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Abstract

Modern datasets are becoming heterogeneous. To this end, we present in this paper Mixed-
Variate Restricted Boltzmann Machines for simultaneously modelling variables of multi-
ple types and modalities, including binary and continuous responses, categorical options,
multicategorical choices, ordinal assessment and category-ranked preferences. Dependency
among variables is modeled using latent binary variables, each of which can be interpreted
as a particular hidden aspect of the data. The proposed model, similar to the standard
RBMs, allows fast evaluation of the posterior for the latent variables. Hence, it is naturally
suitable for many common tasks including, but not limited to, (a) as a pre-processing step
to convert complex input data into a more convenient vectorial representation through the
latent posteriors, thereby offering a dimensionality reduction capacity, (b) as a classifier
supporting binary, multiclass, multilabel, and label-ranking outputs, or a regression tool
for continuous outputs and (c) as a data completion tool for multimodal and heterogeneous
data. We evaluate the proposed model on a large-scale dataset using the world opinion
survey results on three tasks: feature extraction and visualization, data completion and
prediction.

1. Introduction

Restricted Boltzmann Machines (RBM) (Hinton and Sejnowski, 1986; Freund and Haussler,
1993) have recently attracted an increasing attention for their rich capacity in a variety of
learning tasks, including multivariate distribution modelling, feature extraction, classifica-
tion, and construction of deep architectures (Hinton and Salakhutdinov, 2006; Salakhutdi-
nov and Hinton, 2009a). An RBM is a two-layer Markov random field in which the visible
layer represents observed variables and the hidden layer represents latent aspects of the
data. Pairwise interactions are only permitted for units between layers. As a result, the
posterior distribution over the hidden variables and the probability of the data generative
model are easy to evaluate, allowing fast feature extraction and efficient sampling-based
inference (Hinton, 2002). Nonetheless, most existing work in RBMs implicitly assumes that
the visible layer contains variables of the same modality. By far the most popular input
types are binary (Freund and Haussler, 1993) and Gaussian (Hinton and Salakhutdinov,
2006). Recent extension includes categorical (Salakhutdinov et al., 2007), ordinal (Truyen
et al., 2009), Poisson (Gehler et al., 2006) and Beta (Le Roux et al., 2011) data. To the
best of our knowledge, none has been considered for multicategorical and category-ranking
data, nor for a mixed combination of these data types.
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In this paper, we investigate a generalisation of the RBM for variables of multiple
modalities and types. Take, for example, data from a typical survey, where a person is
asked a variety of questions in many styles ranging from yes/no to multiple choices and
preference statements. Typically, there are six question/answer types: (1) binary responses
(e.g., satisfied vs. unsatisfied), (2) categorical options (e.g., one of employed, unemployed
or retired), (iii) multicategorical choices (e.g., any of family, education or income), (iv)
continuous information (e.g. age), (v) ordinal assessment (e.g., one of good, neural or bad),
and (vi) category-ranked preferences (e.g., in the decreasing order of importance: children,
security, food and money). As the answers in a response come from the same person,
they are inherently correlated. For instance, a young American is likely to own a computer,
whilst a typical Chinese adult may concern more about their children’s education. However,
modelling the direct correlation among multiple types is difficult. We show, on the other
hand, a two-layer RBM is well-suited for this problem. First, its undirected graphical
structure allows a great flexibility to encode all six data types into the same probability
distribution. Second, the binary hidden layer pools information from visible units and
redistributes to all others, thereby introducing dependencies among variables. We term our
model the Mixed-Variate Restricted Boltzmann Machines (MV.RBM).

The MV.RBM has the capacity of supporting a variety of machine learning tasks. Its
posteriors can be used as a vectorial representation of the data hiding away the obscured
nature of the observed data. As the result, we can use MV.RBM for data pre-processing,
visualisation, and dimensionality reduction. Given the hidden layer, the original and missing
observables can also be reconstructed through the generative data model. By splitting the
observed data into an input and output sets, predictive models can be learnt to perform
classification, ranking or regression. These capacities are demonstrated in this paper on a
large-scale international opinion survey across 44 nations involving more than 38 thousand
people.

2. Mixed-Variate Restricted Boltzmann Machines

In this section we present Mixed-Variate Restricted Boltzmann Machines (MV.RBM) for
jointly modelling variables of multiple modalities and types. For ease of following the text,
we include a notation description in Table 1.

