
Recasting Self-Attention with Holographic Reduced Representations

Mohammad Mahmudul Alam 1 Edward Raff 1 2 3 Stella Biderman 2 3 4 Tim Oates 1 James Holt 2

Abstract
In recent years, self-attention has become the
dominant paradigm for sequence modeling in a va-
riety of domains. However, in domains with very
long sequence lengths the O(T 2) memory and
O(T 2H) compute costs can make using trans-
formers infeasible. Motivated by problems in
malware detection, where sequence lengths of
T ≥ 100, 000 are a roadblock to deep learning,
we re-cast self-attention using the neuro-symbolic
approach of Holographic Reduced Representa-
tions (HRR). In doing so we perform the same
high-level strategy of the standard self-attention:
a set of queries matching against a set of keys,
and returning a weighted response of the values
for each key. Implemented as a “Hrrformer” we
obtain several benefits including O(TH logH)
time complexity, O(TH) space complexity, and
convergence in 10× fewer epochs. Nevertheless,
the Hrrformer achieves near state-of-the-art accu-
racy on LRA benchmarks and we are able to learn
with just a single layer. Combined, these benefits
make our Hrrformer the first viable Transformer
for such long malware classification sequences
and up to 280× faster to train on the Long Range
Arena benchmark. Code is available at https:
//github.com/NeuromorphicComputa
tionResearchProgram/Hrrformer

1. Introduction
Self-attention has risen to prominence due to the develop-
ment of transformers (Vaswani et al., 2017) and their recent
successes in machine translation, large language modeling,
and computer vision applications. The fundamental con-

1Department of Computer Science and Electrical Engineer-
ing, University of Maryland, Baltimore County, Baltimore, MD,
USA 2Laboratory for Physical Sciences, College Park, MD, USA
3Booz Allen Hamilton, McLean, VA, USA 4EleutherAI. Cor-
respondence to: Edward Raff <Raff Edward@bah.com>, Tim
Oates <oates@cs.umbc.edu>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

29 210 211 212 213 214 215 216 217

Maximum Sequence Length

74

76

78

80

82

84

86

88

90

A
cc

u
ra

cy
 (%

)

OOM

OOT

OOT

OOM

OOM

Transformer

H-Transformer-1D

Luna-256

Performer

Linformer

F-Net

Hrrformer

Transformer

H-Transformer-1D

Luna-256

Performer

Linformer

F-Net

Hrrformer

Figure 1: Our primary result, comparison of our Hrrformer
with other self-attention models in EMBER malware classi-
fication dataset. Most prior methods fail early by running
Out Of Memory (OOM) or Time (OOT). Hrrformer is pre-
sented in a solid line and achieves the best accuracy, scales
to longer sequences. The two prior best models according
to the Long Range Arena, H-Transformer-1D and Luna-256,
are in the dashed lines, and do not perform as well as the
LRA would have indicated in speed or accuracy. The rest of
the models are in the dotted line.

struction of self-attention includes a triplet of “queries, keys,
and values”, where the response is a weighted average over
the values based on the query-key interactions. This results
in a quadratic memory and computational complexity, that
has inhibited the use of Transformers to those without sig-
nificant GPU infrastructure and prevented applications to
longer sequences. Ever since, a myriad of approaches has
been proposed to approximate the self-attention mechanism,
with the vast majority trading some amount of accuracy for
speed or memory use. The “market” of self-attention strate-
gies currently offers various trade-offs in the total package
of speed, memory use, and accuracy.

1

https://github.com/NeuromorphicComputationResearchProgram/Hrrformer
https://github.com/NeuromorphicComputationResearchProgram/Hrrformer
https://github.com/NeuromorphicComputationResearchProgram/Hrrformer

Recasting Self-Attention with Holographic Reduced Representations

We test our method in two settings: using the Long Range
Arena (LRA) to compare with prior approaches and a real-
world task in malware detection. These results show sev-
eral benefits to the Hrrformer: it is near state-of-the-art in
terms of accuracy, and one of only two methods to improve
upon the original Transformer for all tasks in the LRA. The
Hrrformer sets a new benchmark for state-of-the-art speed
and memory use, processing 28× more samples/second and
using 79.15% less memory than the best prior art for each
respective metric. The Hrrformer converges in 10× fewer
epochs and is effective with just a single layer. Combined
this makes the Hrrformer up to 280× times faster to train.
On our malware classification task, we find that the relative
accuracies of Transformer models change from the LRA
benchmark, but that our Hrrformer still obtains the best
accuracy and scales the best with sequence length up to
T = 131, 072, as demonstrated in Figure 1.

The remainder of our manuscript is organized as follows.
Work related to our own, as well as adjacent techniques
beyond our study’s scope, is reviewed in section 2. The
recasting of attention in our Hrrformer is a simple procedure
demonstrated in section 3, which redefines the Attention
function using HRR, and multi-headed self-attention then
continues as normal. We then demonstrate these benefits
in section 4, showing Hrrformer is consistently one of the
best methods with respect to accuracy and considerably
faster thanks to reduced memory usage, the number of lay-
ers, and epochs needed to converge. In section 5 we draw
conclusions from out work.

2. Related Works
Since the introduction of the Self-Attention mechanism and
the transformer architecture, considerable research has oc-
curred to mitigate its computational burdens. Though not
explicit in much of the current literature, many of these ap-
proaches resemble strategies for improving Support Vector
Machines that have similar complexity. This includes pro-
jection (Kaban, 2015) to a lower dimension (Wang et al.,
2020), finding/creating sparse structure in the correlations
(Wang et al., 2014) by (Kitaev et al., 2020; Child et al., 2019;
Tay et al., 2020b; Beltagy et al., 2020; Zaheer et al., 2020),
using randomized features (Rahimi & Recht, 2007; Sinha
& Duchi, 2016) by (Choromanski et al., 2020), factorized
or budgeted representations (Si et al., 2016; Wang et al.,
2010) by (Xiong et al., 2021; Ma et al., 2021), and creat-
ing simplified linear approximations (Wang et al., 2011;
Kantchelian et al., 2014) by (Katharopoulos et al., 2020).
Other more differentiated approaches include the hierarchi-
cal decomposition of the correlations (by (Zhu & Soricut,
2021)), and approaches that replace self-attention entirely
with alternative “mixing” strategies (Tay et al., 2020a; Lee-
Thorp et al., 2021). To the best of our knowledge, ours is

the first work that attempts to re-create the same logic of
self-attention with the HRR.

Among these prior methods, we note that F-Net (Lee-Thorp
et al., 2021) is the most closely related as both F-Net and
HRR rely upon the Fast Fourier Transform (FFT) as a funda-
mental building block. While F-Net does not approximate
self-attention so much as replace it with an alternative “mix-
ing” procedure, we include it due to its relevance in using
the FFT. Our results will show significant improvement over
F-Net, highlighting the value of a neuro-symbolic approach
to reconstructing the same logic as opposed to using the
FFT as a generic differentiable mixing strategy.

The HRR has seen successful use in cognitive science re-
search (Jones & Mewhort, 2007; Blouw & Eliasmith, 2013;
Stewart & Eliasmith, 2014; Blouw et al., 2016; Eliasmith
et al., 2012; Singh & Eliasmith, 2006; Bekolay et al., 2014),
but comparatively little application in modern deep learn-
ing. The symbolic properties have been previously used
in knowledge graphs (Nickel et al., 2016) and multi-label
classification (Ganesan et al., 2021). There is limited use
of HRRs for sequential modeling. (Plate, 1992) proposed
an HRR-based Recurrent Neural Network (RNN), while
other work has used complex numbers inspired by HRRs
but not actually used the corresponding operations (Dani-
helka et al., 2016). An older alternative to the HRR, the
Tensor Product Representation (TPR) (Smolensky, 1990)
has been used to endow associative memories (Le et al.,
2020) and RNNs with enhanced functionality (Huang et al.,
2018; Schlag & Schmidhuber, 2018). Compared to these
prior works, we are re-casting the logic into HRRs, rather
than augmenting the logic. However, we slightly abuse the
assumptions of HRRs to make our method work. A strategic
design allows us to effectively remove additionally created
noise via the softmax function. In addition, the TPR’s com-
plexity is exponential in the number of sequential bindings,
making it a poor choice for tackling the scaling problems of
self-attention.

Other recent approaches to sequential modeling such
as Legendre Memory Units (Voelker et al., 2019),
IGLOO (Sourkov, 2018), and State Space Models(Gu et al.,
2022; Goel et al., 2022; Gu et al., 2021; 2020) are highly
promising. We consider these, along with RNNs, beyond
the scope of our work. Our goal is to explore the value of re-
casting self-attention within the neuro-symbolic framework
of HRR. As such, other sequence modeling approaches are
out of scope.

The need for both less memory and extension to very long
sequences is also important in malware detection. Process-
ing malware from raw bytes has been found to be one of
the most robust feature types in the face of common mal-
ware obfuscations (Aghakhani et al., 2020), but simple n-
gram based features have been maligned for being unable

2

Recasting Self-Attention with Holographic Reduced Representations

to learn complex sequential information when executable
can be tens of kilobytes on the small side and hundreds of
megabytes on the larger side (Kephart et al., 1995; Abou-
Assaleh et al., 2004; Kolter & Maloof, 2006; Raff et al.,
2019; Zak et al., 2017). Given that a maximum T = 200M
is realistic, many strategies to handle such sequence lengths
have been developed. These include attempts to create “im-
ages” from malware (Nataraj et al., 2011; Liu & Wang,
2016), using compression algorithms as a similarity met-
ric (Li et al., 2004; Walenstein & Lakhotia, 2007; Borbely,
2015; S. Resende et al., 2019; Menéndez et al., 2019; Raff &
Nicholas, 2017; Raff et al., 2020), and attempts to scale 1D-
convolutional networks over raw bytes (Krčál et al., 2018;
Raff et al., 2018; 2021).

