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Abstract

We formulate a framework for applying error-correcting codes (ECC) on multi-label classifi-
cation problems. The framework treats some base learners as noisy channels and uses ECC
to correct the prediction errors made by the learners. An immediate use of the framework
is a novel ECC-based explanation of the popular random k-label-sets (RAKEL) algorithm
using a simple repetition ECC. Using the framework, we empirically compare a broad
spectrum of ECC designs for multi-label classification. The results not only demonstrate
that RAKEL can be improved by applying some stronger ECC, but also show that the
traditional Binary Relevance approach can be enhanced by learning more parity-checking
labels. In addition, our study on different ECC helps understand the trade-off between the
strength of ECC and the hardness of the base learning tasks.
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1. Introduction

Multi-label classification is an extension of traditional multi-class classification. In par-
ticular, the latter aims at accurately associating one single label with an instance while
the former aims at associating a label-set. Because of the increasing application needs
in domains like text and music categorization, scene analysis and genomics, multi-label
classification is attracting much research attention in recent years.

Error-correcting code (ECC) roots from the information theoretic pursuit of commu-
nication (Shannon, 1948). In particular, ECC studies how to accurately recover a desired
signal block after transmitting the block’s encoding through a noisy communication chan-
nel. When the desired signal block is the single-label (of some instances) and the noisy
channel consists of some binary classifiers, it has been shown that a suitable use of ECC
could improve the association (prediction) accuracy of multi-class classification (Dietterich
and Bakiri, 1995). In particular, with the help of ECC, we can reduce multi-class classi-
fication to several binary classification tasks. Then, following the foundation of ECC in
information theory (Shannon, 1948; Mackay, 2003), a suitable ECC can correct a small
portion of binary classification errors during the prediction stage and thus improve the pre-
diction accuracy. Several designs, including some classic ECC (Dietterich and Bakiri, 1995)
and some adaptively-constructed ECC (Schapire, 1997; Li, 2006), have reached promising
empirical performance for multi-class classification.

While the benefits of ECC are well-established for multi-class classification, the corre-
sponding use for multi-label classification remains an ongoing research direction. Kouzani
and Nasireding (2009) take the first step on the direction by proposing a multi-label clas-
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sification approach that applies a classic ECC, the Bose-Chaudhuri-Hocquenghem (BCH)
code, using a batch of binary classifiers as the noisy channel. The work is followed by
some extensions to the convolution code (Kouzani, 2010). Although the approach shows
some good experimental results over existing multi-label classification approaches, a more
rigorous study remains needed to understand the advantages and disadvantages of different
ECC designs for multi-label classification and will be the main focus of this paper.

In this work, we formalize the framework for applying ECC on multi-label classification.
The framework is more general than both existing ECC studies for multi-class classifica-
tion (Dietterich and Bakiri, 1995) and for multi-label classification (Kouzani and Nasireding,
2009). Then, we conduct a thorough study with a broad spectrum of classic ECC designs:
repetition code, Hamming code, BCH code and low-density parity-check code. The four de-
signs cover the simplest ECC idea to the state-of-the-art ECC in communication systems.
Interestingly, such a framework allows us to give a novel ECC-based explanation to the
random k-label-sets (RAKEL) algorithm, which is popular for multi-label classification. In
particular, RAKEL can be viewed as a special type of repetition code coupled with a batch
of simple multi-label classifiers.

We empirically demonstrate that RAKEL can be improved by replacing its repetition
code with the Hamming code, a slightly stronger ECC. Furthermore, even better perfor-
mance can be achieved when replacing the repetition code with the BCH code. When
compared with the traditional Binary Relevance approach without ECC, multi-label classi-
fication with ECC can perform significantly better. The empirical results justify the validity
of the ECC framework.

The paper is organized as follows. First, we introduce the multi-label classification
problem and present related works in Section 2. Section 3 formalizes the framework for
applying ECC on multi-label classification; Section 4 reviews the four ECC designs that we
study. Then, in Section 5, we describe the ECC view of RAKEL. Finally, we discuss the
results from experiments in Section 6 and conclude in Section 7.