2.1. Model Definition

Denote by v = (v1, v2, ..., vN ) the set of mixed-variate visible variables where each vi can
be one of the following types: binary, categorical, multicategorical, continuous, ordinal or
category-ranked. Let vdisc be the joint set of discrete elements and vcont be the continuous
set, and thus v = (vdisc,vcont). Denoting by h = (h1, h2, ..., hK) ∈ {0, 1}K the hidden
variables, the model distribution of MV.RBM is defined as

P (v,h) =
1

Z
exp{−E(v,h)}, (1)
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vi Single visible variable Gi(vi),Hik(vi) Functions of an input variable
v A set of visible variables Ui,Uim,Uid Input bias parameters
hk Single hidden variable Vik,Vimk,Vidk Input-hidden parameters
h A set of hidden variables wk Hidden bias parameter
Z(·) Normalising function aim Activation indicator
�,�,. Ordinal relations Si Set of categories
' Indifference Mi The number of categories
N Number of visible units cim Category member of set Si
K Number of hidden units δm[vi],I[·] Indicator functions
P (·) Probability distribution C Index of a subset of variables
E(·) Energy function L Data log-likelihood

Table 1: Notations used in this paper.

where E(v,h) is the model energy, Z is the normalisation constant. The model energy is
further decomposed into a sum of singleton and pairwise energies:

E(v,h) =
N∑
i=1

Ei(vi) +
K∑
k=1

Ek(hk) +
N∑
i=1

K∑
k=1

Eik(vi, hk),

where Ei(vi) depends only on the i-th visible unit, Ek(hk) on the k-th hidden unit, and
Eik(vi, hk) on the interaction between the i-th visible and k-hidden units. The MV.RBM is
thus a 2-layer mixed-variate Markov random field with pairwise connectivity across layers.

For the distribution in Eq. (1) to be properly specified, we need to keep the normalisation
constant finite. In other words, the following integration

Z =

∫
vcont

(∑
vdisc

∑
h

exp{−E(vdisc,vcont,h)}

)
d(vcont)

must be bounded from above. One way is to choose appropriate continuous variable types
with bounded moments, e.g., Gaussian. Another way is to explicitly bound the continuous
variables to some finite ball, i.e., ‖vcont‖ ≤ R.

In our MV.RBM, we further assume that the energies have the following form:

Ei(vi) = −Gi(vi); Ek(hk) = −wkhk; Eik(vi, hk) = −Hik(vi)hk, (2)

where wk is the bias parameter for the k-th hidden unit, and Gi(vi) and Hik(vi) are functions
to be specified for each data type. An important consequence of this energy decomposition
is the factorisation of the posterior :

P (h | v) =
∏
k

P (hk | v); P (h1k | v) =
1

1 + exp{−wk −
∑

iHik(vi)}
, (3)

where h1k denotes the assignment hk = 1. This posterior is efficient to evaluate, and thus
the vector

(
P (h1k | v), P (h2k | v), ..., P (hKk | v)

)
can be used as extracted features for mixed-

variate input v.
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Similarly, the data model P (v|h) has the following factorisation

P (v | h) =
∏
i

Pi(vi | h); Pi(vi | h) =
1

Z(h)
exp{Gi(vi) +

∑
k

Hik(vi)hk}, (4)

where Z(h) =
∑

vi
exp{Gi(vi)+

∑
kHik(vi)hk} if vi is discrete and Z(h) =

∫
vi

exp{Gi(vi)+∑
kHik(vi)hk}d(vi) if vi is continuous, assuming that the integration exists. Note that we

deliberately use the subscript index i in Pi(· | h) to emphasize the heterogeneous nature of
the input variables.

2.2. Type-specific Data Models

We now specify Pi(vi|h) in Eq. (4), or equivalently, the functionals Gi(vi) and Hik(vi).
Denote by Si = (ci1, ci2, ..., ciMi) the set of categories in the case of discrete variables. In
this section, for continuous types, we limit to Gaussian variables as they are the by far the
most common. Interested readers are referred to (Le Roux et al., 2011) for Beta variables
in the context of image modelling. The data model and related functionals for binary,
Gaussian and categorical data types are well-known, and thus we provide a summary here:

Gi(vi) Hik(vi) Pi(vi|h)

–Binary Uivi Vikvi
exp{Uivi+

∑
k Vikhkvi}

1+exp{Ui+
∑

k Vikhk}

–Gaussian −v2i/2σ2
i + Uivi Vikvi N

(
σ2i (Ui +

∑
k Vikhk) ;σi

)
–Categorical

∑
m Uimδm[vi]

∑
m,k Vimkδm[vi]

exp{
∑

m Uimδm[vi]+
∑

m,k Vimkδm[vi]hk}∑
l exp{Uil+

∑
k Vilkhk}

where m = 1, 2, ...,Mi; Ui, Vik, Uim, Vimk are model parameters; and δm[vi] = 1 if vi = cim
and 0 otherwise.

The cases of multicategorical, ordinal and category-ranking variables are, however, much
more involved, and thus some further simplification may be necessary. In what follows, we
describe the specification details for these three cases.