We will use the Ember (Anderson & Roth, 2018) dataset
for malware detection as a real-world test of our new self-
attention for processing long sequences. It has been ob-
served empirically that “best practices” developed in the
machine learning, computer vision, and natural language
processing communities do not always transfer to this kind
of data. For example, this phenomenon has been observed
with CNNs (Raff et al., 2018) and Transformers for ma-
licious URL detection (Rudd & Abdallah, 2020). Most
recently, (Rudd et al., 2022) attempted to apply Transform-
ers to raw byte prediction and had to use a chunked attention
that limits the attention window (Sukhbaatar et al., 2019).
Using Hrrformer we show much longer sequence processing
than this prior work, while simultaneously demonstrating
that our method generalizes to a domain that is notorious
for a lack of transfer. This increases our confidence in the
effectiveness of our method. Notably, the two current state-
of-the-art Transformers as measured by the Long Range
Arena (LRA) (Tay et al., 2020c) benchmarks do not pass
this test, performing considerably worse on the malware
task.

3. Attention with Holographic Reduced
Representations

The HRR operation allows assigning abstract concepts to
numerical vectors, and performing binding () and unbind-
ing operations on those concepts via the vectors. One could
bind “red” and “cat” to obtain a “red cat”. The vectors
can also be added, so “red” “cat” + “yellow” “dog”
represents a “red cat and yellow dog”. An inverse opera-
tor † is used to perform unbinding. One can then query a
bound representation, asking “what was red?” by unbinding
“red cat and yellow dog” “red”† to get a vector ≈ “cat”,
where the resulting vector is necessarily corrupted by the
noise by combining multiple vectors into a single fixed size
representation.

To perform this symbolic manipulation the binding opera-
tion can be defined as B = x y = F−1(F(xi)⊙F(yi)),

where F denotes the FFT and ⊙ an element-wise multipli-
cation1. The inversion is defined as y† = F−1

(
1

F(y)

)
.

Combined Plate showed that the response B⊤y† should be
≈ 1 if the vector y ∈ B, and ≈ 0 if not present. These prop-
erties hold in expectation provided that all vectors satisfy
the sufficient condition that their elements are I.I.D. sampled
from a Gaussian with zero mean and variance 1/H , where
H is the dimension of the vectors.

We will now show how to apply the same general logic
of attention using HRR operations, creating an alternative
(but not mathematically equivalent) form of self-attention
that runs in linear time with respect to the sequence length.
This is a slight “abuse” of the HRR, as our vectors will
not be I.I.D. sampled random values, but results from prior
layers in the network. Our design circumvents this issue
in practice, which we will discuss shortly. We note this
is a satisfying, but not required condition. Deviating from
this adds more noise (our vectors are the outputs of prior
layers in the network), but a softmax operation will act as a
cleanup step to work without this condition.

Attention can be represented using queries Q, keys K, and
values V matrices where the final output is computed as
the weighted sum of the values. A query vector can be
mapped to a set of linked key-value pairs to retrieve the
value vector associated with the associated key. The concept
of binding and unbinding operations of HRR is applied to
link the key-value pair (i.e., bind the terms together), and
then query a single representation of all key-value pairs to
find the response values. For this reason, we will define the
steps in an element-by-element manner that more naturally
corresponds to the HRR operations, but our implementation
will work in a batched manner. For this reason, we will dis-
cuss a single query qt ∈ RH , against the set of T key/value
pairs kt,vt ∈ RH , where H is the dimension of the repre-
sentation and t ∈ 1, 2, · · ·T . Thus K = [k1,k2, . . .kT] is
a matrix of shape (T,H), and similar for Q and V .

First, we will create a superposition β ∈ RH of the key-
value pairs, meaning that all vectors entering the superposi-
tion β are also similar (to some degree) to the final result.
This is done by binding () each key-value pair to associate
them, and summing the results to form the superposition:

β =

T∑
i=1

ki vi (1)

β lets us compute interaction effects against all key-value
pairs in one O(TH logH) operation, avoiding the O(T 2H)
cost of explicit cross-correlation.

This now gives us a single vector β that represents the entire

1This is faster than an equivalent reformulation as multiplica-
tion by a circulant matrix of only real values.

3

Recasting Self-Attention with Holographic Reduced Representations

sequence of T different key-value pair bindings. Now for
each query we are interested in, we can obtain a vector that
approximately matches the values v1,2,...,T via the symbolic
property of HRRs that x† (x y + a b) ≈ y, giving:

v̂t = qt
† β (2)

The queries are checked against the representation of all key-
value pairs β, where each qt will contribute a corresponding
value based on the response of the bound key, and the HRR
framework allows us to perform them jointly. This now
gives us a representation v̂t ∈ RH that represents the set
of values present given the keys that respond to the input
queries. We can then approximately determine the values
present using the dot-product test that present values should
result in ≈ 1 scalars, performing:

at = cosine-similarity (vt, v̂t) (3)

Each at is a scalar given the match between the original
value vt against the HRR extracted v̂t, and is repeated for
all T values to give us a response on the relative magni-
tude of each value present. With these approximate re-
sponses, we can compute a weighted distribution w ∈ RT

by computing the softmax over all a1,2,...,T responses, giv-
ing w = softmax(a1, a2, . . . , aT)

2. While each at will be
highly noisy due to the inherent noise of HRR’s superpo-
sition β, and an amplified level of noise due to the use of
non-I.I.D. Gaussian elements, the softmax has the practical
effect of removing this noise for us. This occurs because
the HRR results in similar magnitude noise across each at,
and the softmax operation is invariant to constant additions
to all elements.

For notational convenience to express this in more de-
tail, let Π̃h(x1, . . . ,xk) denote the pairwise interac-
tions of the h’th term in evaluating an expression of

the form
(∑T

i=1 xi xi+T

)⊤
qT , where all bold sym-

bols are H dimensional vectors. The response of any
query of the form q = xm + z takes the form∑H

h=1(xm,h+zh)Π̃h(x1,...,xk)(−1)h+1

(
∑H

h=1(−1)h+1xm,h+
∑H

h=1(−1)h+1zh)(
∑H

h=1 xm,h+zh)
. In do-

ing so we see that any noise vector z has a similar magni-
tude impact regardless of the target vector xm. Because the
softmax is invariant to uniform magnitude adjustments to
all inputs, and we have the same noise occurring for each
computation, we get the behavior of the softmax effectively
denoising the response due to the magnitude impacts. We
discuss this further in Appendix D.

This softmax-based cleanup step is necessary because at-
tempting to use v̂t directly results in degenerate random-
guessing performance due to the noise of the HRR steps.

2We find no meaningful difference in results when using a
temperature softmax(exp(α)[a1, . . . , aT]).

With w in hand, we obtain the final Attention result

Attention(Q,K,V) = [w1v1, w2v2, . . . , wTvT ,] (4)

returning a weighted version of the original values V , ap-
proximating the standard attention’s response. Critically,
this process is linear in T and approximates an all pairs inter-
action between queries and keys, as shown by Theorem A.1

The rest of self-attention works in the same manner as the
standard Transformer. The Attention function’s inputs and
outputs are altered by linear layers, and instead of perform-
ing single attention, we split the feature vector H of the
query, key, and value into h heads each having a feature
size of H ′ = H/h. The attention is computed in parallel
in each head and then merged into single attention which
is projected to get the final output. The Hrrformer is imple-
mented using JAX and a code snippet of the self-attention
mechanism is presented in Appendix A. The block diagram
representation of the Hrrformer self-attention is presented in
Figure 2. The diagram is shown for single head and single
batch elements for brevity. A high-level overview of the
architecture in a multi-head setting is presented in Figure 3
showing the analogy between Hrrformer and Transformer.

𝜷

𝜷

𝒒1

𝒌1

𝒗1
𝒃1

T

𝒒𝑇

𝒌𝑇

𝒗𝑇

c
o
si

n
e

unbind ෞ𝒗1

𝒗1

softmax

c
o
si

n
e

unbind ෞ𝒗𝑇

𝒗𝑇

𝑽attention

weighted

values

linear

output

bind

𝒃𝑇bind

𝑖=1

𝑇

𝒃𝑖 𝜷

𝑎1

𝒂

𝑎𝑇

𝑎2
𝑎3

Figure 2: The block diagram of the Hrrformer self-attention.
The dashed straight line represents the continuation of the
same process for each T element. After computing the co-
sine similarity score vector a, softmax is applied to compute
the final attention weights w which is elementwise multi-
plied with value matrix V = [v1,v2, . . .vT]. Afterward, a
linear layer is used to get the final output.

The time complexity of the binding/unbinding operation
is O(H logH), which is performed T times as the domi-
nant cost. Therefore, the time and space complexity of the
Hrrformer attention per layer is linear in sequence length T
where the time complexity is O(TH logH) and the space
complexity is O(TH).

This simple approach allows us to have fully replicated the
same overall logical goals and construction of the attention
mechanism first proposed by (Vaswani et al., 2017). The

4

Recasting Self-Attention with Holographic Reduced Representations

cosine

unbind

Σ bind

Q K V

softmax

multiply

T x H

1 x H

T x H

T x 1

T x H

T x H

linear linear linear

Q K V

h
concat

Hrrformer Attention

linear

Hrrformer Attention Multi-Head Attention

Figure 3: A high-level overview of our architecture, show-
ing how the Hrrformer is analogous to the traditional trans-
former. Dataflow in a single-head with the shape of the
tensor in different stages is shown on the left and multi-head
attention is shown in right.

correspondence is not exact (e.g., returning weight original
values instead of approximate value constructions), but al-
lows us to avoid the non-I.I.D. issue of using arbitrary Q, K,
and V as learned by the network. This neuro-symbolic re-
construction yields several benefits, as we will demonstrate
in the next section. Simply replacing the self-attention in
a standard Transformer with our HRR-based self-attention
gives the “Hrrformer” that we will use to judge the utility
of this new derivation.

