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Abstract

We study the problem of learning general rules from concrete facts extracted from natural
data sources such as the newspaper stories and medical histories. Natural data sources
present two challenges to automated learning, namely, radical incompleteness and system-
atic bias. In this paper, we propose an approach that combines simultaneous learning of
multiple predictive rules with differential scoring of evidence which adapts to a presumed
model of data generation. Learning multiple predicates simultaneously mitigates the prob-
lem of radical incompleteness, while the differential scoring would help reduce the effects
of systematic bias. We evaluate our approach empirically on both textual and non-textual
sources. We further present a theoretical analysis that elucidates our approach and explains
the empirical results.

Keywords: missing data, rule learning, structured and relational data

1. Introduction

Learning common sense knowledge in the form of rules by reading from natural texts has
long been a dream of AI (Guha and Lenat, 1990). This problem presents an opportunity
to exploit the long strides of research progress made in natural language processing and
machine learning in recent years as has been demonstrated in (Nahm and Mooney, 2000)
and extended to web-scale in (Carlson et al., 2010; Schoenmackers et al., 2010).

Unfortunately there are two major obstacles to fully realizing the dream of robust learn-
ing of general rules from natural sources. First, natural data sources such as texts and
medical histories are radically incomplete — only a tiny fraction of all true facts are ever
mentioned. More importantly, natural sources are systematically biased in what is men-
tioned. In particular, news stories emphasize newsworthiness, which correlates with rarity
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or novelty, sometimes referred to as the “man bites dog phenomenon.”1 For example,
consider the following sentence in a real news story:

“Ahmed Said Khadr, an Egyptian-born Canadian, was killed last October in Pakistan.”
Presumably, the phrase “Egyptian-born” was considered important by the reporter be-

cause it violates the expectation that most Canadians are born in Canada. If Khadr was
instead born in Canada, the phrase “Canadian-born” would most likely have been left out
of the text because it is too obvious to mention given that he is a Canadian.

Learning from incomplete or missing data is studied in statistics under different models
of missingness (Little and Rubin, 1987). Data is Missing Completely At Random (MCAR),
when the missingness mechanism does not depend on any data at all, i.e., some data is
omitted randomly with no attention to the content. A more general case is when data is
Missing At Random (MAR). Here the missingness mechanism only depends on the data
that has been observed. For example, a doctor might choose not to do certain tests if the
observed data makes the test irrelevant or unnecessary. The most general case is when the
data is Missing Not At Random (MNAR), where data is omitted based on the values of
the missing data themselves. Among other things, this represents the case when a reporter
omits the facts that are too obvious to mention in the news story given what has already
been said. While there are statistical tests to determine if a given situation is MCAR or
MAR from data alone, there are no such tests to distinguish MNAR from MAR in general
(Little and Rubin, 1987).

A widely used approach in both MCAR and MAR is based on expectation maximiza-
tion (EM), which is a two step iterative process. In the Expectation step or the E-step, the
missing data is imputed based on their expected values given the observed data. In the Max-
imization step or the M-step, parameters are found that maximize the likelihood of the data
including the imputed missing data. EM usually converges in a small number of iterations
to a locally optimal set of parameters (Dempster et al., 1977). In the more sophisticated
Multiple Imputation (MI) framework, results of multiple imputations are combined in or-
der to reduce the variance due to single imputation (Rubin, 1987; Schafer, 1999). However,
these statistical approaches are mostly confined to parameter estimation and do not address
the structure learning or rule learning. A notable exception is Structural EM (SEM), which
learns the structure and parameters of a Bayesian network in the presence of incomplete
data (Friedman, 1998). However, SEM does not take into account the systematic bias and
gives poor results when data is generated by an MNAR process.