2.2.1. Multicategorical Variables

An assignment to a multicategorical variable has the form of a subset from a set of categories.
For example, a person may be interested in games and music from a set of offers: games,
sports, music, and photography. More formally, let Si be the set of categories for the i-th
variable, and Pi = 2Si be the power set of Si (the set of all possible subsets of Si). Each
variable assignment consists of a non-empty element of Pi, i.e. vi ∈ {Pi\∅}. Since there are
2Mi − 1 possible ways to select a non-empty subset, directly enumerating Pi(vi|h) proves to
be highly difficult even for moderate sets. To handle this state explosion, we first assign each
category cim with a binary indicator aim ∈ {0, 1} to indicate whether the m-th category is
active, that is vi = (ai1, ai2, ..., aiMi). We then assume the following factorisation:

Pi(vi|h) =

Mi∏
m=1

Pi(aim|h). (5)
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Note that this does not says that binary indicators are independent in their own right
but given the knowledge of the hidden variables h. Since they hidden variables are never
observed, binary indicators are therefore interdependent. Now, the probability for activating
a binary indicator is defined as

Pi(aim = 1|h) =
1

1 + exp(−Uim −
∑

k Vimkhk)
. (6)

Note that this specification is equivalent to the following decomposition of the functionals
Gi(vi) and Hik(vi) in Eq. (2):

Gi(vi) =

Mi∑
m=1

Uimaim; Hik(vi) =

Mi∑
m=1

Vimkaim.

2.2.2. Ordinal Variables

An ordinal variable receives individual values from an ordinal set Si = {ci1 ≺ ci2 ≺ ...,≺
ciMi} where ≺ denotes the order in some sense. For example, cim can be a numerical
rating from a review, or it can be sentimental expression such as love, neutral and hate.
There are two straightforward ways to treat an ordinal variable: (i) one is simply ignoring
the order, and considering it as a multinomial variable, and (ii) another way is to convert
the ordinal expression into some numerical scale, for example, {−1, 0,+1} for the triple
{love,neutral,hate} and then proceed as if it is a continuous variable. However, in the first
treatment, substantial ordinal information is lost, and in the second treatment, there is no
satisfying interpretation using numbers.

In this paper, we adapt the Stereotype Ordered Regression Model (SORM) by Anderson
(1984). More specifically, the SORM defines the conditional distribution as follows

P (vi = m | h) =
exp{Uim +

∑D
d=1

∑K
k=1 Vidkφid(m)hk}∑

l exp{Uil +
∑D

d=1

∑K
k=1 Vidkφid(l)hk}

where Uim, Vidk are free parameters, D ≤ Mi is the dimensionality of the ordinal variable1

vi, and φid(m) is the monotonically increasing function of m:

φid(1) < φid(2) < ... < φid(Mi)

A shortcoming of this setting is that when h = 0, the model reduces to the standard
multiclass logistic, effectively removing the ordinal property. To deal with this, we propose
to make the input bias parameters order dependent:

P (vi = m | h) ∝ exp

{
D∑
d=1

φid(m)

(
Uid +

K∑
k=1

Vidkhk

)}
(7)

where Uid is the newly introduced parameter. Here we choose D = Mi, and φid(m) =
(m−d)/(Mi−1).

1. This should not be confused with the dimensionality of the whole data v.
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2.2.3. Category-ranking Variables

In category ranking, a variable assignment has the form of a ranked list of a set of categories.
For example, from a set of offers namely games, sports, music, and photography, a person
may express their preferences in a particular decreasing order: sports � music � games
� photography. Sometimes, they may like sports and music equally, creating a situation
known as ties in ranking, or indifference in preference. When there are no ties, we can say
that the rank is complete.

More formally, from a set of categories Si = {ci1, ci2, ..., ciMi}, a variable assignment
without ties is then a permutation of elements of Si. Thus, there are Mi! possible complete
rank assignments. When we allow ties to occur, however, the number of possible assignments
is extremely large. To see how, let us group categories of the same rank into a partition.
Orders within a partition are not important, but orders between partitions are. Thus, the
problem of rank assignment turns out to be choosing from a set of all possible schemes for
partitioning and ordering a set. The number of such schemes is known in combinatorics
as the Fubini’s number (Mureşan, 2008, pp. 396–397), which is extremely large even for
small sets. For example, Fubini (1) = 1, Fubini (3) = 13, Fubini (5) = 541 and Fubini (10) =
102, 247, 563. Directly modelling ranking with ties proves to be intractable.

We thus resort to approximate methods. One way is to model just pairwise compar-
isons: we treat each pair of categories separately when conditioned on the hidden layer.
More formally, denote by cil � cim the preference of category cil over cim, and by cil ' cim
the indifference. We replace the data model Pi(vi|h) with a product of pairwise compar-
isons

∏
l

∏
m>l Pi(cil . cim|h), where . denotes preference relations (i.e., �, ≺ or '). This

effectively translates the original problem with Fubini’s number complexity to Mi(Mi−1)/2
pairwise sub-problems, each of which has only three preference choices. The drawback is
that this relaxation loses the guarantee of transitivity (i.e., cil � cim and cim � cin would
entail cil � cin, where � means better or equal-to). The hope is that the hidden layer is
rich enough to absorb this property, that is, the probability of preserving the transitivity is
sufficiently high.

