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Abstract

In adversarial classification tasks like spam filtering and intrusion detection, malicious
adversaries may manipulate data to thwart the outcome of an automatic analysis. Thus,
besides achieving good classification performances, machine learning algorithms have to
be robust against adversarial data manipulation to successfully operate in these tasks.
While support vector machines (SVMs) have shown to be a very successful approach in
classification problems, their effectiveness in adversarial classification tasks has not been
extensively investigated yet. In this paper we present a preliminary investigation of the
robustness of SVMs against adversarial data manipulation. In particular, we assume that
the adversary has control over some training data, and aims to subvert the SVM learning
process. Within this assumption, we show that this is indeed possible, and propose a
strategy to improve the robustness of SVMs to training data manipulation based on a
simple kernel matrix correction.

Keywords: Support Vector Machines, Adversarial Classification, Label Noise

1. Introduction

Machine learning algorithms have been successfully applied in a wide set of applications in
the last few decades. What makes them particularly attractive is that they can elicit im-
portant properties from a set of given samples (drawn from some underlying, but unknown
probability distribution) to infer the underlying concept and then classify unseen samples
(drawn from the same distribution) with very high accuracies. This is well known in the
machine learning and pattern recognition literature as generalization capability (Duda et al.,
2000; Bishop, 2007). Due to their ability to generalize, machine learning algorithms have
been widely adopted in security applications as well; e.g., in spam filtering and intrusion
detection. However, these applications differ from the standard machine learning setting
since malicious adversaries can adaptively manipulate their data to mislead the outcome

c© 2011 B. Biggio, B. Nelson & P. Laskov.



Biggio Nelson Laskov

of an automatic analysis. More formally, this can be modeled as a change in the underlying
probability distribution that generates the samples. Thus, in these settings, the classical
stationarity assumption of machine learning is violated (Dalvi et al., 2004; Barreno et al.,
2010). For instance, spammers often modify their emails by obfuscating words which typi-
cally appear in known spam (e.g., the word “replica” can be misspelled as “repl1c@”), or by
adding words which are likely to appear in legitimate emails (Dalvi et al., 2004; Lowd and
Meek, 2005; Kolcz and Teo, 2009). Similarly, hackers can successfully hide the malicious
code within specially crafted network packets that can evade an intrusion detection system
(IDS) without compromising the effectiveness of their attack (see, e.g., Fogla et al., 2006).
The above examples of attacks are based on exploiting specific weaknesses and knowledge
of the classification algorithm. As a consequence, analyzing the vulnerabilities of classifiers
and their robustness to attacks to better understand how their security may be improved,
has recently attracted growing interest from the scientific community.

Attacks against learning methods can be carried out either during the training or testing
stages. Attacks at the test stage exploit characteristics of the underlying classes that can
be modified without affecting the true classification but that deleteriously impact the dis-
criminative model learned from the training data (Globerson and Roweis, 2006; Dekel et al.,
2010; Teo et al., 2008). Given knowledge of invariances in the task, the effect of potential
testing attacks can be somewhat mitigated by the learning algorithm; however, this comes
at a cost of increased complexity of the training problem. Attacks at the training stage
attempt to exert a long-lasting impact on learning by modifying the training data. For
example, important points in the training data may be changed, so as to make the learning
problem more complex. Such attacks introduce feature noise to training points. Another
possibility is to flip labels of certain points (label noise) which has a similar effect on the
learning problem. While some previous work has addressed the development of methods
robust against feature noise (Bi and Zhang, 2004; Xu et al., 2009), little is known on how
learning algorithms are affected by adversarial (rather than random) label noise.

In this paper, we propose a model for the analysis of label noise in support vector
learning and develop a modification of the SVM formulation that indirectly compensates
for the noise under our model. Our model is based on a simple assumption that any label
may be flipped with a fixed probability. We show that this noise can be compensated for
by correcting the kernel matrix of SVM with a specially structured matrix, which depends
on the noise parameters of our model. Our empirical evaluation shows that the proposed
kernel correction is effective against label noise, even in the adversarial case when the
flipped labels are carefully selected so as to tilt the separating hyperplane. An advantage
of our approach is that, unlike the majority of other robust learning approaches, it does
not increase the complexity of SVM training. Moreover, the resulting optimization problem
remains quadratic, for which efficient solvers are available.