2. Setup and Review

Multi-label classification aims at mapping an instance x € R? to a label-set Y C £ =
{1,2,...,K}, where K is the number of classes. Following the hypercube view of Tai
and Lin (2010), the label-set Y can be represented as a binary vector y of length K,
where y[i] is 1 if the i-th label is in Y, and 0 otherwise. Consider a training data set
D = {(%Xn,yn)})_;. A multi-label classification algorithm uses D to locate a multi-label
classifier h: RY — {0,1}% such that h(x) predicts y well on future test examples (x,y).
There are several loss functions for evaluating whether h(x) predicts y well. Two com-
mon ones are:
e subset 0/1 loss: A, (y,y) = [¢ # y], which is arguably one of the most challenging loss
functions because zero (small) loss occurs only when every bit of the prediction is correct.

K

e Hamming loss: Ay (9,y) = £ > [9li] # y[i]], which considers individual bit differ-
i=1

ences.

Dembczyniski et al. (2010) show that the two loss functions focus on different statistics
of the underlying probability distribution from a Bayesian perspective. While a wide range
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of other loss functions exist (Tsoumakas and Vlahavas, 2007), in this paper we only focus
on 0/1 and Hamming because they connect tightly with the ECC framework that will be
discussed.! Note that the subset 0/1 loss is also conventionally listed in its complement
form A(y,y) =1 — Ay/1(Y,y), which is called subset accuracy (Tsoumakas and Vlahavas,
2007). We take such a convention and report both accuracy and Agy in this paper.

The hypercube view (Tai and Lin, 2010) unifies many existing problem transforma-
tion approaches (Tsoumakas and Vlahavas, 2007) for multi-label classification. Problem
transformation approaches transform multi-label classification into to one or more reduced
learning tasks. For instance, one simple problem transformation approach for multi-label
classification is called binary relevance (BR), which learns one binary classifier per each
individual label. Another simple problem transformation approach is called label powerset
(LP), which transforms multi-label classification to one multi-class classification task with
a huge number of extended labels. One popular problem transformation approach that
lies between BR and LP is called random k-label-sets (RAKEL; Tsoumakas and Vlahavas,
2007), which transforms multi-label classification to many multi-class classification tasks
with a smaller number of extended labels.

Multi-label classification with compressive sensing (Hsu et al., 2009) is a problem trans-
formation approach that encodes the training label-set y,, to a shorter, real-valued code-
word vector using compressive sensing. Tai and Lin (2010) study some different encoding
schemes from label-sets to real-valued codewords. Note that those encoding schemes focus
on compression—removing the redundancy within the binary signals (label-sets) to form
the shorter codewords. The compression perspective can lead to not only more efficient
training and testing, but also more meaningful codewords.

Compression is a classic task in information theory based on Shannon’s first theo-
rem (Shannon, 1948). Another classic task in information theory aims at ezpansion—adding
redundancy to the (longer) codewords to ensure robust decoding against noise contamina-
tion. The power of expansion is characterized by Shannon’s second theorem (Shannon,
1948). ECC targets towards using the power of expansion systematically. In particu-
lar, ECC works by encoding a block of signal to a longer codeword b before passing it
through the noisy channel, and then decoding the received codeword b back to the block
appropriately. Then, under some assumptions (Mackay, 2003), the block can be perfectly
recovered—resulting in zero block-decoding error; in some cases, the block can only be
almost perfectly recovered—resulting in a few bit-decoding errors.

If we take the “block” as the label-set y for every example (x,y) and a batch of base
learners as a channel that outputs the contaminated block b, the block-decoding error
corresponds to Ag,; while the bit-decoding error corresponds to a scaled version of Apy,.
Such a correspondence motivates us to study whether suitable ECC designs can be used to
improve multi-label classification, which will be formalized in the next section.

3. ECC for Multi-label Classification

We now describe the ECC framework in detail. The main idea is to use an ECC encoder
enc(-): {0,1}% — {0,1} to expand the original label-set y € {0,1} to a codeword

1. We follow the final remark of Dembczyniski et al. (2010) to only focus on the loss functions that are
related to our algorithmic goals.
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b € {0,1}M that contains redundancy information. Then, instead of learning a multi-label
classifier h(x) between & and y, we learn a multi-label classifier h(a) between a and the
corresponding b. In other words, we transform the original multi-label classification problem
to another multi-label classification task. During prediction, we use h(x) = decoﬁ(m), where
dec(-): {0,1}M — {0,1}¥ is the corresponding ECC decoder, to get a multi-label prediction
g € {0,1}¥. The simple steps of the framework is shown in Algorithm 1.