Now it remains to specify Pi(cil.cim|h) in details. In particular, we adapt the Davidson’s
model (Davidson, 1970) of pairwise comparison:

Pi(cil � cim|h) =
1

Ziml(h)
ϕ(cil,h)

Pi(cil ' cim|h) =
1

Ziml(h)
γ
√
ϕ(cil,h)ϕ(cim,h) (8)

Pi(cil ≺ cim|h) =
1

Ziml(h)
ϕ(cim,h)

where Zilm(h) = ϕ(cil,h) + ϕ(cim,h) + γ
√
ϕ(cil,h)ϕ(cim,h), γ > 0 is the tie parameter,

and

ϕ(cim,h) = exp{ 1

Mi
(Uim +

∑
k

Vimkhk)}.

The term 1/Mi normalises the occurrence frequency of a category in the model energy,
leading to better numerical stability.
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3. Learning and Inference

In this paper, we consider two applications of the MV.RBM: estimating data distribution
and learning predictive models. Estimating data distribution is to learn a generative model
that generates the visible data. This can be useful in many other applications including
dimensionality reduction, feature extraction, and data completion. On the other hand, a
predictive model is a classification (or regression) tool that predicts an output given the
input co-variates.

3.1. Parameter Learning

We now present parameter estimation for {wk, Ui, Uim, Vik, Vimk}, which clearly depend on
the specific applications.

3.1.1. Estimating Data Distribution

The problem of estimating a distribution from data is typically performed by maximising the
data likelihood L1 =

∑
v P̃ (v) logP (v), where P̃ (v) denotes the empirical distribution of

the visible variables, and P (v) =
∑

h P (v,h) is the model distribution. Since the MV.RBM
belongs to the exponential family, the gradient of L1 with respect to parameters takes the
form of difference of expectations. For example, in the case of binary variables, the gradient
reads

∂L1
∂Vik

= 〈vihk〉P̃ (vi,hk)
− 〈vihk〉P (vi,hk)

where P̃ (hk, vi) = P (hk|v)P̃ (vi) is the empirical distribution, and P (hk, vi) = P (hk|v)P (vi)
the model distribution. Due to space constraint, we omit the derivation details here.

The empirical expectation 〈vihk〉P̃ (vi,hk)
is easy to estimate due to the factorisation in

Eq. (3). However, the model expectation 〈vihk〉P (vi,hk)
is intractable to evaluate exactly,

and thus we must resort to approximate methods. Due to the factorisations in Eqs. (3,4),
Markov Chain Monte Carlo samplers are efficient to run. More specifically, the sampler is

alternating between
{
ĥk ∼ P (hk|v)

}K
k=1

and {v̂i ∼ P (vi|h)}Ni=1. Note that in the case of

multicategorical variables, make use of the factorisation in Eq. (5) and sample {aim}Mi
m=1

simultaneously. On the other hand, in the case of category-ranked variables, we do not
sample directly from P (vi|h) but from its relaxation {Pi(cil . cim|h)}l,m>l - which have
the form of multinomial distributions. To speed up, we follow the method of Contrastive
Divergence (CD) (Hinton, 2002), in which the MCMC is restarted from the observed data
v and stopped after just a few steps for every parameter update. This has been known to
introduce bias to the model estimate, but it is often fast and effective for many applications.

For the data completion application, in the data we observed only some variables and
others are missing. There are two ways to handle a missing variable during training time:
one is to treat it as hidden, and the other is to ignore it. In this paper, we follows the latter
for simplicity and efficiency, especially when the data is highly sparse2.

2. Ignoring missing data may be inadequate if the missing patterns are not at random. However, treating
missing data as zero observations (e.g., in the case of binary variables) may not be accurate either since
it may introduce bias to the data marginals.
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3.1.2. Learning Predictive Models

In our MV.RBM, a predictive task can be represented by an output variable conditioned on
input variables. Denote by vi the i-th output variable, and v¬i the set of input variables,
that is, v = (vi,v¬i). The learning problem is translated into estimating the conditional
distribution P (vi | v¬i).

There are three general ways to learn a predictive model. The generative method
first learns the joint distribution P (vi,v¬i) as in the problem of estimating data distri-
bution. The discriminative method, on the other hand, effectively ignores P (v¬i) and
concentrates only on P (vi | v¬i). In the latter, we typically maximise the conditional like-
lihood L2 =

∑
vi

∑
v¬i

P̃ (vi,v¬i) logP (vi | v¬i). This problem is inherently easier than
the former because we do not have to make inference about v¬i. The learning strategy
is almost identical to that of the generative counterpart, except that we clamp the input
variables v¬i to their observed values. For tasks whose size of the output space is small
(e.g., standard binary, ordinal, categorical variables) we can perform exact evaluations and
use any non-linear optimisation methods for parameter estimation. The conditional distri-
bution P (vi | v¬i) can be computed as in Eq. (11). We omit the likelihood gradient here
for space limitation.