2. Background

In this section, we briefly review SVMs and previous work that addresses the problem of
designing robust SVMs to different kinds of noise.

98



Support Vector Machines Under Adversarial Label Noise

2.1. Support Vector Machines

Before reviewing SVMs, we formally introduce the classification problem and our notation.
The classification problem can be generally stated as the problem of learning a hypothesis
or classifier f : X 7→ Y which assigns any input sample x ∈ X to a class y ∈ Y. In the
classical supervised learning setting, we are given a set of training data {xi, yi}ni=1 ∈ X ×Y
drawn from an unknown distribution P (X, Y ), and we want to infer a classifier f which is
able to generalize well on P (X, Y ), i.e., which can accurately classify unseen samples drawn
from that distribution.

In its simplest formulation, an SVM learns a linear classifier for a two-class classification
problem. Its decision function can be thus generally written as

f(x;w, b) = sign(w>x + b) ∈ {−1,+1} , (1)

where sign(a) = +1 (−1) if a ≥ 0 (a < 0), and w and b are parameters which determine
the position of the decision hyperplane in feature space: its orientation by the hyperplane’s
normal w and its displacement by b. The underlying idea of SVMs is to find the hyper-
plane (w, b) which has the maximum distance between the nearest training samples of the
two classes (a concept known as the classifier’s margin), since this generally reduces the
generalization error (Vapnik, 1995). Although originally designed for linearly separable
classification tasks (hard-margin SVMs), SVMs were subsequently extended to non-linearly
separable classification problems by Cortes and Vapnik (1995) (soft-margin SVMs), for
which some samples are allowed to violate the margin. In particular, a soft margin SVM is
learned by solving the following convex quadratic programming (QP) optimization problem:

min
w,b,ξ

1

2
w>w + C

n∑
i=1

ξi

s. t. yi(w
>xi + b) ≥ 1− ξi, i = 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n.

(2)

where the margin is maximized by minimizing 1
2w
>w, and the variables ξi, i = 1, . . . , n

(referred to as slack variables) represent the extent to which the samples xi, i = 1, . . . , n,
violate the margin. The parameter C tunes the trade-off between the classification error on
the training data and margin maximization.

Problem 2 is referred to as the primal problem, and it is solved by means of its dual
Lagrange multipliers. Its solution is given by w =

∑n
i=1 αiyixi, where αi, i = 1, . . . , n, are

the Lagrange multipliers, and by the following constraints:
∑n

i=1 αiyi = 0, and 0 ≤ αi ≤ C,
i = 1, . . . , n. Interesting properties of the SVM arise from its dual. First, the normal to
the hyperplane w can be expressed as a convex linear combination of the training samples.
Second, the solution to the dual problem is sparse, and only samples that lie on or within
the hyperplane’s margin exhibit a non-zero contribution (i.e., their α value is non-zero). In
particular, if αi = 0, then the corresponding sample xi is correctly classified, lies beyond
the margin (i.e., yi(w

>xi + b) > 1), and is referred to as a non-support vector. If αi = C,
the corresponding sample violates the margin (i.e., yi(w

>xi+b) < 1), and it is thus referred
to as an error vector. Finally, if 0 < α < C, the sample lies exactly on the margin (i.e.,
yi(w

>xi + b) = 1) and it is called a support vector. As a consequence, the displacement b
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is typically determined by averaging w>xi − yi over the set of support vectors (where the
average is used for improved numerical stability).