4. Experiments and Results
The proposed Hrrformer is designed as an inexpensive al-
ternative to the self-attention models for longer sequences.
Experiments are performed to validate the effectiveness of
the method in terms of time and space complexity in known
benchmarks.

Our first result is running many of the current popular and
state-of-the-art (SOTA) xformers on the real-world classi-
fication task of the Ember malware detection dataset (An-
derson & Roth, 2018). This provides an example where
the need to handle ever longer sequences exists and demon-
strates that Hrrformer is one of the fastest and most accurate
options on a problem with complex real-world dynamics. In
doing so we also show that current SOTA methods such as
Luna-256 do not generalize as well to new problem spaces,
as our Hrrformer does.

Our second result will use the Long Range Arena
(LRA) (Tay et al., 2020c) which has become a standard
for evaluations in this space. The primary value of these
results is to compare our Hrrformer with numerous prior
works, establishing the broad benefits of faster time per
epoch, convergence in 10× fewer epochs, requiring only
a single layer, and competitive overall accuracy. In addi-
tion, the LRA results are more accessible to the broader
ML comunity and allow us to show visual evidence of HRR

based attention learning to recover complex structure from
a one-dimensional sequence.

4.1. EMBER

EMBER is a benchmark dataset for the malware classi-
fication task (Anderson & Roth, 2018). The benchmark
contains 600K labeled training samples (300K malicious,
300K benign) and 200K labeled test samples (100K ma-
licious, 100K benign). The maximum sequence length of
this dataset is over 100M which is not feasible for any of
the self-attention models to train with. We experiment with
relatively shorter sequence lengths starting from T = 256
and doubling up to T = 131072 by truncating or padding
the bytes until this maximum length is reached.

In this benchmark, Hrrformer is compared with Trans-
former (Vaswani et al., 2017), H-Transformer-1D (Zhu
& Soricut, 2021), Luna-256 (Ma et al., 2021), Per-
former (Choromanski et al., 2020), Linformer (Wang et al.,
2020), and F-Net (Lee-Thorp et al., 2021). All use 8 heads
of a single encoder with 256 embedding size and 512 hid-
den size of the feed-forward network. Because this is a
binary classification task, the encoder output is mapped into
2 logits output using back-to-back dense layers with ReLU
activation. During training, the softmax cross-entropy loss
function is optimized.

For sequence length 256, the batch size is set to be 256. In
the experiment, as the sequence length doubles, we halved
the batch size to fit the data and the model to the memory
which can be expressed as max(216−log2 T , 1). This is done
to push other models to the maximum possible length, and
keep the batch size consistent between experiments. Addi-
tionally, a timeout limit of 10, 000s per epoch is set before
experiments are terminated. The dropout rate is chosen to
be 0.1, the learning rate is 10−3 with an exponential decay
rate of 0.85. Each of the models is trained for a total of 10
epochs in 16 NVIDIA TESLA PH402 32GB GPUs.

Figure 1 shows the classification accuracy of each of the
methods for incremental sequence length from 512 to
131072. As the sequence length increases, Hrrformer outper-
forms the rest of the models achieving the highest 91.03%
accuracy for maximum sequence length 16384. In terms of
execution time F-Net is the only model that is faster than
ours, however the accuracy of F-Net is an absolute 4.53%
points lower (Table 1). Even after exponentially decay-
ing batch size, we could not fit the standard Transformer
model to the memory for the sequence length 8196 indicat-
ing out-of-memory (OOM) in all figures. H-transformer-1d
and Luna-256 crossed the timeout limit for sequence length
16384 indicated out-of-time (OOT) in the figure. The de-
tailed numeric results are presented in Appendix B with addi-
tional results for the sequence length of 256. The execution
time for linear time complexity methods seems quadratic in

5

Recasting Self-Attention with Holographic Reduced Representations

the figure; this is due to the exponential decay of the batch
size with the increase of sequence length, which was neces-
sary to push each model to its maximum possible sequence
length. The more detailed timing information can be seen in
Figure 4, where all models but F-Net and Hrrformer run out
of time or memory before reaching the maximum sequence
length. Note as well that as the sequence length increases,
the already small difference in runtime between F-Net and
Hrrformer reduces to near-zero.

29 210 211 212 213 214 215 216 217

Maximum Sequence Length

0

2000

4000

6000

8000

10000

E
xe

cu
ti

o
n

 T
im

e
(s

)

OOM

OOT

OOT

OOM

OOM

Transformer O(T2 ·H)

H-Transformer-1D O(T ·H)

Luna-256 O(T ·H)

Performer O(T ·H)

Linformer O(T ·H)

F-Net O(T ·H logH)

Hrrformer O(T ·H logH)

Transformer O(T2 ·H)

H-Transformer-1D O(T ·H)

Luna-256 O(T ·H)

Performer O(T ·H)

Linformer O(T ·H)

F-Net O(T ·H logH)

Hrrformer O(T ·H logH)

Figure 4: The total runtime on the Ember dataset for each
algorithm, with the big-O runtime complexity associated.
While Hrrformer is technically a slower big-O due to the
extra logH term, the hidden size of the network is generally
fixed and smaller than the sequence length. Thus we see in
practice our design allows for faster execution in training
and inference. Most prior methods fail early by running Out
Of Memory (OOM) or Time (OOT).

Of significant importance to our results is that Luna-256 per-
forms considerably worse than all other options, compared
to its top accuracy in the LRA. We hypothesize that the
Ember task requires more complex reasoning and feature
extraction over time and because Luna performs aggressive
compression and approximation of the time component of
the model it suffers in terms of accuracy. Our Hrrformer on
the other hand has consistent behavior across Ember and
the LRA: high accuracy, able to handle longer sequences,
and convergence in few epochs, a requirement for work-
ing on this dataset which is 1 TB in size and is otherwise
prohibitive in its scale.

4.2. Long Range Arena

The Long Range Arena (LRA) (Tay et al., 2020c) bench-
mark comprises 6 diverse tasks covering image, text, math,
language, and spatial modeling under long context scenarios

ranging from 1K to 16K. ListOps – task inspects the capa-
bility of modeling hierarchically structured data in a longer
sequence context with mathematical operators MAX, MEAN,
MEDIAN, and SUM MOD enclosed by delimiters. This is a
ten-way classification problem with a maximum sequence
length of 2K. Text – is a byte/character level classifica-
tion task using the IMDB movie review (Maas et al., 2011)
dataset. Character-level language modeling makes the mod-
els reason with compositional unsegmented data.This is a
binary classification task with a maximum sequence length
of 4K. Retrieval – evaluates the model’s ability to encode
and compress useful information for matching and retrieval
by modeling similarity score between two documents. For
this task, the ACL Anthology Network (Radev et al., 2013)
dataset is used in a character level setup. This task has a
maximum sequence length of 8K and this is a binary classi-
fication task. Image – is an image classification task of 10
classes that uses grayscale CIFAR-10 dataset in a sequence
of length 32 × 32 = 1024. This task allows assessing the
model’s ability to process discrete symbols. Pathfinder
– task evaluates the model’s performance over long-range
spatial dependency. This is a binary classification task that
classifies whether two circles are connected by a line which
is introduced in (Linsley et al., 2018), and includes distrac-
tor paths. The images have dimension 32 × 32 which is
reshaped into 1024. Path-X - is extremely difficult ver-
sion of pathfinder task which contains images of dimension
128× 128 = 16384 with additional distractor paths.

In Hrrformer, we use the same number or fewer parameters
as mentioned in the LRA benchmark (Tay et al., 2020c)
across the tasks and a list of hyper-parameters used in each
task is provided in Appendix B. Global average pooling
is applied to the output of the encoder sequences and sub-
sequently back to back dense layers are used with ReLU
activation to get the final logits output. During training, the
softmax cross-entropy loss function is optimized using the
Adam optimizer. We use the exponential decay learning
rate with the initial value of 10−3, and the final value of
10−5. For all the tasks, Hrrformer is trained for a total of
20 epochs both in the case of single- and multi-layer which
is 10× less training than previous works. The results in
terms of accuracy in all the tasks of the LRA benchmark are
presented in Table 1. 3

Ours is one of only two methods that improve accuracy
upon the Transformer and consistently displayed higher per-

3The Pathfinder task as originally reported by (Tay et al., 2020c)
uses a “hard” version of the task, but the code provided defaults to
an “easy” version. Most papers do not make clear which version
of the task is evaluated, and the F-Net authors indicated in corre-
spondence the “easy” version was used. Luna-256 used the hard
version, and other authors have not yet reached back to us. On the
easy version, Hrrformer gets 80.81% in a single-layer and 80.77%
in the multi-layer, but we report the hard version in our table and
assume others are using the hard version.

6

Recasting Self-Attention with Holographic Reduced Representations

Table 1: Accuracy results of Hrrformer on Long Range Arena (LRA) benchmark. Even using just one layer Hrrformer is
highly competitive, and the only method besides Luna is a Pareto improvement over the original Transformer. Our method
is further advantaged in that it requires 10× fewer epochs to reach competitive accuracies. Best results in bold, second best
in italics.