Learning from incomplete examples or partial assignments has also been studied under
noise-free deterministic rule learning setting in the probably approximately correct (PAC)
learning framework. The goal is to learn an approximation of a function that has a small
error with respect to the training distribution from incompletely specified examples. With
an appropriate interpretation of the meaning of incompleteness, it has been shown that the
sample complexity of finite hypothesis spaces remains the same under incomplete examples
as under complete examples (Khardon and Roth, 1999). Further, when the hypothesis space
obeys certain conditions such as “shallow monotonicity,” the target rule is deterministic,
and sensing does not corrupt the data, the problem of learning from incomplete examples
polynomially reduces to that of learning from complete examples (Michael, 2009). In fact,

1. “When a dog bites a man, that is not news, because it happens so often. But if a man bites a dog, that
is news,” attributed to John Bogart of New York Sun among others.
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any algorithm that learns from complete data can be used after the missing data is com-
pleted in a way that guarantees consistency with the target function. Interestingly, this
result applies independent of the missingness process, which means that it is applicable to
the general case of MNAR. This approach is validated in an extensive study of sentence
completion tasks on a natural dataset (Michael and Valiant, 2008). At a high level, our work
shares many of the features of (Michael, 2009) in scoring the evidence and learning multiple
rules simultaneously to compensate for incomplete data. Our empirical results are based
on completing the missing data in multiple relational domains some of which are extracted
from text. We also support our results using a different kind of probabilistic analysis from
the PAC analysis of (Michael and Valiant, 2008).

Our main solution to dealing with systematic bias is to differentially score the evidence
for rules based on a presumed model of observation. In the MAR case, where data is omitted
based only on information that is already mentioned, conservative scoring of evidence, where
rules are only evaluated when all relevant data is present, gives an unbiased estimate of the
rule correctness. In the novelty mention model, which is a special case of MNAR model,
data is mentioned with a higher probability if it cannot be inferred from the remaining data.
We show that under this model, aggressive scoring of rules, where we count evidence against
a rule only if it contradicts the rule regardless of how the missing information transpires,
gives a better approximation to the accuracy of the rule. We evaluate our approach in
multiple textual and non-textual domains and show that it compares favorably to SEM.

2. Multiple-Predicate Bootstrapping

Algorithm 1 Multiple-Predicate Bootstrapping (MPB)

Input: DI = Incomplete training examples, M = Implicit mention model, τ = support
threshold, θ = confidence threshold
Output: set of learned rules R
1: repeat
2: Learn Rules: R = FARMER∗(M,DI , τ, θ)
3: Impute Missing Data:
4: for each missing fact fm ∈ DI do
5: Predict fm using the most-confident applicable rule r ∈ R
6: if fm is predicted then DI = DI − {fm}
7: end for
8: until convergence
9: return the set of learned rules R

Our algorithmic approach, called “Multiple-Predicate Bootstrapping” (MPB), is in-
spired by several lines of work including co-training (Blum and Mitchell, 1998), multitask
learning (Caruana, 1997), coupled semi-supervised learning (Carlson et al., 2010), and self-
training (Yarowsky, 1995). It simultaneously learns a set of rules for each predicate in the
domain given other predicates and then applies the learned rules to impute missing facts
in the data. This is repeated until no new fact can be added. Following the data mining
literature, we evaluate each rule using two measures: support and confidence. The support
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of a rule is measured by the number of examples that satisfy the body of the rule. The
higher the support, the more statistical evidence we have for the predictive accuracy of
the rule. In order to use a rule to impute facts, we require its support to be greater than
a support threshold. The confidence of a rule is defined to be the ratio of the number of
records that satisfy both body and head of the rule to the number that satisfy the body,
and represents an estimate of the conditional probability of the head of the rule given its
body.

Within each iteration of MPB, we adapt a relational data mining algorithm called
FARMER (Nijssen and Kok, 2003) for learning rules from incomplete data. FARMER
systematically searches for all possible rules up to a fixed depth d (candidate rules) whose
support and confidence exceed the given thresholds using depth first search. It has two
main advantages over other rule learning systems such as FOIL (Quinlan, 1990). First, it
can learn redundant rules. This is important in our setting where many of the predictive
features may be missing. Learning many redundant rules allows the inference to proceed
as much as possible. The second advantage is that it has the flexibility to vary the depth
of the search which controls the efficiency of search and the complexity of rules. To handle
missing data, our adapted version FARMER∗ measures the confidence of a rule either
conservatively or aggressively according to the assumed implicit mention model.

At the end of this process we select all rules of a desired complexity that pass a support
threshold and a confidence threshold. Given multiple learned rules that are applicable to
a given instance, we only use the most confident one to make predictions. This would
avoid making multiple conflicting predictions of the same attribute. The overall algorithm
is summarized in Algorithm 1.