The above solution can derived from Problem 2 by the method of Lagrangian multipliers
which yields the dual problem. In matrix form, this dual can be expressed as

min
α

1

2
α>Qα− 1>nα

s. t. 0 ≤ αi ≤ C, i = 1, . . . , n,
n∑
i=1

αiyi = 0,

(3)

where Q = K ◦ yy>, and 1n is a column vector of n ones. K is the kernel matrix, whose
elements are Kij = x>i xj in the linear case. Nevertheless, if some non-linear function
φ : X 7→ Φ is used to map training samples into a higher dimensional feature space (where
a linear classifier may perform better), then Kij can be generalized to φ(xi)

>φ(xj). Since
only inner products between samples are required to compute the solution and predict the
class labels, one does not need to know φ explicitly, but only the corresponding kernel
function. This is known as the kernel trick, and, due to its wide adoption, SVMs are often
learned by directly solving the dual problem.

2.2. Robust SVMs

To date, many works have proposed modifications to the standard SVM learning algorithm
to improve its robustness to different kinds of noise, either affecting training or testing data.
However, the majority of them require solving non-convex optimization problems, robust
optimization problems, or, they require solving problems which have higher complexity than
the standard SVM learning algorithm. For instance, even the SVM-like algorithm robust to
worst-case feature deletion at testing time proposed by Globerson and Roweis (2006) has
a higher computational complexity than standard SVMs, although it is still a convex QP
problem.

A set of interesting work on robust SVMs applies robust optimization theory (Bi and
Zhang, 2004; Xu et al., 2009). They dealt with feature noise, namely, noise which only affects
the feature values of each sample. In particular, the main assumption is that each noisy
sample will still lie within a ball of given radius with respect to the true (non-noisy) sample,
i.e., x′ = x + δ, and ||δ|| ≤ R. Notably, Xu et al. (2009) observed that the regularization
term in the SVM optimization problem implicitly assumes a spherical noise around samples.
In other words, the regularization term is naturally derived from an explicit noise model,
and, thus, it should be chosen or modified accordingly.

In addition to approaches which dealt with feature noise, some research also addresses
the problem of label noise, or investigated the problem of SVMs’ robustness under data
contamination. Stempfel and Ralaivola (2009) proposed a method to learn a robust SVM
assuming that label flips can occur in training data. Their method is based on a modified
loss function which explicitly accounts for label noise (i.e., they adopt a different definition
of the slack variables in Problem 2). However, the corresponding optimization problem is no
longer convex and thus they provided an approximate solution technique based on gradient
descent. Xu et al. (2006) proposed a robust learning algorithm for SVMs to mitigate the
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effect of outliers in training data. Similarly to the previous case, this method is also based on
a different definition of the loss function, which yields a non-convex optimization problem,
approximately solved through a convex relaxation.

From a theoretical standpoint, robustness was studied in the context of both classical
statistics and machine learning. The robust statistics approach (Huber, 1981; Hampel et al.,
1986; Maronna et al., 2006) has studied general properties of statistical estimators under
the change of the underlying distributions. A well-known instrument of such analysis is the
so-called influence function. The robustness issues of margin-based learning methods have
been studied by Christmann and Steinwart (2004). In particular, they studied the behavior
of SVM-like algorithms under small perturbations of training data and proved that under
some conditions, the influence function of SVMs can be bounded.

3. Label Noise Robust SVMs

In this section we introduce our approach, Label Noise robust SVMs (LN-robust SVMs), to
improve SVMs’ robustness to label noise in training data. We point out that, with respect to
previous works, this approach does not affect the computational complexity of the standard
SVM learning algorithm, as it only yields a simple kernel matrix correction.

Label noise can be explicitly modelled by assuming that the labels in the training set
{xi, yi}ni=1 ∈ X × {−1,+1} can be flipped. To this end, we first introduce a set of random
variables εi ∈ {0, 1}, i = 1, . . . , n, which represent whether the corresponding label yi is
flipped (1) or not (0). Accordingly, we then replace yi with y′i = yi(1 − 2εi) such that if
εi = 1, y′i = −yi (label flip), while y′i = yi otherwise.

In the dual SVM problem (Problem 3) the class labels solely affect the matrix Q =
K ◦ yy>. In particular, taking into account label noise, we can write its elements as

Qij = yiyjK(xi,xj)(1− 2εi)(1− 2εj) . (4)

Note that, in the absence of noise εi = 0, i = 1, . . . , n, and, thus, the elements of Q are
simply Qij = yiyjK(xi,xj), as in the standard SVM formulation.