It is often argued that the discriminative method is more preferable since there is no
waste of effort in learning P (v¬i), which we do not need at test time. In our setting,
however, learning P (v¬i) may yield a more faithful representation3 of the data through the
posterior P (h | v¬i). This suggests a third, hybrid method: combining the generative and
discriminative objectives. One way is to optimise a hybrid likelihood:

L3 = λ
∑
v¬i

P̃ (v¬i) logP (v¬i) + (1− λ)
∑
vi

∑
v¬i

P̃ (vi,v¬i) logP (vi | v¬i),

where λ ∈ (0, 1) is the hyper-parameter controlling the relative contribution of generative
and discriminative components. Another way is to use a 2-stage procedure: first we pre-
train the model P (v¬i) in an unsupervised manner, and then fine-tune the predictive model4

P (vi | v¬i).

3.2. Prediction

Once the model has been learnt, we are ready to perform prediction. We study two pre-
dictive applications: completing missing data, and output labels in predictive modelling.
The former leads to the inference of P (vC | v¬C), where v¬C is the set of observed vari-
ables, and vC is the set of unseen variables to be predicted. Ideally, we should predict all
unseen variables simultaneously but the inference is likely to be difficult. Thus, we resort
to estimating P (vi|v¬C), for i ∈ C. The prediction application requires the estimation of
P (vi|v¬i), which is clearly a special case of P (vi|v¬C), i.e., when C = {i}. The output is

3. As we do not need labels to learn P (v¬i), this is actually a form of semi-supervised learning.
4. We can also avoid tuning parameters associated with v¬i by using the posteriors as features and learn

P
(
vi | ĥ

)
, where ĥk = P

(
h1
k | v¬i

)
.
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predicted as follows

v̂i = arg max
vi

P (vi|v¬C) = arg max
vi

∑
h

P (vi,h|v¬C); where (9)

P (vi,h|v¬C) =
1

Z(v¬C ,h)
exp

Gi(vi) +
∑
k

wkhk +
∑

j∈{¬C,i}

∑
k

Hjk(vj)hk

 , (10)

where Z(v¬C) is the normalising constant. Noting that hk ∈ {0, 1}, the computation of
P (vi|v¬C) can be simplified as

P (vi|v¬C) =
1

Z(v¬C)
exp{Gi(vi)}

∏
k

[
1 +

exp{Hik(vi)}
1/P (h1k|v¬C)− 1

]
(11)

where P (h1k|v¬C) is computed using Eq. (3) as

P (h1k|v¬C) =
1

1 + exp{−wk −
∑

j∈¬C Hjk(vj)}
.

For the cases of binary, categorical and ordinal outputs, the estimation in Eq. (9) is
straightforward using Eq. (11). However, for other output types, suitable simplification
must be made:

• For multicategorical and category-ranking variables, we do not enumerate over all
possible assignments of vi, but rather in an indirect manner:

– For multiple categories (Section 2.2.1), we first estimate {Pi(aim = 1|v¬i)}Mi
m=1

and then output aim = 1 if Pi(aim = 1|v¬i) ≥ ν for some threshold5 ν ∈ (0, 1).

– For category-ranking (Section 2.2.3), we first estimate {Pi(cil � cim|v¬i)}l,m>l.
The complete ranking over the set {ci1, ci2, ..., ciMi} can be obtained by aggre-
gating over probability pairwise relations. For example, the score for cim can
be estimated as s(cim) =

∑
l 6=m Pi(cim � cil|v¬i), which can be used for sorting

categories6.

• For continuous variables, the problem leads to a non-trivial nonlinear optimisation:
even for the case of Gaussian variables, P (vi|v¬C) in Eq. (11) is no longer Gaussian.
For efficiency and simplicity, we can take a mean-field approximation by substituting
ĥk = P (h1k|v¬C) for hk. For example, in the case of Gaussian outputs, we then obtain
a simplified expression for P (vi|v¬C):

P (vi|v¬C) ∝ exp

{
− v2i

2σ2i
+ Uivi +

∑
k

Vikviĥk

}
,

which is also a Gaussian. Thus the optimal value is the mean itself: v̂i = σ2i

(
Ui +

∑
k Vikĥk

)
.

Details of the mean-field approximation is presented in Appendix A.2.

5. Raising the threshold typically leads to better precision at the expense of recall. Typically we choose
ν = 0.5 when there is no preference over recall nor precision.

6. Note that we do not estimate the event of ties during prediction.
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4. A Case Study: World Attitudes

4.1. Setting

In this experiment, we run the MV.RBM on a large-scale survey of the general world opinion,
which was published by the Pew Global Attitudes Project7 in the summer of 2002. The
survey was based on interviewing with people in 44 countries in the period of 2001–2002.
Some sample questions are listed in Appendix A.1. After some pre-processing, we obtain
a dataset of 38, 263 people, each of whom provides answers to a subset of 189 questions
over multiple topics ranging from globalization, democracy to terrorism. Many answers are
deliberately left empty because it may be inappropriate to ask certain type of questions
in a certain area or ethnic group. Of all answers, 43 are binary, 12 are categorical, 3 are
multicategorical, 125 are ordinal, 2 are category-ranking, and 3 are continuous. To suppress
the scale difference in continuous responses, we normalise them to zeros means and unit
variances 8.