Algorithm 1: Error-Correcting Framework

e Parameter: an ECC with encoder enc(-) and decoder dec(-); a base multi-label
learner Ay

N
n=1»

e Training: Given D = {(xy,y,,)}
1. ECC-encode each y,, to b, = enc(y,,);
2. Return h = .Ab({ (x5, bn) })

e Prediction: Given any x,

1. Predict a codeword b = h(zx);

2. Return h(x) = dec(b) by ECC-decoding.

Algorithm 1 is simple and general. It can be coupled with any block-coding ECC and
any base learner Ay to form a new multi-label classification algorithm. For instance, the ML-
BCHRF method (Kouzani and Nasireding, 2009) uses the BCH code (see Subsection 4.3) as
ECC, and BR on Random Forest as the base learner A;,. Note that Kouzani and Nasireding
(2009) did not describe why ML-BCHRF may lead to improvements in multi-label classifi-
cation. Next, we show a simple theorem that connects the ECC framework with Ag;.

Many ECC can guarantee to correct up to m bit flipping errors in a codeword of
length M. We will introduce some of those ECC in Section 4. Then, if Apy of h is
low, the ECC framework guarantees that Ag/; of h is low. The guarantee is formalized as
follows.

Theorem 1 Consider an ECC that can correct up to m bit errors in a codeword of length M.
Then, for any T test examples {(xt,y,)}Lq, let by = enc(y,). If

T
- 1 -
Apr(h) = 7 > App(h(ze), by) < e,
t=1

then h = dec o h satisfies

Me
m+1"

T
1
Ag/1(h) = T ZAO/I(h(xt)ayt) <
=1
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Proof When the average Hamming loss of & is at most €, h makes at most ¢I'M bits of
error on all b;. Since the ECC corrects up to m bits of errors in one b;, an adversarial has
to make at least m + 1 bits of errors on b; to make h(x;) different from y,. The number of

such b; can be at most frﬂ\{ Thus Agq(h) is at most 7TEZ;;A+/[1)' u

From Theorem 1, it appears that we should simply use some stronger ECC, for which m
is larger. Nevertheless, note that we are applying ECC in a learning scenario. Thus, €
is not a fixed value, but depends on whether A, can learn well from D. Stronger ECC
usually contains redundant bits that come from complicated compositions of the original
bits in y, and the compositions may not be easy to learn. The trade-off has been revealed
when applying ECC to multi-class classification (Li, 2006). In the next section, we study
ECC with different strength and empirically verify the trade-off in Section 6.

4. Review of Classic ECC

Next, we review four ECC designs that will be used in the empirical study. The four designs
cover a broad spectrum of practical choices in terms of strength: repetition code, Hamming
on repetition code, Bose-Chaudhuri-Hocquenghem code, and low-density parity-check code.

4.1. Repetition Code

One of the simplest ECC is repetition code (REP; Mackay, 2003), for which every bit in y
is repeated L%J times in b during encoding. If M is not a multiple of K, then (M mod K)
bits are repeated one more time. The decoding takes a majority vote using the received
copies of each bit. Thus, repetition code corrects up to mregp = %L%J — 1 bit errors in b.

We will discuss the connection between REP and the RAKEL algorithm in Section 5.

4.2. Hamming on Repetition Code

A slightly more complicated ECC than REP is called the Hamming code (HAM; Hamming,
1950), which can correct mgaps = 1 bit error in b by adding some parity check bits
(exclusive-or operations of some bits in y). One typical choice of HAM is HAM(7,4),
which encodes any y with K = 4 to b with M = 7. Note that mgay = 1 is worse than
mrep = 3|4 ] — 1 when M is large. Thus, we consider applying HAM(7,4) on every 4
(permuted) bits of REP. That is, to form a codeword b of M bits from a block y of K bits,
we first construct an REP of 4| M/7] + (M mod 7) bits from y; then for every 4 bits in
the REP, we add 3 parity bits to b using HAM(7,4). The resulting code will be named
Hamming on Repetition (HAMR). During decoding, the decoder of HAM(7,4) is first used
to recover the 4-bit sub-blocks in the REP. Then, the decoder of REP (majority vote) takes
place.