If we assume that every label is independently flipped with the same probability, then εi,
i = 1, . . . , n, are n i.i.d. Boolean random variables, whose mean µ is simply the probability
of εi = 1, and whose variance is σ2 = µ(1 − µ). Within this assumption, we can compute
the expected value of Q from Eq. 4, which is given by

Eε[Qij ] =

{
yiyjK(xi,xj)(1− 4σ2), if i 6= j,

yiyjK(xi,xj), otherwise.
(5)

Now, we can use the expected value of Q (which is still a positive semi-definite kernel
matrix) to solve the SVM problem. This should reasonably improve the robustness of the
learned SVM to label flip noise. The proposed method only yields a kernel matrix correction
(Eq. 5), and does not modify the standard SVM problem. However, it is an heuristic method
and it is thus not guaranteed to fulfill any optimality criterion (e.g., being optimal under
the considered noise model).

The solution is symmetric with respect to µ = 0.5, i.e., the α values obtained for µ = µ∗

and µ = 1−µ∗ are the same, and are exactly the same as the standard SVM solution when
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µ is either 0 or 1 (as the corresponding kernel correction is zero). Moreover, the equations
of w and b obtained by solving the standard SVM problem have to be multiplied by 1− 2µ
(as we take their expectations over label noise). Thus, when µ > 0.5, w and b are multiplied
by a negative factor. This represents the fact that more than half of the training points are
assumed to have a wrong label, and, thus, the decision regions are inverted. For instance,
when µ = 1, the solution is exactly given by −w∗ and −b∗ (being w∗ and b∗ the standard
SVM solution): we are in fact assuming that all samples are wrongly labelled in the training
set, and, consequently, the hyperplane obtained by the standard SVM results rotated by
180◦. Note lastly that, if µ = 0.5, w = 0. This is a degenerate case in which labels in
training data are assumed to be completely random, so the SVM is not able to determine,
on average, any meaningful decision hyperplane.

3.1. Dual problem and α equalization

We are now in a position to better analyze the change induced by the kernel correction of
Eq. 5 in the SVM dual problem. Indeed, the dual problem can be re-written as

min
α

1

2
α>(Q ◦M)α− 1>α

s. t. 0 ≤ αi ≤ C, i = 1, . . . , n,
n∑
i=1

αiyi = 0,

(6)

where the elements Mij of M are given by

Mij =

{
1, if i = j

1− S, otherwise,
(7)

where we use S = 4σ2 to simplify notation. The matrix M can be further decomposed as
M = (1− S)1n×n + SIn×n, where 1n×n is a n× n matrix whose elements are all ones, and
In×n is the n × n identity matrix. Substituting this decomposition of M into Problem 6,
adding and subtracting S

∑n
i=1 αi from the Lagrangian, and dividing it by 1−S, yields the

following (equivalent) dual problem:

min
α

1

2
α>Qα− 1>α+

S

1− S

[
1

2
α>(Q ◦ In×n)α− 1>α

]
s. t. 0 ≤ αi ≤ C, i = 1, . . . , n,

n∑
i=1

αiyi = 0,

(8)

where the only difference with the standard SVM formulation is given by an additional term
weighted by S

1−S . This reveals some interesting insights about the effect of the proposed

kernel correction. First, note that as µ increases from 0 to 0.5, S
1−S approaches infinity,

namely, the α values are only determined by minimizing the latter term in Problem 8.
Second, this term does not depend on the class labels, as it only involves α and the diagonal
of Q (which is indeed equal to the diagonal of K). The above observations highlight that, as
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µ tends to 0.5, our solution will rely more on the diagonal of the kernel matrix, as it is the
only component which is not affected by label noise. Note also that this is not equivalent
to increase the diagonal of the kernel matrix, as commonly done for improving numerical
stability. The effect of the proposed correction is instead to reduce the impact of the out-
of-diagonal elements of the kernel matrix, which are the only ones affected by label noise.
Last, the term weighted by S