Model ListOps (2k) Text (4k) Retrieval (4k) Image (1k) Path (1k) Path-X (16k) Avg Epochs

Transformer (Vaswani et al., 2017) 36.37 64.27 57.46 42.44 71.40 FAIL 54.39 200

Local Attention (Tay et al., 2020c) 15.82 52.98 53.39 41.46 66.63 FAIL 46.06 200
Linear Transformer (Katharopoulos et al., 2020) 16.13 65.90 53.09 42.34 75.30 FAIL 50.55 200
Reformer (Kitaev et al., 2020) 37.27 56.10 53.40 38.07 68.50 FAIL 50.67 200
Sparse Transformer (Child et al., 2019) 17.07 63.58 59.59 44.24 71.71 FAIL 51.24 200
Sinkhorn Transformer (Tay et al., 2020b) 33.67 61.20 53.83 41.23 67.45 FAIL 51.29 200
Linformer (Wang et al., 2020) 35.70 53.94 52.27 38.56 76.34 FAIL 51.36 200
Performer (Choromanski et al., 2020) 18.01 65.40 53.82 42.77 77.05 FAIL 51.41 200
Synthesizer (Tay et al., 2020a) 36.99 61.68 54.67 41.61 69.45 FAIL 52.88 200
Longformer (Beltagy et al., 2020) 35.63 62.85 56.89 42.22 69.71 FAIL 53.46 200
BigBird (Zaheer et al., 2020) 36.05 64.02 59.29 40.83 74.87 FAIL 55.01 200
F-Net (Lee-Thorp et al., 2021) 35.33 65.11 59.61 38.67 77.78 FAIL 54.42 200
Nystromformer (Xiong et al., 2021) 37.15 65.52 79.56 41.58 70.94 FAIL 58.95 200
Luna-256 (Ma et al., 2021) 37.98 65.78 79.56 47.86 78.55 FAIL 61.95 200
H-Transformer-1D (Zhu & Soricut, 2021) 49.53 78.69 63.99 46.05 68.78 FAIL 61.41 200

Hrrformer Single-layer 38.79 66.50 75.40 48.47 70.71 FAIL 59.97 20
Hrrformer Multi-layer 39.98 65.38 76.15 50.45 72.17 FAIL 60.83 20

formance in all the tasks. We show the performance for both
single and multiple layers. In 3 of the 5 tasks (ListOps, Text,
Image), Hrrformer achieves the second-best results using
only 1 layer of the encoder. For the Image classification
task, it achieves the best results of 50.45% accuracy using
3 layers of the encoder. Moreover, Hrrformer requires 10×
fewer epochs than others to produce comparable or better
results. Overall, the multi-layered Hrrformer produces the
third-best result of 60.83% in the benchmark.

The ability to learn with a single layer aids in both through-
put and memory use. The result is surprising, and in visual-
izing the weight vector w we can confirm that a single layer
is sufficient to learn the structure. We show this for the Im-
age task of single-layer Hrrformer in Figure 5 (multi-layer
in Appendix C). Here, the weight vector w ∈ R1024×1 is re-
shaped to 32×32, the shape of the original grayscale images
of the CIFAR-10 dataset for visualization. From the figure,
it is clear that the Hrrformer is learning to identify the 2D
structure from the 1D sequence of the Image classification
task. We also compare against the standard Transformer
in Appendix Figure 10, where it is less obvious how the
model’s weights might correspond to the 2D structure of the
image.

Hrrformer’s benefits go beyond accuracy and convergence
speed: it is fast and consumes the least amount of memory
on GPU of the alternatives tested. Figure 6 compares all the
self-attention models in terms of LRA score, speed (training
examples per second), and memory footprint (size of the

Im
ag

e

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

H
ea

d
 1

H
ea

d
 2

H
ea

d
 3

H
ea

d
 4

Figure 5: Visualization of weight vector w ∈ R1024×1 re-
shaped to 32 × 32, the shape of the original image of the
CIFAR-10 dataset used in the LRA Image classification task.
A single-layer Hrrformer is able to learn the 2D structure
from the 1D sequence of the image. This is particularly
noticeable in the Airplane, dog, Frog, and Horse images.
Note context sensitive Head activation can be observed com-
paring Head 3 for dog vs Frog, where activation occurs for
different pixel intensities indicating the model is not naively
activating for simple color intensity.

circle). LRA score is the mean accuracy of all the tasks in
the LRA benchmark. Speed and memory footprint is cal-
culated on the byte-level text classification task per epoch.
To measure these results, a single NVIDIA TESLA PH402
32GB GPU is utilized with a fixed batch size of 4 and a
maximum sequence length of 4000 with an embedding size

7

Recasting Self-Attention with Holographic Reduced Representations

101 102

Speed (Examples per second)

46

48

50

52

54

56

58

60

62

LR
A

 S
co

re

* indicates single layer
Longformer

Transformer

Sparse Transformer

Synthesizer*

BigBird

Luna-256

Linear Transformer

Sinkhorn Transformer

Local Attention

Performer

Linformer

H-Transformer-1D

Hrrformer

Hrrformer*

Figure 6: Performance (y-axis), Speed (x-axis, log-scale)
of different xformers, and memory footprint on GPU are
illustrated by the size of the circles. Hrrformer is in the top-
right of the graph, with the smallest circle size, indicating
it is the fastest and most memory efficient for training (this
does not factor in convergence speed).

of 32 and feature size of 64. For all the models 6 layers
of the encoder are used. Both single- and multi-layered
Hrrformer are 28× and 10× faster than the Luna-256 (Ma
et al., 2021) which has achieved the highest accuracy in the
LRA benchmark. Hrrformer also consumes the least amount
of memory, taking 79.15% and 70.66% less memory com-
pared to Luna-256 in the case of single and multi-layered
Hrrformer, respectively. The detailed numeric results of
Figure 6 are given in Appendix B.

Hrrformer also reduces the amount of overfitting between
training and test performance. We compare the training and
test accuracy, and amount of overfitting of the Image classi-
fication task to the other self-attention models presented in
LRA benchmark (Tay et al., 2020c) and for which data are
available4. Table 2 exhibits that the Hrrformer acquires the
best results on the test set with an 6.83% train/test gap. The
learning curves of all the task is also presented in Appendix
Figure 8 demonstrating the lower overfitting nature of the
Hrrformer across the tasks.

Hrrformer’s inference time is also faster than other options
for long sequences. As an example, the time to make pre-
dictions for the text classification task is given in Appendix
Table 7, where the single-layer Hrrformer is the fastest op-
tion, followed by the multi-layer Hrrformer. We also find
Hrrformer’s inference time is relatively faster regardless of
the batch size. The inference time for the Hrrformer with a
batch size of 2 is still 5× faster than the inference time for
the Transformer with a batch size of 32. More details are
presented in Appendix Table 6.

4We do not have the compute resources to run the other xform-
ers on the LRA ourselves, in part due to the higher memory use
that exceeds our infrastructure.

Table 2: Training and test accuracy of different self-attention
models on the Image classification task. Among all the
models, Hrrformer achieves the best test accuracy with the
least amount of overfitting (lower is better).

Model Train Accuracy (%) ↑ Test Accuracy (%) ↑ Overfitting (%) ↓

Transformer 69.45 42.44 27.01
Local Attention 63.19 41.46 21.73
Sparse Transformer 66.74 44.24 22.50
Longformer 71.65 42.22 29.43
Linformer 97.23 38.56 58.67
Reformer 68.45 38.07 30.38
Sinkhorn Transformer 69.21 41.23 27.98
Synthesizer 97.31 41.61 55.70
BigBird 71.49 40.83 30.66
Linear Transformer 65.61 42.34 23.27
Performer 73.90 42.77 31.13

Hrrformer 57.28 50.45 6.83

5. Conclusion
The Hrrformer is a neuro-symbolic reconstruction of self-
attention. The proposed method is faster in compute and
consumes less memory per layer. We have tested Hrrformer
on known LRA and EMBER benchmarks. In the LRA
benchmark, Hrrformer has achieved the near state-of-the-art
accuracy of 60.83% using a single layer of an encoder. In
terms of speed, it is 28× and 10× faster than the current
SOTA in the case of single and multiple layers, respectively.
Additionally, it takes 79.15% and 70.66% less memory on
GPU compared to Luna-256 for single and multiple layers
of Hrrformer. Moreover, it converges 10× faster than other
self-attention models. In the EMBER malware classification
dataset, Hrrformer attained the highest 91.03% accuracy for
a maximum sequence length of 16384 with a significantly
faster processing rate. In conclusion, Hrrformer is ≈ 280×
faster to train and a single layer of the encoder is sufficient
to learn the structure of the input.

References
Abou-Assaleh, T., Cercone, N., Keselj, V., and Sweidan,

R. N-gram-based detection of new malicious code. In
Proceedings of the 28th Annual International Computer
Software and Applications Conference, 2004. COMPSAC
2004., volume 2, pp. 41–42. IEEE, 2004. ISBN 0-7695-
2209-2. doi: 10.1109/CMPSAC.2004.1342667. URL
http://ieeexplore.ieee.org/lpdocs/epi
c03/wrapper.htm?arnumber=1342667.

Aghakhani, H., Gritti, F., Mecca, F., Lindorfer, M., Ortolani,
S., Balzarotti, D., Vigna, G., and Kruegel, C. When
Malware is Packin’ Heat; Limits of Machine Learning
Classifiers Based on Static Analysis Features. In Pro-
ceedings 2020 Network and Distributed System Security
Symposium, Reston, VA, 2020. Internet Society. ISBN

8

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1342667
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1342667

Recasting Self-Attention with Holographic Reduced Representations

1-891562-61-4. doi: 10.14722/ndss.2020.24310. URL
https://www.ndss-symposium.org/wp-co
ntent/uploads/2020/02/24310.pdf.