It is not hard to compute mganr by analyzing the REP and HAM parts separately.
When M is a multiple of 7 and K is a multiple of 4, it can be proved that mygapr = %,
which is generally better than mppp = %L%J — 1. Thus, HAMR is slightly stronger
than REP for ECC purposes. We include HAMR in our study to verify whether a simple
inclusion of some parity bits for ECC can readily improve the performance for multi-label
classification.
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4.3. Bose-Chaudhuri-Hocquenghem Code

BCH was invented by Bose and Ray-Chaudhuri (1960), and independently by Hocquenghem
(1959). It can be viewed as a sophisticated extension of HAM and allows correcting multiple
bit errors. BCH with length M = 2P — 1 has (M — K) parity bits, and it can correct
MBOH = % bits of error (Mackay, 2003), which is in general stronger than REP and
HAMR. The caveat is that the decoder of BCH is more complicated than the ones of REP
and HAMR.

We include BCH in our study because it is one of the most popular ECC in real-world
communication systems. Also, we compare BCH with HAMR to see if a strong ECC can
do better for multi-label classification.

4.4. Low-density Parity-check Code

Low-density parity-check code (LDPC; Mackay, 2003) is recently drawing much research
attention in communications. LDPC shares an interesting connection between ECC and
Bayesian learning (Mackay, 2003). While it is difficult to state the strength of LDPC in
terms of a single myppc, LDPC has been shown to approach the theoretical limit in some
special channels (Gallager, 1963), which makes it a state-of-the-art ECC. We choose to
include LDPC in our study to see whether it is worthwhile to go beyond BCH with more
sophisticated encoder/decoders.

5. ECC View of RAKEL

RAKEL is a multi-label classification algorithm proposed by Tsoumakas and Vlahavas
(2007). Define a k-label-set as a size-k subset of £. Each iteration of RAKEL randomly
selects a (different) k-label-set and build a multi-label classifier on the k labels with LP.
After running for R iterations, RAKEL obtains a size-R ensemble of LP classifiers. The
prediction on each label is done by a majority vote from classifiers associated with the label.

Equivalently, we can draw (with replacement) M = Rk labels first before building the
LP classifiers. Then, selecting k-label-sets is equivalent to encoding y by a variant of REP,
which will be called RAKEL repetition code (RREP). Similar to REP, each bit y[i] is
repeated several times in b since label ¢ is involved in several k-label-sets. After encoding
y to b, each LP classifier, called k-powerset, acts as a sub-channel that transmits a size-k
sub-block of the codeword b. The prediction procedure follows the decoder of the usual
REP.

The ECC view above decomposes the original RAKEL into two parts: the ECC and
the base learner Ap. Next, we empirically study how the two parts affect the performance
of multi-label classification.

6. Experiments

We compare RREP, HAMR,, BCH and LDPC with the ECC framework on four real-world
data sets in different domains: scene, emotions, yeast, and medical (Tsoumakas et al.,
2010), with the default training/test splitting of the data sets. The statistics of these
datasets are shown in Table 1. All the results are reported with the mean and standard
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DATASET K TRAINING TESTING FEATURES

SCENE 6 1211 1196 294
EMOTIONS 6 391 202 72
YEAST 14 1500 917 103
MEDICAL 45 333 645 1449

Table 1: Data Set Characteristics

work # data sets codes channels base learners

RAKEL 3 RREP k-powerset linear SVM

(Tsoumakas and Vlahavas, 2007)

ML-BCHRF 3 BCH BR Random Forest

(Kouzani and Nasireding, 2009)

ML-BCHRF & ML-CRF 1 convolution/BCH BR Random Forest

(Kouzani, 2010)

this work 4 RREP/HAMR 3-powerset/BR Random Forest,
/BCH/LDPC non-linear and

linear SVM

Table 2: Focus of Existing Works under the ECC Framework

error on the test set over 50 runs. We set RREP with k = 3. Then, for each ECC, we first
consider 3-powerset with either Random Forest, non-linear support vector machine (SVM),
or linear SVM as the multi-class classifier inside 3-powerset. Note that we randomly permute
the bits of b and apply an inverse permutation on b for those ECC other than RREP to
ensure that each 3-powerset works on diverse sub-blocks. In addition to the 3-powerset base
learners, we also consider BR base learners in Subsection 6.3.