1−S in Problem 8 can be rewritten as

1

2

n∑
i=1

α2
iK(xi,xi)−

n∑
i=1

αi . (9)

Although this term does not have an immediate relationship to the variance of the α values,
it has some similar properties. In particular, when we solve Problem 8 for some S > 0,
we are, in fact, penalizing solutions which either increase α2

i , i = 1, . . . , n, or decrease
the average value of α (w.r.t. the standard SVM solution). In other words, increasing S
effectively acts to reduce the variance of the α values. This provides an intuitive explanation
of our approach, which however requires further theoretical investigation. In particular, we
observe that when the variance of the α values is reduced, every training sample is more
likely to be a support vector. Thus, the proposed kernel correction functions as a further
regularization term. That is, the LN-robust SVM equalizes the contribution of the training
points to the solution (its hyperplane incorporates a higher number of support vectors).
This intuitively reduces the influence of potential outlying samples in the training set. This
concept becomes more clear when one considers the interpretation of SVMs in terms of
forces and torques (see, e.g., Burges, 1998), in which the solution to the SVM optimization
problem corresponds to a mechanical (translational and rotational) equilibrium. From this
viewpoint, each α represents the force applied by each support vector toward the hyperplane.
By spreading the α values over more points, we are effectively distributing the overall force
onto a higher number of points, so that every point contributes a lower force. This intuitively
leads to an improved stability of the hyperplane, with respect to changes in the set of its
support vectors. This effect is quantitatively evaluated in the toy example of Sect. 5.

4. Attack strategies

We now show how the proposed kernel correction strategy behaves in the presence of poten-
tial label flipping attacks. We adopt two different strategies for contaminating the training
set through label flipping: random and adversarial label flips. In both cases, we bound
the adversary’s effort by assuming that she can only flip the labels of a given percentage of
training samples.
Random Label Flips. In the first case, we randomly select a number of samples from
the training data (chosen according to a fixed percentage of data that can be manipulated
by the adversary), and flip their labels. This can be regarded as a non-adversarial kind of
noise, since it is not dependent on the given classifier.
Adversarial Label Flips. In the second case, instead, given a number of allowed label
flips, the adversary aims to find the combination of label flips which maximizes the classi-
fication error on the untainted testing data. However, the problem of finding the optimal
(worst-case) combination of label flips to attack the SVM learning algorithm is not trivial,
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and thus we resort to a heuristic approach which has shown to be quite effective on our
set of experiments (see Sect. 6). The idea behind the adversarial label flip attack is first
to flip labels of samples with non-uniform probabilities, depending on how well they are
classified by the SVM learned on the untainted training set; and, second, to repeat this
process a number of times, eventually retaining the label flips which maximally decreased
performance. In particular, we increase the probability of flipping labels of samples which
are classified with very high confidence (i.e., non-support vectors), and decrease the proba-
bility of flipping labels of support vectors and error vectors (inversely proportional to their
α value). The reason is that the former (mainly, the non-support vectors) are more likely
to become support vectors or error vectors when the SVM is learned on the tainted training
set, and, consequently, the decision hyperplane will be closer to them. This will reflect a
considerable change in the SVM solution, and, potentially, in its classification accuracy.
Furthermore, the labels of samples in different classes can be flipped in a correlated way,
to force the hyperplane to rotate as much as possible. To this end, one can draw a random
hyperplane wrnd, brnd in feature space, and further increase the probability of flipping the

label of a positive sample x+ (respectively, a negative one x−), if
(
wrnd

)>
x+ + brnd > 0

(
(
wrnd

)>
x− + brnd < 0). We implemented the above described attack as Algorithm 4,

using two weighting parameters β1 and β2, set to 0.1 (based on some preliminary experi-
mental observations, we found that these values achieved good results). A simple example
of application of this attack strategy is reported in the next section.