We evaluate each data type separately. In particular, let u be the user index, v̂i be the
predicted value of the i-th variable, and Nt is the number of variables of type t in the test
data, we compute the prediction errors as follows:

–Binary : 1
Nbin

∑
u

∑
i I
[
v
(u)
i 6= v̂

(u)
i

]
,

–Categorical : 1
Ncat

∑
u

∑
i I
[
v
(u)
i 6= v̂

(u)
i

]
,

–Multicategorical : 1− 2RP/(R+P),

–Continuous :

√
1

Dcont

∑
u

∑
i

(
v
(u)
i − v̂

(u)
i

)2
,

–Ordinal : 1
Nord

∑
u

∑
i

1
Mi−1

∣∣∣v(u)i − v̂
(u)
i

∣∣∣,
–Category-ranking : 1

Drank

∑
u

∑
i

2
Mi(Mi−1)

∑
l,m>l I

[
(π

(u)
il − π

(u)
im )(π̂

(u)
il − π̂

(u)
im ) < 0

]
,

where I [·] is the identity function, πim ∈ {1, 2, ...,Mi} is the rank of the m-th category of
the i-th variable, R is the recall rate and P is the precision. The recall and precision are
defined as:

R =

∑
u

∑
i

1
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∑Mi
m=1 I

[
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(u)
im = â

(u)
im

]
∑

u

∑
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im

; P =

∑
u

∑
i

1
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[
a
(u)
im = â

(u)
im

]
∑

u

∑
i

1
Mi

∑Mi
m=1 â

(u)
im

,

where aim ∈ {0, 1} is the m-th component of the i-th multicategorical variable. Note that
the summation over i for each type only consists of relevant variables.

To create baselines, we use the MV.RBM without the hidden layer, i.e., by assuming
that variables are independent9.

7. http://pewglobal.org/datasets/
8. It may be desirable to learn the variance structure, but we keep it simple by fixing to unit variance. For

more sophisticated variance learning, we refer to a recent paper (Le Roux et al., 2011) for more details.
9. To the best of our knowledge, there has been no totally comparable work addressing the issues we study

in this paper. Existing survey analysis methods are suitable for individual tasks such as measuring
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Baseline K = 20 K = 50 K = 100 K = 200 K = 500

Binary 32.9 23.6 20.1 16.3 13.2 9.8

Categorical 52.3 29.8 22.0 17.0 13.2 7.1

Multicategorical 49.6 46.6 42.2 36.9 29.2 23.8

Continuous(*) 100.0 89.3 84.1 78.4 69.5 65.5

Ordinal 25.2 19.5 16.2 13.5 10.9 7.7

Category ranking 19.3 11.7 6.0 5.0 3.2 2.3

Table 2: Error rates (%) when reconstructing data from posteriors. The baseline is essen-
tially the MV.RBM without hidden layer (i.e., assuming variables are indepen-
dent). (*) The continuous variables have been normalised to account for different
scales between items, thus the baseline error will be 1 (i.e., the unit variance).

4.2. Results

4.2.1. Feature Extraction and Visualisation

Recall that our MV.RBM can be used as a feature extraction tool through the posterior
projection. The projection converts a multimodal input into a real-valued vector of the

form ĥ =
(
ĥ1, ĥ2, ..., ĥK

)
, where ĥk = P (hk = 1 | v). Clearly, numerical vectors are much

easier to process further than the original data, and in fact the vectorial form is required for
the majority of modern data handling tools (e.g., for transformation, clustering, comparison
and visualisation). To evaluate the faithfulness of the new representation, we reconstruct

the original data using v̂i = arg maxvi P
(
vi | ĥ

)
, that is, in Eq. (4), the binary vector h is

replaced by ĥ. The use of P
(
vi | ĥ

)
can be reasoned through the mean-field approximation

framework presented in Appendix A.2. Table 2 presents the reconstruction results. The
trends are not surprising: with more hidden units, the model becomes more flexible and
accurate in capturing the data content.

For visualisation, we first learn our MV.RBM (with K = 50 hidden units) using ran-
domly chosen 3, 830 users, with the country information removed. Then we use the t-SNE
(van der Maaten and Hinton, 2008) to project the posteriors further into 2D. Figure 1
shows the distribution of people’s opinions in 10 countries (Angola, Argentina, Bangladesh,
Bolivia, Brazil, Bulgaria, Canada, China, Czech Republic, and Egypt). It is interesting to
see how opinions cluster geographically and culturally: Europe & North America (Bulgaria,
Canada & Czech Republic), South America (Argentina, Bolivia, Brazil), East Asia (China),
South Asia (Bangladesh), North Africa (Egypt) and South Africa (Angola).