We take the default Random Forest from Weka (Hall et al., 2009) with 60 trees. For
the non-linear SVM, we use LIBSVM (Chang and Lin, 2001) with the Gaussian kernel and
choose (C, g) by cross-validation from {275,273, ... 27} x {279,277 ... 2!}, In addition,
we use LIBLINEAR (Fan et al., 2008) for the linear SVM and choose the parameter C' by
cross-validation from {275,273 ... 27}

Note that the experiments taken in this paper are generally broader than existing works
that are related to multi-label classification with ECC in terms of the data sets, the codes,
the “channels”, and the base learners, as shown in Table 2. The goal of the experiments
is not only to justify that the framework is promising, but also to rigorously identify the

best codes, channels and base learners for solving general multi-label classification tasks via
ECC.

6.1. Comparison with RAKEL

The performance of the ECC framework on the scene data set is shown on Figure 1. Here
the base learner is 3-powerset with Random Forest. Following the description in Section 5,
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Figure 1: scene: ECC using 3-powerset with Random Forest

RREP with 3-powerset is exactly the same as RAKEL with k& = 3. The standard error
over 50 runs is very small, so the differences shown in the figures are significant. The
codeword length M varies from 31 to 127. Note that BCH only allows M = 2P — 1 and
thus we conduct experiments of BCH on those codeword lengths. We do not include shorter
codewords because their performance is not stable.

We first look at the subset accuracy in Figure 1(a). The horizontal axis indicates the
codeword length M and the vertical axis is the subset accuracy on the test set. We see
that accuracy is slightly increasing with M, except for RAKEL. The differences between
M =63 and M = 127 are generally small, which implies that a sufficiently large M is good
enough for reaching good accuracy.

HAMR achieves consistently higher accuracy than RREP, which verifies that using some
parity bits instead of repetition improves the strength of ECC, which in turn improves ac-
curacy. Along the same direction, BCH performs even better than both HAMR and RREP.
The superior performance of BCH justifies that ECC is useful for multi-label classification.
On the other hand, another sophisticated code, LDPC, gets lower accuracy than BCH and
HAMR, which suggest that LDPC may not be a good choice for the ECC framework.
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scene yeast emotions medical

base learner ECC M =63 M =127 M =63 M =511
Random Forest RREP (RAKEL) .648 +£.001 .203+.001 .350%+.001 .334 4+ .001
HAMR .696 £.001 .212+.001 .356 £.002 .343 £+ .001
BCH 715 +£.001 .220 4+.001 .372+.002 .547 £ .001
LDPC .673+£.002 .190+.001 .340 £.003 .475 4 .001
Gaussian SVM  RREP (RAKEL) .690 £.000 .227+.001 .213+.001 .623 £+ .001
HAMR .710 £.001 .231 +.000 .211 £.003 .627 4 .001
BCH 720 £ .000 .247 +.001 .211 £+.002 .655 + .001
LDPC .693 +.001 .229+.001 .181+.004 .614 +.001
Linear SVM RREP (RAKEL) .6124.001 .122+.001 .2554.002 .609 4 .001
HAMR .642 +£.001 .137+.001 .267 £.003 .615 =+ .001
BCH .658 +.001 .167+.001 .285+.003 .653 +.001
LDPC .618 +£.002 .107 +.001 .248 £.005 .617 4 .001

Table 3: subset accuracy of 3-powerset base learners

Figure 1(b) shows A, versus M for each ECC. Simpler codes such as RREP and HAMR
perform better than others. Thus, while a strong code like BCH may guard accuracy better,
it can pay more in terms of Agry,.

As stated in Sections 2 and 3, the base learners serve as the channels in the ECC
framework and the performance of base learners may be affected by the codes. Therefore,
using a strong ECC does not always improve multi-label classification performance. Next,
we verify the trade-off by measuring the bit error rate Aggg of h, , which is defined as the
Hamming loss between the predicted codeword fl(w) and the actual codeword b. Higher bit
error rate implies that the transformed task is harder.

Figure 1(c) shows the Apgr versus M for each ECC. RREP has almost constant bit
error rate. HAMR also has nearly constant bit error rate, but at a higher value. The bit
error rate of BCH is similar to that of HAMR when the codeword is short. But the bit
error rate increases with M. The different bit error rates justify the trade-off between the
strength of ECC and the hardness of the base learning tasks. With more parity bits, one
can correct more bit errors, but may have harder tasks to learn; when using fewer parity
bits or even no parity bits, one cannot correct many errors, but will enjoy simpler learning
tasks.