(a) (b)

Figure 1: (a) Generative model for document generation process (b) Inverted model for
learning process

Explicit Mention Model. It is instructive to consider a generative approach to solving
the problem of learning from incomplete examples. In this approach, one would construct
a probabilistic generative model we call “mention model,” that captures what facts are
mentioned and extracted by the programs from the text given the true facts about the
world (see Figure 1(a)). Given some extracted facts, the learning agent would invert the
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mention model to infer a distribution over sets of true facts (see Figure 1(b)). An inductive
program could then be used to infer general rules from distributions over true facts. This
approach has the advantages of being general and elegant. It is also flexible because the
mention model is an explicit input to the learning algorithm. However, the flexibility comes
with a price. The inference is highly intractable due to the need to marginalize over all
possible mentioned and true sets of facts. Approximate inference will have to be used
with its own errors and pitfalls. Instead of this computationally demanding approach, we
describe a simpler method of adapting the learning algorithms directly to score and learn
rules using an implicit mention model. This approach is similar in spirit to the work of
(Michael, 2009) and extends it to the case of noisy data, multiple relations and probabilistic
target rules.
Implicit Mention Models. Unlike in the maximum likelihood approach discussed above,
our learners do not employ an explicit mention model. We address the problem of systematic
bias by adapting the scoring function for the hypothesized rules according to a presumed
implicit mention model. We now discuss two specific mention models and two methods for
scoring evidence for rules which are inspired by them.

Random Mention Model (RMM): This is equivalent to the Missing At Random (MAR)
statistical model. In this model, it is assumed that facts are mentioned based on other
known facts but not based on missing facts. For example, a doctor might omit a test if
some other tests come out negative. A Bayesian network that illustrates this case is shown
in Figure 2(a). B′ is equal to B if M is true. Here the node labeled M denotes a random
variable that represents the fact that B is mentioned. B′ indicates the observed value of B
and is equal to B if M is true.

Novelty Mention Model (NMM): This model is a special case of the Missing Not At
Random (MNAR) statistical model, where a fact is more likely to be omitted (mentioned)
if it is considered predictable (not predictable) based on other known facts and common
knowledge. Specifically, we consider a fact predictable if its value can be correctly predicted
by a highly confident rule (i.e., confidence ≥ α). We refer to such rules as being α-general.
Given an α-general rule A ⇒ B, in NMM B will be mentioned with a higher probability
when the rule is violated, i.e., P (M |V ) > P (M |¬V ). This is illustrated in Figure 2(b).
For rules that are less than α-general, the facts entailed by these rules are not considered
predictable, thus will not be missing under the novelty mention model. This model more
closely captures the citizenship-birth place example, since whether or not the birth place of
a person is mentioned depends on the birth place and other mentioned facts of the person
such as the citizenship.

Inspired by the two types of mention models, we propose two different ways of scoring
rules. We use the following notation to define our rule scoring functions. Each literal may
be either true, false or unknown. We write n(A = t, B = f, C = u) to be the count of
examples where A is true, B is false and C is unknown. For brevity we write A for A = t.
The Support of a rule A ⇒ B is defined as the number of examples in which A is known
to be true i.e., n(A), for both conservative and aggressive scoring.

In conservative scoring, evidence is counted in favor of a rule only when all facts relevant
to determining the truth value of the rule are actually known. The confidence of the rule
in this case is defined as follows:
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Figure 2: Bayes nets for data generation using (a) Random Mention Model and (b) Novelty
Mention Model. A⇒ B is a rule, M is a random variable that represents the fact
that B is mentioned, B′ indicates the observed value of B and random variable
V denotes violation of rule.
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pc(A⇒ B) =
n(A,B)

n(A,B 6= u)
(1)

In aggressive scoring, a fact is counted as evidence for a rule if the rule’s premise is
satisfied and the conclusion is not contradicted. The confidence of a rule is defined as
follows:

pa(A⇒ B) =
n(A,B) + n(A,B = u)

n(A)
(2)

For example, consider the text “Khadr, a Canadian citizen, was killed in Pakistan”.
For conservative scoring, it is counted as neither supporting nor contradicting the rule
citizen(X,Y) ⇒ bornIn(X,Y), as we are not told that bornIn(Khadr,Canada). In con-
trast, it is counted as supporting the rule citizen(Y) ⇒ bornIn(Y) for aggressive scoring
because, adding bornIn(Canada) supports the rule without contradicting the available ev-
idence. In contrast, it does not support the rule killedIn(Y) ⇒ citizen(Y) because the
rule directly contradicts the evidence, if it is known that citizen is a functional relation-
ship.