Anderson, H. S. and Roth, P. Ember: an open dataset
for training static pe malware machine learning models.
arXiv preprint arXiv:1804.04637, 2018.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stew-
art, T., Rasmussen, D., Choo, X., Voelker, A., and Elia-
smith, C. Nengo: a Python tool for building large-scale
functional brain models. Frontiers in Neuroinformatics,
7:48, 2014. ISSN 1662-5196. doi: 10.3389/fninf.2013
.00048. URL https://www.frontiersin.org/
article/10.3389/fninf.2013.00048.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Blouw, P. and Eliasmith, C. A Neurally Plausible Encoding
of Word Order Information into a Semantic Vector Space.
35th Annual Conference of the Cognitive Science Society,
35:1905–1910, 2013.

Blouw, P., Solodkin, E., Thagard, P., and Eliasmith, C. Con-
cepts as Semantic Pointers: A Framework and Compu-
tational Model. Cognitive Science, 40(5):1128–1162, 7
2016. ISSN 03640213. doi: 10.1111/cogs.12265. URL
http://doi.wiley.com/10.1111/cogs.122
65.

Borbely, R. S. On normalized compression distance and
large malware. Journal of Computer Virology and Hack-
ing Techniques, pp. 1–8, 2015. ISSN 2263-8733. doi:
10.1007/s11416-015-0260-0.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X.,
Gane, A., Sarlos, T., Hawkins, P., Davis, J., Mohiuddin,
A., Kaiser, L., et al. Rethinking attention with performers.
arXiv preprint arXiv:2009.14794, 2020.

Danihelka, I., Wayne, G., Uria, B., Kalchbrenner, N., and
Graves, A. Associative Long Short-Term Memory. In
Proceedings of The 33rd International Conference on
Machine Learning, pp. 1986–1994, 2016.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf,
T., Tang, Y., and Rasmussen, D. A Large-Scale Model of
the Functioning Brain. Science, 338(6111):1202–1205,
11 2012. ISSN 0036-8075. doi: 10.1126/science.1225266.
URL https://www.sciencemag.org/lookup/
doi/10.1126/science.1225266.

Ganesan, A., Gao, H., Gandhi, S., Raff, E., Oates, T., Holt,
J., and McLean, M. Learning with Holographic Reduced
Representations. In Advances in Neural Information Pro-
cessing Systems, 2021. URL http://arxiv.org/
abs/2109.02157.

Goel, K., Gu, A., Donahue, C., and Ré, C. It’s Raw! Audio
Generation with State-Space Models. arXiv, pp. 1–23,
2022. URL http://arxiv.org/abs/2202.097
29.

Gu, A., Dao, T., Ermon, S., Rudra, A., and Ré, C. HiPPO:
Recurrent memory with optimal polynomial projections.
Advances in Neural Information Processing Systems,
2020. ISSN 10495258.

Gu, A., Johnson, I., Goel, K., Saab, K., Dao, T., Rudra, A.,
and Ré, C. Combining Recurrent, Convolutional, and
Continuous-time Models with Linear State-Space Layers.
In NeurIPS, 2021. URL http://arxiv.org/abs/
2110.13985.

Gu, A., Goel, K., and Ré, C. Efficiently Modeling Long
Sequences with Structured State Spaces. In ICLR, 2022.
URL http://arxiv.org/abs/2111.00396.

Huang, Q., Smolensky, P., He, X., Deng, L., and Wu, D.
Tensor Product Generation Networks for Deep NLP Mod-
eling. In Proceedings of the 2018 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pp. 1263–1273, New Orleans,
Louisiana, 6 2018. Association for Computational Lin-
guistics. doi: 10.18653/v1/N18-1114. URL https:
//aclanthology.org/N18-1114.

Jones, M. N. and Mewhort, D. J. Representing word mean-
ing and order information in a composite holographic
lexicon. Psychological Review, 114(1):1–37, 2007. ISSN
0033295X. doi: 10.1037/0033-295X.114.1.1.

Kaban, A. Improved Bounds on the Dot Product under
Random Projection and Random Sign Projection. In Pro-
ceedings of the 21th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, KDD
’15, pp. 487–496, New York, NY, USA, 2015. Associa-
tion for Computing Machinery. ISBN 9781450336642.
doi: 10.1145/2783258.2783364. URL https:
//doi.org/10.1145/2783258.2783364.

Kantchelian, A., Tschantz, M. C., Huang, L., Bartlett, P. L.,
Joseph, A. D., and Tygar, J. D. Large-margin Convex
Polytope Machine. In Proceedings of the 27th Interna-
tional Conference on Neural Information Processing Sys-
tems, NIPS’14, pp. 3248–3256, Cambridge, MA, USA,
2014. MIT Press. URL http://dl.acm.org/cit
ation.cfm?id=2969033.2969189.

9

https://www.ndss-symposium.org/wp-content/uploads/2020/02/24310.pdf
https://www.ndss-symposium.org/wp-content/uploads/2020/02/24310.pdf
https://www.frontiersin.org/article/10.3389/fninf.2013.00048
https://www.frontiersin.org/article/10.3389/fninf.2013.00048
http://doi.wiley.com/10.1111/cogs.12265
http://doi.wiley.com/10.1111/cogs.12265
https://www.sciencemag.org/lookup/doi/10.1126/science.1225266
https://www.sciencemag.org/lookup/doi/10.1126/science.1225266
http://arxiv.org/abs/2109.02157
http://arxiv.org/abs/2109.02157
http://arxiv.org/abs/2202.09729
http://arxiv.org/abs/2202.09729
http://arxiv.org/abs/2110.13985
http://arxiv.org/abs/2110.13985
http://arxiv.org/abs/2111.00396
https://aclanthology.org/N18-1114
https://aclanthology.org/N18-1114
https://doi.org/10.1145/2783258.2783364
https://doi.org/10.1145/2783258.2783364
http://dl.acm.org/citation.cfm?id=2969033.2969189
http://dl.acm.org/citation.cfm?id=2969033.2969189

Recasting Self-Attention with Holographic Reduced Representations

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention. In International Conference on
Machine Learning, pp. 5156–5165. PMLR, 2020.

Kephart, J. O., Sorkin, G. B., Arnold, W. C., Chess, D. M.,
Tesauro, G. J., and White, S. R. Biologically Inspired
Defenses Against Computer Viruses. In Proceedings
of the 14th International Joint Conference on Artificial
Intelligence - Volume 1, IJCAI’95, pp. 985–996, San
Francisco, CA, USA, 1995. Morgan Kaufmann Publish-
ers Inc. ISBN 1-55860-363-8, 978-1-558-60363-9. URL
http://dl.acm.org/citation.cfm?id=16
25855.1625983.

Kitaev, N., Kaiser, Ł., and Levskaya, A. Reformer: The
efficient transformer. arXiv preprint arXiv:2001.04451,
2020.

Kolter, J. Z. and Maloof, M. A. Learning to Detect and
Classify Malicious Executables in the Wild. Journal
of Machine Learning Research, 7:2721–2744, 12 2006.
ISSN 1532-4435. URL http://dl.acm.org/cit
ation.cfm?id=1248547.1248646.

Krčál, M., Švec, O., Bálek, M., and Jašek, O. Deep Convo-
lutional Malware Classifiers Can Learn from Raw Exe-
cutables and Labels Only. In ICLR Workshop, 2018.

Le, H., Tran, T., and Venkatesh, S. Self-Attentive Asso-
ciative Memory. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 5682–5691. PMLR, 2020. URL
https://proceedings.mlr.press/v119/l
e20b.html.

Lee-Thorp, J., Ainslie, J., Eckstein, I., and Ontanon, S. FNet:
Mixing Tokens with Fourier Transforms. arXiv, 2021.
URL http://arxiv.org/abs/2105.03824.

Li, M., Chen, X., Li, X., Ma, B., and Vitanyi, P. M. The
Similarity Metric. IEEE Transactions on Information
Theory, 50(12):3250–3264, 2004. ISSN 0018-9448. doi:
10.1109/TIT.2004.838101.

Linsley, D., Kim, J., Veerabadran, V., Windolf, C., and Serre,
T. Learning long-range spatial dependencies with horizon-
tal gated recurrent units. Advances in neural information
processing systems, 31, 2018.

Liu, L. and Wang, B. Malware classification using gray-
scale images and ensemble learning. In 2016 3rd Inter-
national Conference on Systems and Informatics (ICSAI),
pp. 1018–1022. IEEE, 11 2016. ISBN 978-1-5090-5521-
0. doi: 10.1109/ICSAI.2016.7811100. URL http://
ieeexplore.ieee.org/document/7811100/.

Ma, X., Kong, X., Wang, S., Zhou, C., May, J., Ma, H., and
Zettlemoyer, L. Luna: Linear Unified Nested Attention.
In NeurIPS, 2021. URL http://arxiv.org/abs/
2106.01540.

Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and
Potts, C. Learning word vectors for sentiment analysis.
In Proceedings of the 49th annual meeting of the asso-
ciation for computational linguistics: Human language
technologies, pp. 142–150, 2011.

Menéndez, H. D., Bhattacharya, S., Clark, D., and Barr, E. T.
The arms race: Adversarial search defeats entropy used
to detect malware. Expert Systems with Applications,
118:246–260, 2019. ISSN 0957-4174. doi: https://
doi.org/10.1016/j.eswa.2018.10.011. URL http:
//www.sciencedirect.com/science/arti
cle/pii/S0957417418306535.

Nataraj, L., Karthikeyan, S., Jacob, G., and Manjunath,
B. S. Malware Images: Visualization and Automatic
Classification. In Proceedings of the 8th International
Symposium on Visualization for Cyber Security, VizSec
’11, pp. 4:1–4:7, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0679-9. doi: 10.1145/2016904.2016908.
URL http://doi.acm.org/10.1145/201690
4.2016908.