5. Toy example

We present here a simple toy example to demonstrate the adversarial label-flipping attack,
and how the kernel correction proposed in Sect. 3 can effectively counteract both random
and adversarial label flips. We generate a two-dimensional data set of 100 samples, where
samples of class z ∈ {−1,+1} are drawn from a Normal distribution with mean [z, 0]> and
(diagonal) covariance matrix equal to 1

2I. An SVM with linear kernel is learned on this
(untainted) training set, as depicted in Fig. 1 (first plot from left in the top row). Then,
we flip labels of 10 samples using the adversarial label flip attack described in the previous
section. Note from Fig. 1 (second to fourth plot from left in the top row, label flips are
highlighted with green circles) that: (1) the adversarial label flips mainly affect samples
which are farther away from the untainted SVM decision boundary, and (2) the correlation
imposed between label flips of samples of different classes induces a substantial change in
the tainted SVM decision boundary (second plot from left in the top row). Besides this,
note how the SVMs learned using µ = 0.1 and µ = 0.5 1 (third and fourth plot in the top
row) are able to compensate for the adversarial label flips, although not completely.

To better understand of this behavior and confirm the correctness of the observations
in Sect. 3.1, we also plot the α values of standard SVMs and of the proposed LN-robust
SVMs against the scores (i.e., the distances from the hyperplane) assigned by each SVM to
each training sample (see Fig. 1, bottom row). The mean and variance of the α values for
each SVM are also reported. As expected, the variance of the α values of the LN-robust
SVMs decreases with respect to the standard SVMs, and decreases more as µ approaches

1. From now on, with µ = 0.5 we will implicitly assume µ = 0.5 − ε, with ε > 0 but small enough (e.g.,
0.001), so that w does not degenerate to 0.
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Algorithm 1 Adversarial label flip attack.

Input: the untainted training data D = {xi, yi}ni=1, the regularization parameter C (and
the kernel’s parameters, if any), the number of label flips L, the number of repetitions R,
and the weighting parameters β1 and β2.
Output: the tainted labels y′1, . . . , y

′
n.

1: (α, b) ← train an SVM on D
2: for i = 1, . . . , n, do si ← yi[

∑n
j=1 yjαjK(xi, xj) + b], end for

3: normalize scores (s1, . . . , sn) in [0, 1], dividing by max(s1, . . . , sn)

4: (αrnd, brnd)← generate a random SVM (draw n+1 numbers from a uniform distribution)

5: for i = 1, . . . , n, do qi ← yi[
∑n

j=1 yjα
rnd
j K(xi, xj) + brnd], end for

6: normalize scores (q1, . . . , qn) in [0, 1], dividing by max(q1, . . . , qn)

7: for i = 1, . . . , n, do vi ← αi/C − β1si − β2qi, end for
8: (k1, . . . , kn)← sort (v1, . . . , vn) in ascending order, and return the corresponding indexes

9: (y′1, . . . , y
′
n)← (y1, . . . , yn)

10: for i = 1, . . . , L, y′ki = −yki , end for
11: train an SVM on {xi, y′i}ni=1

12: estimate its training error on D

13: repeat R times from point 4, and return the set of labels y′1, . . . , y
′
n which yielded the

maximum training error.

14: return y′1, . . . , y
′
n

0.5. This confirms that the solution of the LN-robust SVM is expected to be less sparse
than the standard SVM, and thus, less sensitive to outliers in training data.

Before concluding this section, we show that the proposed LN-robust SVM can be
effective against random label flips as well. To this aim, we conduct a simple artificial
experiment similar to the previous case. We consider SVMs with linear kernel, and each
class to be normally distributed with mean [z, 0, . . . , 0]> and (diagonal) covariance matrix
equal to 1