3. Analysis of Implicit Mention Models

This section analyzes aggressive and conservative scoring of data generated using different
mention models.

Consider a rule A⇒ B. Figure 2 shows the Bayes nets that explain the data generation
process in the random and novelty mention models. Let S be the support set of the rule
A⇒ B, i.e., the set of examples where A is true. Let p(r) be the true confidence of the rule
r, i.e., the conditional probability of B given A. Let p̂c(r) and p̂a(r) denote the conservative
and aggressive estimates of confidence of the rule r.

Theorem 1 If the data is generated by the random mention model then p̂c(r) is an unbiased
estimate and p̂a(r) is an overestimate of the true confidence of rule p(r).

Proof Conservative scoring estimates the confidence of the rule from only a subset of S
where B is not missing.

p̂c(r) =
|S| p(r)P (M |A)

|S|P (M |A)
= p(r) (3)

Therefore, p̂c is a unbiased estimate of the true confidence.
Aggressive scoring deterministically imputes the missing value of B such that it satisfies

the hypothesized rule.

p̂a(r) =
|S| p(r)P (M |A) + |S| (1− P (M |A))

|S|
= p(r)P (M |A) + (1− P (M |A)) (4)

= p(r) + (1− P (M |A)) (1− p(r))
≥ p(r)
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Therefore, p̂a(r) overestimates the confidence of the rule. The bias of p̂a(r) increases with
decreased P (M |A).

Theorem 2 If the data is generated by the random mention model, then the true confidence
rank order of rules is preserved with both conservative and aggressive scoring.

Proof It is enough to show that the ordering is preserved for any two rules r1 and r2 that
predict the value of the same variable. Without loss of generality, let p(r1) > p(r2). From
(3), p̂c(r1) > p̂c(r2). Therefore, order is preserved with conservative scoring.

p(r1) > p(r2)

⇒ p(r1)P (M |A) + (1− P (M |A))

> p(r2)P (M |A) + (1− P (M |A))

⇒ p̂a(r1) > p̂a(r2) (From (4) )

Thus, aggressive scoring also preserves the ordering.

Under the novelty mention model, consider a α-general rule r: A ⇒ B. Let V stands
for a random variable that represents a violation of the rule r. If V is true, according to the
novelty model, B has a higher probability of being mentioned. Hence P (M |V ) > P (M |¬V ),
where M denotes the random variable representing the fact that B is mentioned. Note that
facts entailed by rules that are less than α-general will not be missed under the novelty
mention model because they are not considered predictable.

Theorem 3 If the data is generated by the novelty mention model, for any alpha-general
rule r, p̂c(r) is an underestimate and p̂a(r) is an overestimate of true confidence of the rule
p(r).

Proof Under the novelty mention model, we have:

p̂c(r) =
|S| p(r)P (M |¬V )

|S| p(r)P (M |¬V ) + |S| (1− p(r))P (M |V )

=
p(r)P (M |¬V )

p(r)P (M |¬V ) + (1− p(r))P (M |V )

To compare this with p(r), we estimate the odds:

p̂c(r)

1− p̂c(r)

=
p(r)P (M |¬V )

(1− p(r))P (M |V )

= true odds× P (M |¬V )

P (M |V )

< true odds
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Since in the novelty mention model P (M |¬V ) < P (M |V ), p̂c(r) underestimates p(r) and
significantly so if P (M |¬V )� P (M |V ).

It is easy to show that for aggressive scoring, we have:

p̂a(r) =
|S| p(r) + |S| (1− p(r)) (1− P (M |V ))

|S|
= p(r) + (1− p(r)) (1− P (M |V )) (5)

≥ p(r)

Therefore, similar to the random mention model, p̂a(r) overestimates the true confidence of
the rule p(r). However, when the novelty mention model is strongly at play, i.e., P (M |V ) ≈
1, it provides a good estimate of p(r).

Theorem 4 If the data is generated by the novelty mention model, then the true confidence
rank order of rules is preserved with aggressive scoring.