4.2.2. Data Completion

In this task, we need to fill missing answers for each survey response. Missing answers are
common in real survey data because the respondents may forget to answer or simply ignore
the questions. We create an evaluation test by randomly removing a portion ρ ∈ (0, 1)

pairwise correlation among variables, or building individual regression models where complex co-variates
are coded into binary variables.
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Figure 1: t-SNE projection of posteriors (K = 50) with country information removed. Each
point is a person from one of the 10 countries: Angola, Argentina, Bangladesh,
Bolivia, Brazil, Bulgaria, Canada, China, Czech Republic, and Egypt. Each
colour represents a country. Best viewed in colour.

Baseline K = 20 K = 50 K = 100 K = 200 K = 500

Binary 32.7 26.0 24.2 23.3 22.7 22.3

Categorical 52.1 34.3 30.0 28.2 27.5 27.1

Multicategorical 49.5 48.3 45.7 43.6 42.4 42.0

Continuous(*) 101.6 93.5 89.9 87.9 87.3 87.9

Ordinal 25.1 20.7 19.3 18.6 18.2 17.9

Category ranking 19.3 15.4 14.7 14.2 14.1 13.9

Table 3: Completion error rates (%) ρ = 0.2 answers missing at random. (*) See Table 2.

of answers for each person. The MV.RBM is then trained on the remaining answers in a
generative fashion (Section 3.1.1). Missing answers are then predicted as in Section 3.2. The
idea here is that missing answers of a person can be interpolated from available answers by
other persons. This is essentially a multimodal generalisation of the so-called collaborative
filtering problem. Table 3 reports the completion results for a subset of the data.

4.2.3. Learning Predictive Models

We study six predictive problems, each of which is representative for a data type. This
means six corresponding variables are reserved as outputs and the rest as input co-variates.
The predictive problems are: (i) satisfaction with the country (binary), (ii) country of origin
(categorical, of size 44), (iii) problems facing the country (multicategorical, of size 11), (iv)
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Baseline K = 3 K = 5 K = 10 K = 15 K = 20 K = 50

Satisfaction (bin.) 26.3 18.0 17.7 17.7 17.8 18.0 18.0

Country (cat.) 92.0 70.2 61.0 21.6 11.0 9.9 5.9

Probs. (multicat.) 49.6 47.6 41.9 39.2 38.8 39.1 39.2

Age (cont.*) 99.8 67.3 67.6 66.3 66.4 65.8 66.3

Life ladder (ord.) 16.9 12.2 12.2 11.9 11.9 12.2 11.8

Dangers (cat.-rank) 31.2 27.1 24.6 24.0 23.2 23.0 22.5

Table 4: Predictive error rates (%) with 80/20 train/test split. (*) See Table 2.

age of the person (continuous), (v) ladder of life (ordinal, of size 11), and (vi) rank of dangers
of the world (category-ranking, of size 5). All models are trained discriminatively (see
Section 3.1.2). We randomly split the users into a training subset and a testing subset. The
predictive results are presented in Table 4. It can be seen that learning predictive models
requires far less number of hidden units than the tasks of reconstruction and completion.
This is because in discriminative training, the hidden layer acts as an information filter that
allows relevant amount of bits passing from the input to the output. Since there is only one
output per prediction task, the number of required bits, therefore number of hidden units,
is relatively small. In reconstruction and completion, on the other hand, we need many bits
to represent all the available information.

5. Related Work

The most popular use of RBMs is in modelling of individual types, for example, binary
variables (Freund and Haussler, 1993), Gaussian variables (Hinton and Salakhutdinov, 2006;
Ranzato and Hinton, 2010), categorical variables (Salakhutdinov et al., 2007), rectifier linear
units (Nair and Hinton, 2010), Poisson variables (Gehler et al., 2006), counts (Salakhutdinov
and Hinton, 2009b) and Beta variables (Le Roux et al., 2011). When RBMs are used for
classification (Larochelle and Bengio, 2008), categorical variables might be employed for
labeling in additional to the features. Other than that, there has been a model called
Dual-Wing RBM for modelling both continuous and binary variables (Xing et al., 2005).
However, there have been no attempts to address all six data types in a single model as we
do in the present paper.

The literature on ordinal variables is sufficiently rich in statistics, especially after the
seminal work of (McCullagh, 1980). In machine learning, on the other hand, the literature
is quite sparse and recent (e.g. see (Shashua and Levin, 2002; Yu et al., 2006)) and it is
often limitted to single ordinal output (given numerical input co-variates). An RBM-based
modelling of ordinal variables addressed in (Truyen et al., 2009) is similar to ours, except
that our treatment is more general and principled.

Mixed-variate modelling has been previously studied in statistics, under a variety of
names such as mixed outcomes, mixed data, or mixed responses (Sammel et al., 1997; Dun-
son, 2000; Shi and Lee, 2000; McCulloch, 2008). Most papers focus on the mix of ordinal,
Gaussian and binary variables under the latent variable framework. More specifically, each
observed variable is assumed to be generated from one or more underlying continuous latent
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variables. Inference becomes complicated since we need to integrate out these correlated
latent variables, making it difficult to handle hundreds of variables and large-scale datasets.