2I. However, this time we consider 300 features and 400 training samples, since
we need a higher features to samples ratio for the random label flip attack to be effective.
Note that the optimal (Bayes) classifier in this case is simply given by w = [1, 0, . . . , 0],
and b = 0. We vary the percentage of random label flips in the training set up to 40%,
and plot the corresponding testing accuracy (evaluated on a separate untainted test set of
1, 000 samples). The results are averaged over 5 repetitions, and reported in Fig. 2, for
four different values of the regularization parameter C: 0.1, 1, 10, 100. Note how, in this
case (and for all values of C) the LN-robust SVM is able to significantly outperform the
standard SVM (in particular when µ = 0.5), and that, surprisingly, this does not cause a
decrease of the classification accuracy attained on the untainted data set (i.e., when the
percentage of flipped labels is zero). Notably, this highlights that there need not necessarily
be a trade-off between accuracy on untainted data and robustness to attacks.
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Figure 1: (top row) Standard SVM trained on untainted and tainted data (first and second
plot, respectively), robust SVM with µ = 0.1 and µ = 0.5 trained on untainted
data (third and fourth plot, respectively); (bottom row) α values of each training
sample versus its distance to the hyperplane g(x), corresponding to the SVM
and data shown in the above plots. Mean and variance of the α values are also
reported. Data is tainted by performing 10 adversarial label flips, highlighted
with green circles. The support vectors of each SVM are circled in black.
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Figure 2: Classification accuracy on artificial normal data (untainted) for the SVM and the
LN-robust SVMs with linear kernel. LN-robust SVMs were trained with µ = 0.05,
µ = 0.1 and µ = 0.5. Results are shown for different percentages of random label
flips in training data, and different values of the regularization parameter C.

6. Experiments

We report experimental results to empirically validate the soundness of the proposed ap-
proach. We consider a number of real data sets, and compare the LN-robust SVM to the
standard SVM learning algorithm, either with linear or radial basis function (RBF) kernels,
under random and adversarial label flips. We report the classification accuracy attained
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by each classifier on untainted test data, as a function of the percentage of label flips in
training data; the more gracefully the performance decreases, the more robust the classifier
is.
Data sets. We downloaded 7 two-class data sets from LibSVM and UCI repositories, with
feature values already scaled in [−1,+1] 2 (Chang and Lin, 2001; Asuncion and Newman,
2007). Their characteristics are summarized in Table 1. Within these experiments, every
data set was randomly split 5 times into different training (TR) and testing (TS) set pairs,
respectively with 60% and 40% of samples each. The results were then averaged over these
5 trials.

Name # samples # features

Breast-cancer 683 10
Australian 690 14
Diabetes 768 8
Fourclass 862 2

Heart 270 13
Ionosphere 351 34

Sonar 208 60

Table 1: Main characteristics of the data sets

Setup. We considered four different values of the regularization parameter C, namely,
C = 0.1, 1, 10, 100, for both the linear and RBF kernels. Moreover, when the RBF
kernel was used, for any fixed C value, the parameter γ was selected among the values
{0.01, 0.1, 1, 10, 100} by performing a 5-fold cross validation on training data. In each plot,
we report the performance of the standard SVM and of three LN-robust SVMs respectively
trained with µ = 0.05, 0.1, 0.5. When the adversarial label flip attack is considered, the
labels to be flipped are determined using the standard SVM solution. However, we also
noted that there was not any relevant difference in the results when the same attack was
computed using the solutions of the LN-robust SVMs.
Results. Results for SVMs with the linear kernel against adversarial label flips and random
label flips are respectively reported in Fig. 3 and 4. Due to lack of space, we omit results for
the RBF kernel, which exhibit similar behavior and lead to similar conclusions. First, note
that, as expected, adversarial label flips generally decrease the performance with fewer flips
than random flipping. As the standard SVM is naturally somewhat robust to random label
noise (see Fig. 4), the resilience of the LN-robust SVM is most pronounced for adversarial
label flips although it also generally outperforms the standard SVM with random flips.
Second, for low values of C (i.e., 0.1 and 1), the LN-robust SVM does not generally improve
the performance over the standard SVM; indeed, sometimes it is even less robust to label
flips (see, e.g., the “diabetes” dataset under adversarial label flips, Fig. 3). On the other
hand, the LN-robust SVM can significantly improve the robustness when C is relatively
high (see, e.g., “australian”, “breast-cancer”, “fourclass”, “heart” and “ionosphere”). The
reason for this is that when the regularization parameter C is high, the SVM tends to
find a hard-margin solution which is clearly more sensitive to label noise, and, in this case,