Proof We first show that the ordering is preserved for any α-general rules r1 and r2 where
p(r1) > p(r2).

p(r1) > p(r2)

⇒ p(r1)P (M |V ) > p(r2)P (M |V )

⇒ p(r1)P (M |V ) + (1− P (M |V ))

> p(r2)P (M |V ) + (1− P (M |V ))

⇒ p̂a(r1) > p̂a(r2) (From (5) )

We then compare an α-general rule r1 with a rule r2 that is less than α-general. For r1,
p̂a(r1) ≥ p(r1) over-estimates the confidence based on Theorem 3. For r2, because no data
is missing, p̂a(r2) = p(r2) is an unbiased estimate of p(r2). p̂a(r1) ≥ p(r1) > p(r2) = p̂a(r2).
Thus, r1 will be correctly ranked higher than r2 by aggressive scoring. Finally consider two
rules that are both not α-general. Because the conclusion for such rules is always mentioned
according to the NMM, aggressive scoring provides unbiased estimate of the confidences and
preserves their rank order.

It is interesting to note that while conservative scoring preserves the ranking order of
α-general rules, it can potentially reverse the order of an α-general rule with a rule that is
less than α-general. This is because conservative scoring correctly estimates the confidence
of rules that are less than α-general but underestimates the confidence of the α-general
rules.

4. Experimental Results

In this section, we describe our experimental results on both synthetic and natural datasets
and analyze them.
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4.1. Synthetic Experiments

To test our analysis of implicit mention models, we perform experiments on synthetic data
generated using different missing data mechanisms, i.e., RMM and NMM. We use the UCI
database SPECT Heart, which describes diagnosing of Single Proton Emission Computed
Tomography (SPECT) images2. This database contains 267 examples with 23 binary fea-
tures extracted from the SPECT image sets (patients). A 70% / 30% split of the data is
created for training and testing respectively. We generate two different synthetic versions
based on RMM and NMM missing mechanisms. We first learn a set of rules that have con-
fidence of 80% or more from the complete training data. These rules are then used to create
training and testing data with varying levels of missingness. For NMM, if a rule is violated,
then its consequent is always mentioned (i.e., p(M |V ) = 1). If a rule is not violated, then its
consequent is omitted based on the missingness level (p(M |¬V ). We evaluate the learning
algorithms on the test data generated by the same mention model that generates its train-
ing data. Experiments are performed with different levels of missingness in both training
and testing data and we report the accuracies (averaged over all attributes) with which the
missing data is predicted correctly w.r.t the gold standard data. The averaged results over
10 different versions of the generated data are reported (see Table 1 and Table 2).
Baseline. We compare the results of our Multiple-Predicate Bootstrapping (MPB) ap-
proach with Structural EM (SEM) (Friedman, 1998). SEM directly learns from incomplete
data by searching over the joint space of structures and parameters. At each search step,
SEM either finds better parameters for the current structure (parametric EM step) or selects
a new structure (structural EM step). It is shown that SEM converges to a local maximum
(Friedman, 1998). Since the choice of initial model determines the convergence point (and
the quality of the learned model), we do 20 random restarts and compute the averaged
results over these multiple runs of SEM.
Analysis of Results. For the RMM data, both conservative and aggressive scoring perform
equally well (see Figure 3(a)), which was expected based on Theorem 2. Since the rank
order of rules is the same in both scoring methods, they make the same prediction by
picking the same rule that is applicable. SEM performs better than both conservative and
aggressive scoring when missingness in the training data is small, i.e., 0.2 and 0.4 (see �’s
in Figure 3(b)), but conservative/aggressive scoring significantly outperforms SEM when
missingness in training data is large, i.e., 0.6 and 0.8 (see ♦’s in Figure 3(b)). Performance
of all the algorithms decreases as the percentage of missingness in training data increases.

For the NMM data, aggressive scoring significantly outperforms conservative scoring (see
Figure 4(a)) which is consistent with our analysis in Theorem 4. Since the novelty mention
model was strongly at play, i.e., P (M |V ) = 1, aggressive scoring provides a very good
estimate of the true confidence of the rules, resulting in excellent performance. Aggressive
scoring significantly outperforms SEM when the missingness in data is tolerable, i.e., 0.2, 0.4
and 0.6. However, all algorithms including SEM perform poorly with very high missingness,
i.e., 0.8. Note that, although our analysis of implicit mention models is for the simple case
where only the head of the rule can be missing, our synthetic data were generated for a
more difficult problem where the body of the rule could be missing as well.