Nickel, M., Rosasco, L., and Poggio, T. Holographic Embed-
dings of Knowledge Graphs. In Proceedings of the Thirti-
eth AAAI Conference on Artificial Intelligence, AAAI’16,
pp. 1955–1961. AAAI Press, 2016.

Plate, T. A. Holographic Recurrent Networks. In Pro-
ceedings of the 5th International Conference on Neural
Information Processing Systems, NIPS’92, pp. 34–41,
San Francisco, CA, USA, 1992. Morgan Kaufmann Pub-
lishers Inc. ISBN 1558602747.

Radev, D. R., Muthukrishnan, P., Qazvinian, V., and Abu-
Jbara, A. The acl anthology network corpus. Language
Resources and Evaluation, 47(4):919–944, 2013.

Raff, E. and Nicholas, C. An Alternative to NCD for Large
Sequences, Lempel-Ziv Jaccard Distance. In Proceedings
of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining - KDD ’17, pp.
1007–1015, New York, New York, USA, 2017. ACM
Press. ISBN 9781450348874. doi: 10.1145/3097983.
3098111. URL http://dl.acm.org/citation.
cfm?doid=3097983.3098111.

Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B.,
and Nicholas, C. Malware Detection by Eating a Whole
EXE. In AAAI Workshop on Artificial Intelligence for
Cyber Security, 10 2018. URL http://arxiv.org/
abs/1710.09435.

10

http://dl.acm.org/citation.cfm?id=1625855.1625983
http://dl.acm.org/citation.cfm?id=1625855.1625983
http://dl.acm.org/citation.cfm?id=1248547.1248646
http://dl.acm.org/citation.cfm?id=1248547.1248646
https://proceedings.mlr.press/v119/le20b.html
https://proceedings.mlr.press/v119/le20b.html
http://arxiv.org/abs/2105.03824
http://ieeexplore.ieee.org/document/7811100/
http://ieeexplore.ieee.org/document/7811100/
http://arxiv.org/abs/2106.01540
http://arxiv.org/abs/2106.01540
http://www.sciencedirect.com/science/article/pii/S0957417418306535
http://www.sciencedirect.com/science/article/pii/S0957417418306535
http://www.sciencedirect.com/science/article/pii/S0957417418306535
http://doi.acm.org/10.1145/2016904.2016908
http://doi.acm.org/10.1145/2016904.2016908
http://dl.acm.org/citation.cfm?doid=3097983.3098111
http://dl.acm.org/citation.cfm?doid=3097983.3098111
http://arxiv.org/abs/1710.09435
http://arxiv.org/abs/1710.09435

Recasting Self-Attention with Holographic Reduced Representations

Raff, E., Fleming, W., Zak, R., Anderson, H., Finlayson,
B., Nicholas, C. K., Mclean, M., Fleming, W., Nicholas,
C. K., Zak, R., and Mclean, M. KiloGrams: Very Large
N-Grams for Malware Classification. In Proceedings
of KDD 2019 Workshop on Learning and Mining for
Cybersecurity (LEMINCS’19), 2019. URL https://
arxiv.org/abs/1908.00200.

Raff, E., Nicholas, C., and McLean, M. A New Burrows
Wheeler Transform Markov Distance. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, pp.
5444–5453, 2020. doi: 10.1609/aaai.v34i04.5994. URL
http://arxiv.org/abs/1912.13046.

Raff, E., Fleshman, W., Zak, R., Anderson, H. S., Filar,
B., and McLean, M. Classifying Sequences of Extreme
Length with Constant Memory Applied to Malware De-
tection. In The Thirty-Fifth AAAI Conference on Artificial
Intelligence, 2021. URL http://arxiv.org/abs/
2012.09390.

Rahimi, A. and Recht, B. Random Features for Large-Scale
Kernel Machines. In Neural Information Processing Sys-
tems, number 1, 2007. URL http://seattle.in
tel-research.net/pubs/rahimi-recht-r
andom-features.pdf.

Rudd, E. M. and Abdallah, A. Training Transformers for
Information Security Tasks: A Case Study on Malicious
URL Prediction. arXiv, 2020. doi: 10.48550/arXiv.201
1.03040. URL http://arxiv.org/abs/2011.0
3040.

Rudd, E. M., Rahman, M. S., and Tully, P. Transform-
ers for End-to-End InfoSec Tasks: A Feasibility Study.
In Proceedings of the 1st Workshop on Robust Malware
Analysis, WoRMA ’22, pp. 21–31, New York, NY, USA,
2022. Association for Computing Machinery. ISBN
9781450391795. doi: 10.1145/3494110.3528242. URL
https://doi.org/10.1145/3494110.3528
242.

S. Resende, J., Martins, R., and Antunes, L. A Survey on
Using Kolmogorov Complexity in Cybersecurity. En-
tropy, 21(12):1196, 12 2019. ISSN 1099-4300. doi:
10.3390/e21121196. URL https://www.mdpi.c
om/1099-4300/21/12/1196.

Schlag, I. and Schmidhuber, J. Learning to Reason with
Third Order Tensor Products. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and Gar-
nett, R. (eds.), Advances in Neural Information Process-
ing Systems, volume 31. Curran Associates, Inc., 2018.
URL https://proceedings.neurips.cc/p
aper/2018/file/a274315e1abede44d6300
5826249d1df-Paper.pdf.

Si, S., Hsieh, C.-J., and Dhillon, I. S. Computationally Effi-
cient Nystrom Approximation using Fast Transforms. In
International Conference on Machine Learning (ICML),
6 2016.

Singh, R. and Eliasmith, C. Higher-Dimensional Neurons
Explain the Tuning and Dynamics of Working Memory
Cells. Journal of Neuroscience, 26(14):3667–3678, 2006.
ISSN 0270-6474. doi: 10.1523/JNEUROSCI.4864-05.20
06. URL https://www.jneurosci.org/cont
ent/26/14/3667.

Sinha, A. and Duchi, J. C. Learning Kernels with Random
Features. In Lee, D. D., Luxburg, U. V., Guyon, I., and
Garnett, R. (eds.), Advances In Neural Information Pro-
cessing Systems 29, pp. 1298–1306. Curran Associates,
Inc., 2016. URL http://papers.nips.cc/pap
er/6180-learning-kernels-with-random
-features.pdf.

Smolensky, P. Tensor product variable binding and the
representation of symbolic structures in connectionist
systems. Artificial Intelligence, 46(1):159–216, 1990.
ISSN 0004-3702. doi: https://doi.org/10.1016/0004-370
2(90)90007-M. URL https://www.sciencedir
ect.com/science/article/pii/00043702
9090007M.

Sourkov, V. IGLOO: Slicing the Features Space to Rep-
resent Long Sequences. arXiv, 2018. URL http:
//arxiv.org/abs/1807.03402.

Stewart, T. C. and Eliasmith, C. Large-scale synthesis of
functional spiking neural circuits. Proceedings of the
IEEE, 102(5):881–898, 2014. ISSN 00189219. doi: 10.1
109/JPROC.2014.2306061.

Sukhbaatar, S., Grave, E., Bojanowski, P., and Joulin,
A. Adaptive Attention Span in Transformers. In Pro-
ceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 331–335, Florence,
Italy, 7 2019. Association for Computational Linguis-
tics. doi: 10.18653/v1/P19-1032. URL https:
//aclanthology.org/P19-1032.

Tay, Y., Bahri, D., Metzler, D., Juan, D., Zhao, Z., and
Zheng, C. Synthesizer: Rethinking self-attention in trans-
former models. arXiv preprint arXiv:2005.00743, 2020a.

Tay, Y., Bahri, D., Yang, L., Metzler, D., and Juan, D.-C.
Sparse sinkhorn attention. In International Conference
on Machine Learning, pp. 9438–9447. PMLR, 2020b.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P., Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
range arena: A benchmark for efficient transformers.
arXiv preprint arXiv:2011.04006, 2020c.

11

https://arxiv.org/abs/1908.00200
https://arxiv.org/abs/1908.00200
http://arxiv.org/abs/1912.13046
http://arxiv.org/abs/2012.09390
http://arxiv.org/abs/2012.09390
http://seattle.intel-research.net/pubs/rahimi-recht-random-features.pdf
http://seattle.intel-research.net/pubs/rahimi-recht-random-features.pdf
http://seattle.intel-research.net/pubs/rahimi-recht-random-features.pdf
http://arxiv.org/abs/2011.03040
http://arxiv.org/abs/2011.03040
https://doi.org/10.1145/3494110.3528242
https://doi.org/10.1145/3494110.3528242
https://www.mdpi.com/1099-4300/21/12/1196
https://www.mdpi.com/1099-4300/21/12/1196
https://proceedings.neurips.cc/paper/2018/file/a274315e1abede44d63005826249d1df-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a274315e1abede44d63005826249d1df-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/a274315e1abede44d63005826249d1df-Paper.pdf
https://www.jneurosci.org/content/26/14/3667
https://www.jneurosci.org/content/26/14/3667
http://papers.nips.cc/paper/6180-learning-kernels-with-random-features.pdf
http://papers.nips.cc/paper/6180-learning-kernels-with-random-features.pdf
http://papers.nips.cc/paper/6180-learning-kernels-with-random-features.pdf
https://www.sciencedirect.com/science/article/pii/000437029090007M
https://www.sciencedirect.com/science/article/pii/000437029090007M
https://www.sciencedirect.com/science/article/pii/000437029090007M
http://arxiv.org/abs/1807.03402
http://arxiv.org/abs/1807.03402
https://aclanthology.org/P19-1032
https://aclanthology.org/P19-1032

Recasting Self-Attention with Holographic Reduced Representations

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Voelker, A., Kajić, I., and Eliasmith, C. Legendre Mem-
ory Units: Continuous-Time Representation in Recur-
rent Neural Networks. In Wallach, H., Larochelle, H.,
Beygelzimer, A., d\textquotesingle Alché-Buc, F., Fox,
E., and Garnett, R. (eds.), Advances in Neural Informa-
tion Processing Systems 32, pp. 15544–15553. Curran
Associates, Inc., 2019. URL http://papers.nip
s.cc/paper/9689-legendre-memory-unit
s-continuous-time-representation-in-
recurrent-neural-networks.pdf.

