n−γ/2, from the derivation in the proof
of Theorem 2, we have

M
(
εn;F(A; {b2

n}; δ)
)
≤ C

′

n(1−γ),

where C
′

can be taken as A2+2 log 2+C
1−γ + 1. Let



s = (A,C, γ). It follows that, with PX known, we
can find (again theoretically speaking) a covering set
N(A,C, γ) = {fs,1, ..., fs,Js

}, with fs,i bounded be-

tween −A and A and Js ≤ exp(C
′

n(1−γ)), satis-
fying that for any f ∈ F(A; {b2

n}; δ), there exists
1 ≤ i ≤ Js such that ‖ f − fs,i ‖2≤ εn. Similarly,
when γ = 1, we can find a covering set N(A,C, γ) =
{fs,1, ..., fs,Js

}, with fs,i bounded between −A and A

and Js ≤ nC′′
for some constant C ′′ > 0, such that

for any f ∈ F(A; {b2
n}; δ), there exists 1 ≤ i ≤ Js with

‖ f − fs,i ‖2≤ C1/2n−1/2. Let Φs = N(A,C, γ).

Let S = {s = (A,C, γ) : A ∈ (0,∞), C ∈ (0,∞),
γ ∈ (0, 1]}. Let Q denote the set of positive dyadic
rationals. Let SD consist of all the points (A,C, γ) in
S with A,C, γ ∈ Q.

Now consider T = {t = (s, j), 1 ≤ j ≤ Js, s ∈ SD}.
Clearly T is countable. Let δt, t ∈ T be the procedure
that gives estimator f̂δt,i ≡ fs,j for all 1 ≤ i ≤ n.
Then for f ∈ F(A; {Cn−γ}; δ) with s ∈ SD, there
exists 1 ≤ j ≤ Js such that

R(f ;n; δt) ≤ Cn−γ . (5)

The procedures {δt} will be combined appropriately
to have a small risk.

We assign prior weights {πt, t ∈ T} based on a de-
scription of the index t of the classes according to
information theory (see, e.g., Rissanen (1983)). For
every dyadic rational number q, it can be written as
q = i(q) +

∑l(q)
j=1 aj(q)2−j for some l ≥ 1, aj ’s be-

ing either 0 or 1, and i is the integer part of q. To
describe such a q, we just need to describe the inte-
gers i, l, and the aj ’s. To describe integer i ≥ 0, we
may use log∗(i) =: log2(i+1)+2 log2 (log2(i + 2)) bits.
Then describe l using log∗(l) bits, and finally describe
aj ’s using l bits. By this way, we describe the hyper-
parameter components A, C, γ and use log2 Js bits to
describe j for t ∈ T . The total description length for
t then is

log∗(i(A)) + log∗(l(A)) + l(A) + log∗(i(C)) + l(C)
+ log∗(l(C)) + log∗(i(γ)) + log∗(l(γ)) + l(γ) + log2 Js.

The prior weight of the procedure δt in the countable
collection is then assigned to be πt with − log2 πt equal
the above expression. The coding interpretation guar-
antees {πt : t ∈ T} is a sub-probability (see, e.g., Cover
and Thomas (1991, p. 52)), i.e.,

∑
t∈T πt ≤ 1. One can

either normalize πt to be a probability or put the re-
maining probability on any chosen procedure δt, which
does not have any effect on rates of convergence.

Now we combine these procedures based on the three-
stage ARM method in Yang (2001) using the prior
weights described above to get f̂∗n. Note that the com-
bined estimator f̂∗n is a convex combination of fs,j ’s

with 1 ≤ j ≤ Js, s ∈ SD. It is an estimator based
on sparse approximation systems {Φs : s ∈ SD}. The
risk of the combined procedure δ̃ satisfies that for any
f with ‖ f ‖∞≤ A (A needs not to be known) and if
σ2 ≤ σ2, then

E‖f−f̂∗n‖2 ≤ CA,σ inf
t∈T

(
1
n

log
1
πt

+
1
n

+ R(f ; bn/2c; δt)
)

.

(6)
Fix s0 = (A0, C0, γ0) ∈ S with 0 < γ0 <
1. For each m ≥ − log2 γ0, there exists s(m) =
(A(m), C(m), γ(m)) ∈ SD such that A0 ≤ A(m) ≤
A0 + 2−m, C0 ≤ C(m) ≤ C0 + 2−m, and γ0 − 2−m <
γ(m) ≤ γ0. For t = (s(m), j) with 1 ≤ j ≤ Js(m) , noting
that i(γ) = 0 for 0 < γ < 1, the prior weight satisfies
that log 1

πt
is upper bounded by

log∗(A0 + 1) + log∗(C0 + 1) + 1 +

3 log∗m + 3m + C
′

n(1−γ(m))

≤ Cm + C
′

n(1−γ(m)), (7)

where C is a constant depending on A0 and C0.
Note that f ∈ F(A0; {C0n

−γ0}; δ) implies that f ∈
F(A(m); {C(m)n−γ(m)}; δ). Then from (5), (6) and (7),
we have that for f ∈ F(A0; {C0n

−γ0}; δ),

R(f ;n; δ̃) ≤ C̃
(m

n
+ n−γ(m)

)
,

where C̃ is a constant depending on A0, C0 and σ.

Take m of order log n, observing that n−γ(m)
is then of

order n−γ0 , we have that for f ∈ F(A0; {C0n
−γ0}; δ),

R(f ;n; δ̃) ≤ ˜̃
Cn−γ for some constant ˜̃C not depending

on n.

For s0 = (A0, C0, γ0) ∈ S with γ0 = 1, there exists
s1 = (A1, C1, 1) ∈ SD such that A0 ≤ A1 and C0 ≤ C1.
For t = (s1, j) with 1 ≤ j ≤ Js1 , applying the metric
entropy bound in Theorem 2 for the case γ = 1, we
have that the prior weight satisfies

log
1
πt

≤ C
′′′

log n,

where C
′′′

is a constant depending only on s1. It fol-
lows, similarly as the case with 0 < γ < 1, that
for f ∈ F(A0; {C0n

−1}; δ), when σ2 ≤ σ2, we have
R(f ;n; δ̃) ≤ C̃ log n/n for some constant C̃ > 0 not
depending on n.

Now we assume that PX is unknown but known to have
a probability density fX(x) with respect to a probabil-
ity measure µ with fX bounded above and away from
zero. Then for any function g,

C

∫
g(x)2µ(dx) ≤

∫
g(x)2PX(dx) ≤ C

∫
g(x)2µ(dx)



for some constants 0 < C < C < ∞. It follows that
R(f ;n; δ) under design distribution PX is bounded
above and below by multiples of R(f ;n; δ) under de-
sign distribution µ. One can then modify the deriva-
tion above slightly to show the conclusion still holds
with the relaxed condition on PX . This completes the
proof of Theorem 3.
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