2. http://archive.ics.uci.edu/ml/datasets/SPECT+Heart
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Table 1: Accuracy results of synthetic experiments with Random Mention Model (RMM)
data

Testing

Missing% 0.2 0.4 0.6 0.8

Con Agg Sem Con Agg Sem Con Agg Sem Con Agg Sem

T
ra

in
in

g 0.2 77.8 77.8 81.8 77.9 77.9 81.9 77.8 77.8 81.4 77.5 77.6 80.0
0.4 76.7 76.7 79.5 77.1 77.1 79.4 77.0 76.9 79.3 76.9 76.8 78.2
0.6 77.6 77.7 72.2 77.9 78.0 73.3 77.4 77.5 72.9 77.2 77.5 72.5
0.8 75.4 75.2 70.2 75.6 75.1 71.6 75.0 74.5 71.2 74.9 74.5 70.9

70 75 80 85

70

75

80

85

Conservative

A
gg
re
ss
iv
e

70 75 80 85

70

75

80

85

Conservative

SE
M

(a) (b)

Figure 3: Accuracy for Random Mention Model (RMM) data : (a) Conservative vs. Ag-
gressive (b) Conservative vs. SEM

4.2. Experiments with Real data

We also performed experiments on three datasets extracted from news stories: (a) NFL
games, (b) Birthplace-Citizenship data of people, (c) Somali ship-hijackings. We used
data extracted by a state-of-the-art information extraction system from BBN technologies
(Ramshaw et al., 2011; Freedman et al., 2010) applied to LDC (Linguistic Data Consor-
tium) corpus of 110 NFL sports articles for (a), 248 news stories related to the topics of
people, organizations and relationships from ACE08 Evaluation corpus for (b), and hand
extractions from 101 news stories concerning ship hijacking incidents mentioned on the web
site coordination-maree-noire.eu for (c).
NFL domain. For the NFL domain, the following predicates were provided for each game
with natural interpretations: gameWinner, gameLoser, homeTeam, awayTeam, gameTeamScore,
and teamInGame. We manually extracted 55 games from news stories about the 2010 NFL
season (which do not overlap with our training corpus) to serve as a test set. We observed
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Table 2: Accuracy results of synthetic experiments with Novelty Mention Model (NMM)
data

Testing

Missing% 0.2 0.4 0.6 0.8

Con Agg Sem Con Agg Sem Con Agg Sem Con Agg Sem

T
ra

in
in

g 0.2 97.1 98.1 90.0 96.8 97.8 88.0 96.7 97.5 87.0 96.9 97.6 86.0
0.4 92.5 97.2 87.0 91.8 96.4 85.0 91.3 96.1 84.0 91.7 96.2 82.0
0.6 64.4 86.8 77.0 63.0 85.3 75.0 62.1 83.8 73.0 61.8 83.3 70.0
0.8 11.6 21.0 53.0 11.8 20.7 49.0 11.6 19.9 42.0 11.5 19.8 34.0

0 20 40 60 80 100
0

20

40

60

80

100

Conservative

A
gg
re
ss
iv
e

0 20 40 60 80 100
0

20

40

60

80

100

Aggressive

SE
M

(a) (b)

Figure 4: Accuracy for Novelty Mention Model data: (a) Aggressive vs. Conservative (b)
SEM vs. Aggressive

that most of the input extractions are noisy and inconsistent, which makes the problem of
rule learning even harder. These inconsistent examples are due to co-reference errors, e.g.,
the extractor does not realize that two mentions of the same team in a football article are in
fact the same. To allow correcting the inconsistencies in the noisy data, we learned integrity
constraints from a small number of complete and noise-free examples. We then applied the
learned integrity constraints to generate consistent versions of the inconsistent examples
(e.g., by deleting a literal) in all possible ways. Note that many of these examples are going
to be factually incorrect, as we did not use the ground truth in correcting the examples.
Finally, we scored the rules against these “corrected” examples with a lower weight γ(< 1).
The prediction accuracy of the learned rules is reported as a function of number of clean
examples (see Figure 5). The results of this approach are compared with Structural EM
(SEM). For SEM, we used the ground-truth (instead of the learned) integrity constraints
to correct the noisy examples and hence, there is only one point in Figure 5.
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Figure 5: Results of NFL domain: no. of clean examples vs. prediction accuracy