2. http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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training an LN-robust SVM can successfully mitigate this problem (whereas, it may not
be helpful if the regularization parameter is low). Third, notice that the LN-robust SVM
with µ = 0.5 is able to significantly outperform the other classifiers on several data sets,
particularly when it achieves similar performances to the other classifiers on the untainted
training data (i.e., for 0% flipped labels). On the contrary, it may significantly worsen the
performance if its classification accuracy on untainted data is already low. This suggests two
conclusions: first, there is a trade-off between accuracy on untainted data and robustness
to noise; and, second, the parameter µ in our method can not be tuned with standard
performance evaluation techniques like cross-validation. The latter observation may seem a
major issue for the application of the proposed method. However, this problem exists for any
method which assumes some form of non-stationarity in the underlying data distribution, as
standard performance evaluation clearly relies on stationarity. In other words, to estimate
any parameter which depends on a potential change in the underlying data distribution,
standard performance evaluation techniques can not be adopted, and one needs to exploit
different criteria. For instance, for the LN-robust SVM, one may try to increase µ as long
as the estimated performance is still acceptable (or µ has already reached 0.5). This can be
done, for example, by still using cross validation but defining a proper utility function based
on both the classification accuracy and a term proportional to µ, which can be interpreted
as the robustness against potential label flips.

7. Discussions and open issues

In this section, we further discuss two open issues mentioned throughout the paper which
may be of interest for investigation from a theoretical perspective.

In Sect. 5, we observed that sometimes increasing µ can improve the performances over
the standard SVM even if the training data is not tainted. This is somewhat surprising
as one would expect that a trade-off between accuracy (on untainted data) and robust-
ness (under contamination) normally exists, as witnessed by robust statistics (Huber, 1981;
Hampel et al., 1986; Maronna et al., 2006). This raises the interesting question of whether
the proposed kernel correction acts as a further regularization term. We provide a partial
interpretation to this in Sect. 3.1 in discussing our method’s tendency to equalize the α
values among training points. However, an in-depth investigation of this aspect may reveal
some interesting properties related to the general notion of robustness. To this end, it might
be possible to exploit the work by Xu et al. (2009), where the authors found a clear relation
between robustness to noise and regularization (as mentioned in Sect. 2.2).

Another open issue is related to the choice of the parameter µ of our method, which,
as pointed out in the previous section, can not be done through standard performance
evaluation techniques (e.g., cross-validation). This generally raises the issue of how to
assess performance of classification algorithms in adversarial environments, or when the
underlying data distribution is subject to change. However, this is a relevant open issue
which can not be addressed thoroughly in this paper.
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Figure 3: Adversarial label flip attack against SVM and LN-robust SVMs (with µ =
0.05, 0.1, 0.5) with linear kernel, for different values of C, and percentage of noise.
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Figure 4: Random label flip attack against SVM and LN-robust SVMs (with µ =
0.05, 0.1, 0.5) with linear kernel, for different values of C, and percentage of noise.
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8. Conclusions and future works

Throughout this paper, we have investigated the robustness of SVMs under adversarial label
noise and proposed a method to improve it based on a simple kernel matrix correction. We
showed the effectiveness of the proposed approach on several artificial and real data sets.
We empirically observed that our method leads to equalization of α values in SVMs, which
intuitively hedges the influence of individual points and leads to a more robust estimator.
Our experimental results support the common observation that robustness exhibits a trade-
off with classification accuracy.

A current limitation of our method is the need to a-priori agree on a potential degree
of label contamination. While some ad-hoc heuristics are conceivable for setting the cor-
responding parameter µ in practice, the investigation of theoretically sound methods for
selecting an optimal “robustness level” would be an interesting issue for future work, as
well as considering our method in real adversarial problems like spam filtering and intru-
sion detection, and comparing it with other SVM implementations which are meant to be
robust against label noise (e.g., Stempfel and Ralaivola, 2009).
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