In machine learning, the problem of predicting a single multicategorical variable is also
known as multilabel learning (e.g., see (Tsoumakas and Katakis, 2007)). Previous ideas that
we have adapted into our context including the shared structure among labels (Ji et al.,
2008). In our model, the sharing is captured by the hidden layer in a probabilistic manner
and we consider many multicategorical variables at the same time. Finally, the problem of
predicting a single category-ranked variable is also known as label-ranking (e.g., see (Dekel
et al., 2003; Hüllermeier et al., 2008)). The idea we adopt is the pairwise comparison
between categories. However, the previous work neither considered the hidden correlation
between those pairs nor attempted multiple category-ranked variables.

6. Conclusion

We have introduced Mixed-Variate Restricted Boltzmann Machines (MV.RBM) as a gener-
alisation of the RBMs for modelling correlated variables of multiple modalities and types.
Six types considered were: binary, categorical, multicategorical, continuous information, or-
dinal, and category-ranking. We shown that the MV.RBM is capable of handling a variety
of machine learning tasks including feature exaction, dimensionality reduction, data com-
pletion, and label prediction. We demonstrated the capacity of the model on a large-scale
world-wide survey.

We plan to further the present work in several directions. First, the model has the
capacity to handle multiple related predictive models simultaneously by learning a shared
representation through hidden posteriors, thereby applicable to the setting of multitask
learning. Second, there may exist strong interactions between variables which the RBM
architecture may not be able to capture. The theoretical question is then how to model inter-
type dependencies directly without going through an intermediate hidden layer. Finally, we
plan to enrich the range of applications of the proposed model.

Acknowledgment: We thank anonymous reviewers for insightful comments.
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Appendix A. Additional Materials

A.1. Sample Questions

• Q1 (Ordinal): How would you describe your day today—has it been a typical day, a
particularly good day, or a particularly bad day?

• Q7 (Binary): Now thinking about our country, overall, are you satisfied or dissatisfied
with the way things are going in our country today?

• Q5 (Multicategorical): What do you think is the most important problem facing
you and your family today? {Economic problems / Housing / Health / Children
and education/Work/Social relations / Transportation / Problems with government
/ Crime / Terrorism and war / No problems / Other / Don’t know / Refused}
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• Q10,11 (Category-ranking): In your opinion, which one of these poses the great-
est/second greatest threat to the world: {the spread of nuclear weapons / religious
and ethnic hatred/AIDS and other infectious diseases / pollution and other environ-
mental problems / or the growing gap between the rich and poor}?

• Q74 (Continuous): How old were you at your last birthday?

• Q91 (Categorical): Are you currently married or living with a partner, widowed,
divorced, separated, or have you never been married?

A.2. Mean-field Approximation

We present here a simplification of P (vi | v¬C) in Eq. (11) using the mean-field approxi-
mation. Recall that P (vi | v¬C) =

∑
h P (vi,h | v¬C), where P (vi,h | v¬C) is defined in

Eq. (10). We approximate P (vi,h | v¬C) by a fully factorised distribution

Q (vi,h | v¬C) = Q (vi | v¬C)
∏
k

Q (hk | v¬C) .

The approximate distribution Q (vi,h | v¬C) is obtained by minimising the Kullback-Leibler
divergence

DKL (Q (vi,h | v¬C) ‖ P (vi,h | v¬C)) =
∑
vi

∑
h

Q (vi,h | v¬C) log
Q (vi,h | v¬C)

P (vi,h | v¬C)

with respect to Q (vi | v¬C) and {Q (hk | v¬C)}Kk=1. This results in the following recursive
relations:

Q (vi | v¬C) ∝ exp

{
Gi(vi) +

∑
k

Hik(vi)Q (hk | v¬C)

}
,

Q (hk | v¬C) =
1

1 + exp{−wk −
∑

vi
Hik(vi)Q (vi | v¬C)−

∑
j∈¬C Hik(vj)}

.

Now we make a further assumption that
∣∣∑

vi
Hik(vi)Q (vi | v¬C)

∣∣ � ∣∣∣∑j∈¬C Hik(vj)
∣∣∣,

e.g., when the set ¬C is sufficiently large. This results in Q (hk | v¬C) ≈ P (hk | v¬C) and

Q (vi | v¬C) ∝ exp

{
Gi(vi) +

∑
k

Hik(vi)P
(
h1k | v¬C

)}
,

which is essentially the data model P (vi | h) in Eq. (4) with hk being replaced by P
(
h1k | v¬C

)
.

The overall complexity of computing Q (vi | v¬C) is the same as that of evaluating
P (vi | v¬C) in Eq. (11). However, the approximation is often numerically faster, and in the
case of continuous variables, it has the simpler functional form.
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