As we can see in Figure 5, both conservative and aggressive scoring significantly outper-
form SEM. Since the NFL domain is deterministic, i.e., ∀ r, p(r) = 1, and similar to RMM
data, both conservative and aggressive scoring perform equally well. We observed that once
we learn the true integrity constraints from the clean examples, conservative scoring exactly
learns the ground truth rules and aggressive scoring learns a few other spurious rules as
well. However, the ground-truth rules are ranked higher than the spurious rules based on
the estimated confidences and therefore, the spurious rules do not degrade performance.
Similar to the results on the synthetic data, SEM does not perform very well when the data
are radically incomplete.
Birthplace-Citizenship data. In this corpus, the birth place of a person is only men-
tioned 23 times in the 248 documents. In 14 of the 23 mentions, the mentioned information
violates the default rule citizen(Y) ⇒ bornIn(Y). Since the data matches the assumption
of aggressive scoring, we expect aggressive scoring to learn the correct rule. The extracted
data had 583 examples where citizenship of a person was mentioned and 25 examples where
birthplace was mentioned, 6 examples where both birthplace and citizenship was mentioned
out of which 2 examples violated the default rule. The confidence of the rule citizen(Y) ⇒
bornIn(Y) is 0.675 based on conservative scoring and 0.9931 based on aggressive scoring.
According to Wikipedia the true confidence of this rule is > 0.97, which means that aggres-
sive scoring achieves better probability estimate compared to conservative scoring. Since we
used a confidence threshold of 0.8 for all our experiments, only aggressive scoring learned
the correct rule. We also did this experiment with SEM and found that its performance is
similar to aggressive scoring.
Somali Ship-hijackings data. We manually extracted information about ship hijack-
ings by Somali pirates from natural language documents on the web. From the 101 stories
collected, we merged the information for each ship, resulting in a total of 35 summarized
stories. We used 25 of them for training and the other 10 for testing. The data extracted
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consisted of the occurrences of 13 different kinds of events, e.g., attacked, captured, held,
released, negotiations started, and so on. Our goal was to predict missing events from the
mentioned events. For example, given that an article mentions a ship was captured, learned
rules should infer that it was attacked. Rules may also predict events before they occur,
such as predicting that after ransom negotiations have begun, a ransom will be paid. We
provided some background knowledge in the form of hard-coded integrity constraints that
allowed us to fill in some of the missing facts. For example, if a ship is released it is no
longer held and vice versa. We experimented with both aggressive and conservative scoring
and evaluated their performance on the test data. Our prediction accuracy with respect to
the gold standard test set is 96.15% with aggressive scoring and 71.79% with conservative
scoring. Both methods learned many good rules. Aggressive scoring did significantly better
and extracted very few bad rules. The prediction performance of SEM (57.7%) was inferior
to both scoring methods. We also experimented with the mentions of ownership country
and flag country of hijacked ships from the manually-extracted stories. Similar to birth-
place/citizenship case, the default rule is ownership(Y) ⇒ flag(Y). However, many ships
fly a different flag than the country of ownership, which violates the default rule. There
were 16 stories that mentioned both nationality of owner and nationality of flag, of which
14 violated the default rule. Since the data matches the assumptions of aggressive scoring,
it learns the correct rule in this case. SEM performs similar to aggressive scoring.

5. Conclusions and Future Work

We motivated and studied the problem of learning from natural data sources which presents
the dual challenges of radical incompleteness and systematic bias. Our solutions to these
problems consist of bootstrapping from learning of multiple relations and scoring the rules
or hypotheses differently based on an assumed mention model. Our experimental results
validate the usefulness of differential scoring of rules and show that our approach can out-
perform other state-of-the-art methods such as Structural EM. Our theoretical analysis
gives insights into why our approach works, and points to some future directions. One of
the open questions is the analysis of multiple-predicate bootstrapping and the conditions
under which it works.

Another avenue of research is to explicitly represent the mention models and reason
about them while learning from incomplete and biased examples. In (Sorower et al., 2011),
we used Markov Logic Networks to explicitly represent a mention model in the form of
weighted rules (Richardson and Domingos, 2006). The weights of the rules are also learned
from the incomplete data showing the advantage of this approach. This approach is also
more flexible in the sense that it is easy to consider the consequences of incorporating
different mention models in the document generation process. More ambitiously, we could
also consider a space of possible models and search them to fit the data. Understanding
the flexibility vs. efficiency tradeoff between the explicit and the implicit approaches to
learning from missing data appears to be a productive research direction.
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