Similar results show up in other three data sets with both Random Forest and SVM,
as shown in Tables 3 and 4. Based on this experiment, we suggest that using HAMR for
multi-label classification will improve the accuracy while maintaining comparable Agy, with
RAKEL. If we use BCH instead, we will get even higher accuracy, but may pay for Agr.

6.2. Bit Error Analysis

To further analyze the difference between different ECC designs, we zoom in to M = 63
of Figure 1. The instances are divided into groups according to the number of bit errors
at that instance. The relative frequency of each group, i.e., the ratio of the group size to
the total number of instances, is plotted in Figure 2(a). The average accuracy and Agy,
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scene yeast emotions medical

base learner ECC M =63 M =127 M =63 M =511
Random Forest RREP (RAKEL) .077 £.000 .191 +.000 .186 +.001 .019 +.000
HAMR .079 £.000 .194 + .000 .191 £.001 .019 % .000
BCH .079 +£.000 .196 + .000 .190 £ .001 .015 =+ .000
LDPC .082 4+ .000 .201+.000 .1924+.001 .018 % .000
Gaussian SVM  RREP (RAKEL) .077 £.000 .190 +.000 .270+.001 .011 £ .000
HAMR .078 £.000 .193+.000 .279+.001 .011 +.000
BCH .078 £.000 .195+.000 .289+.001 .011 +.000
LDPC .080 +£.000 .196+.000 .287+.001 .013+.000
Linear SVM RREP (RAKEL) .099 4+.000 .255+.001 .238+.001 .012 4 .000
HAMR .099 £.000 .247+.001 .244 £.001 .012 =+ .000
BCH .099 +.000 .255+.001 .243 £+.002 .012 = .000
LDPC .101 +£.000 .301 +.001 .247 £.002 .013 % .000

Table 4: Hamming loss of 3-powerset base learners

of each group are also plotted in Figure 2(b) and 2(¢). The curve of each ECC forms two
peak regions in Figure 2(a). Besides the peak at 0, which means no bit error happens on
the instances, the other peak varies from one code to another. The positions of the peaks
suggest the hardness of the transformed learning task, similar to our findings in Figure 1(c¢).
We can clearly see the difference on the strength of different ECC from Figure 2(b).
BCH can tolerate up to 15-bit errors, but its accuracy sharply drops to about 0.1 for 16-bit
errors. HAMR can correct 6-bit errors perfectly, and its accuracy decreases slowly when
more errors occur. Both RREP and LDPC can perfectly correct only 5-bit errors, but
LDPC is able to sustain a high accuracy even when there are 16-bit errors. It would be
interesting to study the reason behind this long tail from a Bayesian network perspective.
We can also look at the relation between the number of bit errors and Ay, as shown
in Figure 2(¢). The BCH curve grows sharply when the number of bit errors is larger than
15, which links to the inferior performance of BCH over RREP in terms of Agy. The
LDPC curve grows much slower, but its right-sided peak in Figure 2(a) still leads to higher
overall Agr. On the other hand, RREP and HAMR enjoy a better balance between the
peak position in Figure 2(a) and the growth in Figure 2(¢) and thus lower overall Ay .

6.3. Comparison with Binary Relevance

In addition to the 3-powerset base learners, we also consider BR base learners, which simply
build a classifier for each bit in the codeword space. Note that if we couple the ECC
framework with RREP and BR, the resulting algorithm is almost the same as the original
BR. For example, using RREP and BR with SVM is equivalent to using BR with bootstrap
aggregated SVM.

We first compare the performance between the ECC designs using the BR base learner
with Random Forest. The result on scene is shown in Figure 3. Figure 3(a) shows that the
accuracy of BCH and HAMR is superior to other ECC, with BCH being a better choice.
RREP (BR), on the other hand, leads to the worst accuracy. The result again justifies the
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Figure 2: scene: ECC using 3-powerset with Random Forest and M = 63

usefulness of coupling BR with ECC instead of only the original y. Note that LDPC also
performs better than BR, but is not as good as HAMR and BCH. Thus, over-sophisticated
ECC like LDPC may not be necessary for multi-label classification.

In Figure 3(b), we present the results on Agy. In contrast to the case when using the
3-powerset base learner, HAMR, BCH and LDPC can all achieves better A7, than RREP
(BR). That is, coupling stronger ECC with the BR base learner can improve both accuracy
and Agr. In Figure 3(¢), we present the bit error rate of the ECC designs. Similar to the
results of 3-powerset, we see the trade-off between the strength of ECC and the hardness
of the learning task.