Walenstein, A. and Lakhotia, A. The Software Similarity
Problem in Malware Analysis. Duplication, Redundancy,
and Similarity in Software, 2007. URL http://drop
s.dagstuhl.de/opus/volltexte/2007/964.

Wang, J., Wonka, P., and Ye, J. Scaling SVM and Least
Absolute Deviations via Exact Data Reduction. JMLR
W&CP, 32(1):523–531, 2014.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H.
Linformer: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020.

Wang, Z., Crammer, K., and Vucetic, S. Multi-class pegasos
on a budget. In 27th International Conference on Machine
Learning, pp. 1143–1150, 2010. URL http://www.
ist.temple.edu/˜vucetic/documents/wan
g10icml.pdf.

Wang, Z., Djuric, N., Crammer, K., and Vucetic, S.
Trading representability for scalability Adaptive Multi-
Hyperplane Machine for nonlinear Classification. In Pro-
ceedings of the 17th ACM SIGKDD international confer-
ence on Knowledge discovery and data mining - KDD ’11,
pp. 24, New York, New York, USA, 2011. ACM Press.
ISBN 9781450308137. doi: 10.1145/2020408.2020420.
URL http://dl.acm.org/citation.cfm?d
oid=2020408.2020420.

Xiong, Y., Zeng, Z., Chakraborty, R., Tan, M., Fung, G., Li,
Y., and Singh, V. Nystr\”omformer: A Nystr\”om-Based
Algorithm for Approximating Self-Attention. In AAAI,
2021. URL http://arxiv.org/abs/2102.039
02.

Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Al-
berti, C., Ontanon, S., Pham, P., Ravula, A., Wang, Q.,
Yang, L., et al. Big bird: Transformers for longer se-
quences. Advances in Neural Information Processing
Systems, 33:17283–17297, 2020.

Zak, R., Raff, E., and Nicholas, C. What can N-grams
learn for malware detection? In 2017 12th International
Conference on Malicious and Unwanted Software (MAL-
WARE), pp. 109–118. IEEE, 10 2017. ISBN 978-1-5386-
1436-5. doi: 10.1109/MALWARE.2017.8323963. URL
http://ieeexplore.ieee.org/document/8
323963/.

Zhu, Z. and Soricut, R. H-Transformer-1D: Fast One-
Dimensional Hierarchical Attention for Sequences. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th In-
ternational Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pp. 3801–3815, On-
line, 8 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.acl-long.294. URL https:
//aclanthology.org/2021.acl-long.294.

12

http://papers.nips.cc/paper/9689-legendre-memory-units-continuous-time-representation-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/9689-legendre-memory-units-continuous-time-representation-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/9689-legendre-memory-units-continuous-time-representation-in-recurrent-neural-networks.pdf
http://papers.nips.cc/paper/9689-legendre-memory-units-continuous-time-representation-in-recurrent-neural-networks.pdf
http://drops.dagstuhl.de/opus/volltexte/2007/964
http://drops.dagstuhl.de/opus/volltexte/2007/964
http://www.ist.temple.edu/~vucetic/documents/wang10icml.pdf
http://www.ist.temple.edu/~vucetic/documents/wang10icml.pdf
http://www.ist.temple.edu/~vucetic/documents/wang10icml.pdf
http://dl.acm.org/citation.cfm?doid=2020408.2020420
http://dl.acm.org/citation.cfm?doid=2020408.2020420
http://arxiv.org/abs/2102.03902
http://arxiv.org/abs/2102.03902
http://ieeexplore.ieee.org/document/8323963/
http://ieeexplore.ieee.org/document/8323963/
https://aclanthology.org/2021.acl-long.294
https://aclanthology.org/2021.acl-long.294

Recasting Self-Attention with Holographic Reduced Representations

A. Self-attention Definition
The code of the Hrrformer self-attention model is written in JAX. Below is a code snippet of the Multi-headed Hrrformer
attention. The shape of the output vector of each line is given by a comment where B, T , and H represent the batch size,
maximum sequence length, and feature size, respectively. h is the number of heads and H ′ is the feature dimension in each
head.

class SelfAttention(nn.Module):
features: int
heads: int

def setup(self):
self.binding = Binding()
self.unbinding = Unbinding()
self.similarity = CosineSimilarity()

@nn.compact
def __call__(self, inputs, mask=None):

dense = partial(nn.DenseGeneral, features=self.features, use_bias=False)

q, k, v = (dense(name='query')(inputs), # (B, T, H)
dense(name='key')(inputs), # (B, T, H)
dense(name='value')(inputs)) # (B, T, H)

q, k, v = (split(q, self.heads), # (B, h, T, H')
split(k, self.heads), # (B, h, T, H')
split(v, self.heads)) # (B, h, T, H')

bind = self.binding(k, v, axis=-1) # (B, h, T, H')
bind = np.sum(bind, axis=-2, keepdims=True) # (B, h, 1, H')

vp = self.unbinding(bind, q, axis=-1) # (B, h, T, H')
scale = self.similarity(v, vp, axis=-1, keepdims=True) # (B, h, T, 1)

if mask is not None:
scale = scale + (1. - mask) * (-1e9) # (B, h, T, 1)

weight = nn.softmax(scale, axis=-2) # (B, h, T, 1)
weighted_value = weight * v # (B, h, 1, H')

weighted_value = merge(weighted_value) # (B, T, H)
output = dense(name='output')(weighted_value) # (B, T, H)
return output

Figure 7: Multi-headed Hrrformer Self-attention.

Theorem A.1. The Hrrformer Attention approximates an all-pairs interaction between all queries and key-values.

Proof. Expand Equation 3 as cosine-sim
(
vt, qt

†
(∑T

i=1 ki vi

))
. The distributive property of the binding operation

allows us to move the query inside summation, producing cosine-sim
(
vt,

∑T
i=1 q

†
i ki vi

)
. At the cost of noise

terms not specified, we can see that the response of the cosine similarity is produced from an interaction between the time
step t and summation of all query-key pairs for 1, 2, · · · , T steps, showing that a cross-product is approximated by the
Hrrformer.

B. Hyperparameters & Numeric Results
The hyperparameters used in each task of the Long Range Arena (LRA) benchmark and EMBER malware classification
task are presented in Table 3. In all of the tasks, the Adam optimizer is used with an exponential decay learning rate. The
starting learning rate is 10−3 and the final learning rate is 10−5. The decay rate indicates the amount of learning rate decay
per epoch. MLP dim indicates the number of features used in the first linear layer of the MLP block after the attention block.

13

Recasting Self-Attention with Holographic Reduced Representations

Table 3: List of the hyperparameters used in the Long Range Arena (LRA) benchmark and EMBER malware classification
task.

Task Positional
Embedding Batch size Vocab size Maximum

Sequence Length Embed dim MLP dim Heads Layers Classes
Decay

rate

ListOps Learned 32 17 2000 512 256 8 6 10 0.90

Text Fixed 32 257 4000 512 1024 8 6 2 0.90

Retrieval Fixed 64 257 4000 128 64 4 4 2 0.90

Image Fixed 32 256 1024 256 128 4 3 10 0.95

Path Learned 128 256 1024 1024 256 8 2 2 0.95

Malware Learned max(216−log2 T , 1) 257 T 256 512 8 1 2 0.85

The detailed results of the Hrrformer of Figures 6 are presented here. The numerical results of the comparison of Hrrformer
with other self-attention models in terms of LRA score, speed (examples per second), and memory footprint (size of the
circle) are presented in Table 4. From the table, it can be observed that the Hrrformer only lags 1.12% behind Luna-256 (Ma
et al., 2021) in the LRA score. However, in terms of speed, single- and multi-layered Hrrformer are 28× and 10× faster
than Luna-256. Moreover, Hrrformer consumes 79.15% and 70.66% less memory than Luna-256 in the case of single and
multi-layered Hrrformer, respectively. The numerical results of EMBER malware classification are presented in Table 5.
From the table, it can be observed that as the sequence length increases, Hrrformer surpasses the other models, and for the
sequence length 16, 384, has achieved the highest accuracy of 91.03%.

Table 4: LRA score, speed in examples per second, and total memory usage in MB of all the different xformer models
used in LRA benchmark. The speed and memory usage metrics are computed using 6 layers of encoder in byte-level text
classification task. In the chart, * indicates the use of single layer of encoder. Best results in bold, second best in italics.

Model LRA Score
Accuracy (%)

Speed
(Examples per Second) Time (s)

Memory Usage
(MB)

Longformer 53.46 3.14 7959.42 30978.21
Sparse Transformer 51.24 5.08 4923.98 21876.57
Transformer 54.39 10.68 2340.31 22134.52
BigBird 55.01 18.56 1347.26 5218.89
Luna-256 61.95 23.74 1053.25 3184.66
Synthesizer* 52.88 28.92 864.45 9377.55
H-Transformer-1D 61.41 32.03 780.42 1838.28
Linear Transformer 50.55 50.22 497.84 2941.39
Sinkhorn Transformer 51.29 57.56 434.31 2800.88
Performer 51.41 75.23 332.31 1951.53
Linformer 51.36 77.49 322.62 1867.64
Local Attention 46.06 93.51 267.35 2800.88
Hrrformer 60.83 246.45 101.44 934.41
Hrrformer* 59.97 683.81 36.56 663.88

In addition we provide the time to perform inference over the entire LRA text classification task for batch sizes varying
between 2 and 32. This is shown in Table 6, where the time decreases as batch size increases due to reduced overhead and
higher GPU compute efficiency. As can be seen the Hrrformer is uniformly faster, and more consistent in total run-time.
Similarly, our method is faster for larger and small batch sizes, a particularly valuable benefit in inference where batching is
not always possible. This can be seen in Table 7, where the inference time for the Hrrformer with a batch size of 2 is still 5×
faster than the inference time for the Transformer with a batch size of 32.