Experiments with both Random Forest and SVM as well as other data sets support
similar findings, as shown in Tables 5 and 6. Thus, extending BR by learning some more
parity bits and decoding them suitably by ECC is a superior algorithm over the original
BR.
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Figure 3: scene: ECC using BR with Random Forest

Comparing Tables 3 and 5, we see that using 3-powerset achieves higher accuracy than
using BR in most of the cases. But in terms of Agy, as shown in Tables 4 and 6, there is
no clear winner between 3-powerset and BR.

7. Conclusion

We presented a framework for applying error-correcting codes (ECC) on multi-label classi-
fication. We then studied the use of four classic ECC designs, namely RREP, HAMR, BCH
and LDPC. We showed that RREP can be used to give a new perspective of the RAKEL
algorithm as a special instance of the framework with k-powerset as the base learners.

We conducted experiments with the four ECC designs on various real-world data sets.
The experiments further clarified the trade-off between the strength of ECC and the hard-
ness of the base learning tasks. Experimental results demonstrated that several ECC designs
can lead to a better use of the trade-off. For instance, HAMR is superior over RREP for
k-powerset base learners, because it leads to a new algorithm that is better than the origi-
nal RAKEL in terms of subset accuracy while maintaining a comparable level of Hamming
loss; BCH is another superior design, which could significantly improve RAKEL in terms of
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scene yeast emotions medical

base learner ECC M =63 M =127 M =63 M =511
Random Forest RREP (BR) .554 4+.001 .173+£.001 .295+.001 .329 4 .001
HAMR .675+.002 .210+.001 .332+.002 .346 +.001
BCH 729 4+ .001 .220 £+ .001 .361 +.002 .560 4 .001
LDPC 579+ .001 .167+.001 .295+.002 .438 +.001
Gaussian SVM  RREP (BR) .639+.000 .201+£.000 .1524+.001 .6174+.001
HAMR 695+ .001 .218+.001 .205+.003 .626+.001
BCH 719 +.000 .242 +.001 .201 +.002 .649 £+ .001
LDPC .651 +£.001 .201+.001 .167 £.001 .584 4 .001
Linear SVM RREP (BR) .4794.000 .0424+.001 .171+.003 .594 +.001
HAMR 574+ .001 .068+.001 .199+.004 .610+.001
BCH .649 +.001 .101 +.001 .198 +.006 .645 + .001
LDPC 493+ .001 .068+.000 .153+.006 .574+.001

Table 5: subset accuracy of BR base learners

scene yeast emotions medical

base learner ECC M =63 M =127 M =63 M =511
Random Forest RREP (BR) .0874.000 .192+.000 .190+.000 .019 4+ .000
HAMR .077 £.000 .191 +£.000 .192+.001 .019 £ .000
BCH .075 +.000 .193 +.000 .189 4+ .001 .015 =+ .000
LDPC .086 £.000 .197+.000 .196+.001 .019+ .000
Gaussian SVM  RREP (BR) .078 +.000 .188 4+.000 .253 4+.000 .011 4 .000
HAMR .078 £.000 .190 +.000 .258 +£.001 .011 +.000
BCH .081 £.000 .190 +.000 .267 £.001 .011 +.000
LDPC .080 +.000 .192+.000 .256+.000 .014 + .000
Linear SVM RREP (BR) .1094.000 .428 +£.000 .245+.001 .012 4 .000
HAMR .105 +£.000 .433+.001 .251 +.002 .012 =+ .000
BCH .101 £.000 .418 +£.000 .261 +.004 .011 +.000
LDPC .111+.000 .420+.000 .265+.004 .015+.000
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Table 6: Hamming loss of BR base learners

subset accuracy. When compared with the traditional BR algorithm, we showed that using
a stronger ECC like HAMR or BCH can lead to better performance in terms of both subset
accuracy and Hamming loss.

The results justify the validity and usefulness of the framework when coupled with
some classic ECC. An interesting future direction is to consider adaptive ECC like the ones
studied for multi-class classification (Schapire, 1997; Li, 2006).

We thank the anonymous reviewers for valuable suggestions. This work is supported by
National Science Council of Taiwan via the grant NSC 99-2628-E-002-017.
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