14

Recasting Self-Attention with Holographic Reduced Representations

Table 5: Accuracy and the execution time of the different self-attention models for different sequence lengths in the EMBER
malware classification dataset. Best results in bold.

Model
Maximum Sequence Length

256 512 1,024 2,048 4,096 8,192 16,384 32,768 65,536 131,072

Transformer
Accuracy (%) 74.87 84.27 86.74 87.76 88.43 – – – – –

Time (s) 101.59 146.96 286.98 708.7 2305.28 – – – – –

H-Transformer-1D
Accuracy (%) 59.59 78.17 85.45 87.8 90.14 88.9 90.48 – – –

Time (s) 116.6 175.04 362.41 509.63 1082.67 2371.96 6336.37 – – –

Luna-256
Accuracy (%) 70.21 74.8 77.01 80.06 79.18 83.76 83.55 – – –

Time (s) 243.04 287.5 395.87 643.81 1172.35 2326.15 5132.95 – – –

Performer
Accuracy (%) 78.0 87.74 88.91 89.77 89.06 89.88 85.68 – – –

Time (s) 115.77 159.59 247.02 418.1 770.75 1444.38 2334.94 – – –

Linformer
Accuracy (%) 79.52 86.41 88.73 88.25 86.57 86.53 86.94 85.70 83.75 –

Time (s) 99.18 124.66 179.56 273.71 459.68 855.85 1239.88 2518.44 5445.57 –

F-Net
Accuracy (%) 76.42 80.25 80.87 84.34 83.55 86.36 86.00 86.29 86.45 86.40

Time (s) 84.84 95.58 113.2 165.77 267.21 492.44 861.48 2182.30 5191.26 9800.97

Hrrformer
Accuracy (%) 78.06 83.95 88.07 89.22 90.59 90.89 91.03 90.65 90.13 89.46

Time (s) 91.35 117.96 165.18 247.32 423.55 748.48 1138.75 2315.62 5076.65 9237.78

1 5 10 15 20
Epochs

10

20

30

40

50

60

70

80

90

A
cc

u
ra

cy
 (%

)

ListOps Text Retrieval Image Pathfinder

Train Test

Figure 8: The learning curves of multi-layered Hrrformer in the LRA tasks. The training performance is solid lines and the
test is dashed. Where prior works required 200 epochs of training, we can see that 20 epochs are sufficient for our Hrrformer.
In most of the tasks, the 10-epoch performance of our Hrrformer is still highly competitive.

C. Weight Visualization
The weight vector w is visualized for LRA image classification task. In this task, grayscale images of the CIFAR-10 dataset
of dimension 32× 32 are reshaped into a sequence of length 1024. Therefore, the weight vector has the shape of R1024×1.
This vector is reshaped back to 32× 32 for visualization which shows where in the image the weight vector of each head

15

Recasting Self-Attention with Holographic Reduced Representations

Table 6: Inference timing comparison between single Hrrformer block and single Transformer block for different batch sizes
(2-32). The experiment is performed on the LRA text classification task.

Batch Size Hrrformer Transformer

Time (s) Memory (MB) Time (s) Memory (MB)

2 152.99 663.88 975.98 1584.53
3 127.34 936.51 815.30 4809.95
4 118.39 938.61 813.72 4809.95
5 117.15 1475.48 812.09 9104.92
6 115.37 1481.77 810.57 9107.01
7 115.44 1483.87 810.14 9109.11
8 113.01 1488.06 810.59 9109.11
9 114.81 2563.90 809.61 17701.14

10 113.34 2563.90 809.87 17701.14
11 113.83 2570.19 808.71 17705.34
12 113.11 2572.29 808.52 17705.34
13 114.65 2576.48 808.35 17707.43
14 114.64 2578.58 808.66 17709.53
15 114.42 2582.77 808.12 17711.63
16 113.81 2589.07 808.80 17711.63
17 86.80 2593.26 807.34 30976.11
18 85.95 4742.84 806.94 30976.11
19 85.56 4749.13 806.91 30978.21
20 85.11 4749.13 808.78 30980.31
21 84.78 4755.42 806.70 30980.31
22 83.95 4757.52 806.70 30982.41
23 83.23 4763.81 806.50 30986.60
24 81.84 4765.91 807.04 30988.70
25 83.06 4768.01 809.12 30988.70
26 83.01 4772.20 806.10 30990.79
27 82.87 4776.39 806.89 30992.89
28 82.70 4780.59 806.70 30994.99
29 82.60 4784.78 807.45 30994.99
30 82.30 4788.98 806.71 30999.18
31 82.44 4791.07 807.51 30999.18
32 80.83 4797.37 807.13 31001.28

Table 7: Inference time comparison with different self-attention models. The experiment is performed on the LRA text
classification task with 6 layers of the encoder. In the chart, * indicates single layer.

Model Time (s) ↓ Speed (examples per second) ↑ Memory (MB) ↓
Local Attention 1910.33 13.09 9369.16

Synthesizer 1848.77 13.52 8983.28
Sinkhorn Transformer 1848.76 13.52 8983.28

Transformer 813.67 30.72 4805.75
Sparse Transformer 361.69 69.12 5229.38

Longformer 337.81 74.01 2815.56
Performer 170.75 146.41 728.89

Linear Transformer 163.15 153.23 913.44
BigBird 92.89 269.14 645.01

Linformer 88.96 281.03 645.01
Hrrformer 33.38 748.95 527.56

Hrrformer* 31.82 785.67 527.56

16

Recasting Self-Attention with Holographic Reduced Representations

puts its attention. Figure 9 demonstrates the attention map of the 4 heads in each of the 3 layers of Hrrformer for all the
CIFAR-10 classes.

Im
ag

e

AirplaneAutomobile Bird Cat Deer Dog Frog Horse Ship Truck

L
ay

er
 1

H
ea

d
 1

L
ay

er
 1

H
ea

d
 2

L
ay

er
 1

H
ea

d
 3

L
ay

er
 1

H
ea

d
 4

L
ay

er
 2

H
ea

d
 1

L
ay

er
 2

H
ea

d
 2

L
ay

er
 2

H
ea

d
 3

L
ay

er
 2

H
ea

d
 4

L
ay

er
 3

H
ea

d
 1

L
ay

er
 3

H
ea

d
 2

L
ay

er
 3

H
ea

d
 3

L
ay

er
 3

H
ea

d
 4

Figure 9: Visualization of weight w ∈ R1024×1 vector of multi-layer Hrrformer, reshaped to 32 × 32, the shape of the
original image of the CIFAR-10 dataset used in the LRA image classification task.

17

Recasting Self-Attention with Holographic Reduced Representations

For the standard Transformer, the responses are a matrix of cross-correlations rather than a single vector. This makes the
response more difficult to interpret. To visualize in the same manner we average the response of correlations with respect
to a single item t to get the same 1024 shape, and visualize the results in Figure 10. As can be seen, the identification of
structure is not as obviously.

Im
ag

e

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck

L
a
y
er

 1
H

ea
d

 1
L
a
y
er

 1
H

ea
d

 2
L
ay

er
 1

H
ea

d
 3

L
ay

er
 1

H
ea

d
 4

Figure 10: Visualization of transformer’s weight matrix of shape 1024× 1024. The average attention across the key
dimension is taken to reduce its dimension to 1024 × 1 and reshaped to 32 × 32, the shape of the original image of the
CIFAR-10 dataset used in the LRA Image classification task.

D. How Softmax “Denoises” Dot Product
To understand how we can use the softmax operation as a kind of denoising step, consider the H dimensional vectors a, b, c,
d, and z. If each element of all these vectors is sampled from N (0, 1/H), then we would expect that (a⊗b+c⊗d)⊤a† ≈ 1.
Similarly, the value z is not present, so we expect that (a⊗ b+ c⊗ d)⊤z† ≈ 0. Now let us consider our use case, where
the I.I.D. property is not true, and the query that is a noisy version of a present item. For simplicity of notation, we will use
the explicit case of H = 2 dimensions. We can query for a+ z get:

(a0 + z0) (a0b0 + a1b1 + c0d0 + c1d1)− (a1 + z1) (a0b1 + a1b0 + c0d1 + c1d0)

(a0 − a1 + z0 − z1) (a0 + a1 + z0 + z1)

Similarly if we query with c+ z we instead get:

(c0 + z0) (a0b0 + a1b1 + c0d0 + c1d1)− (c1 + z1) (a0b1 + a1b0 + c0d1 + c1d0)

(c0 − c1 + z0 − z1) (c0 + c1 + z0 + z1)

Notice that in both cases we have shared terms that are multiplied and added together. Under the sufficient conditions of
I.I.D Gaussian, the linearity of expectation results in these terms canceling out into a single random variable with a zero
mean.

However, these also have the artifact in our application that for a non-present query, the response magnitude will have a
similar value due to the repeated shared terms.

We can simplify our understanding of this by imagining that there is an additional noise constant ϵ that we must add to
each noise term. Then when we apply the softmax operation, we obtain the benefit that the softmax function is invariant
to constant shifts in the input, i.e., ∀ϵ ∈ R, softmax(x + ϵ) = softmax(x). Thus, we get the practical effect of softmax
removing noise that we incur for not using I.I.D. Gaussian as the elements of our vectors.

18

